Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache)
|
| 2 |
"""Persistent-cache backend for InstantID portrait generation.
|
| 3 |
-
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
|
| 7 |
from pathlib import Path
|
|
@@ -13,22 +13,25 @@ from diffusers import (
|
|
| 13 |
from insightface.app import FaceAnalysis
|
| 14 |
|
| 15 |
##############################################################################
|
| 16 |
-
# 0.
|
| 17 |
##############################################################################
|
| 18 |
PERSIST_BASE = Path("/data")
|
| 19 |
-
CACHE_ROOT = (
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
print("cache →", CACHE_ROOT)
|
| 22 |
|
| 23 |
MODELS_DIR = CACHE_ROOT / "models"
|
| 24 |
-
LORA_DIR = MODELS_DIR / "Lora"
|
| 25 |
EMB_DIR = CACHE_ROOT / "embeddings"
|
| 26 |
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
|
| 27 |
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
|
| 28 |
p.mkdir(parents=True, exist_ok=True)
|
| 29 |
|
| 30 |
-
|
| 31 |
def dl(url: str, dst: Path, attempts: int = 2):
|
|
|
|
| 32 |
if dst.exists():
|
| 33 |
print("✓", dst.relative_to(CACHE_ROOT)); return
|
| 34 |
for i in range(1, attempts + 1):
|
|
@@ -38,22 +41,25 @@ def dl(url: str, dst: Path, attempts: int = 2):
|
|
| 38 |
raise RuntimeError(f"download failed → {url}")
|
| 39 |
|
| 40 |
##############################################################################
|
| 41 |
-
# 1.
|
| 42 |
##############################################################################
|
| 43 |
print("— asset check —")
|
| 44 |
|
| 45 |
-
# 1-A.
|
| 46 |
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
| 47 |
-
dl(
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
dl("https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus-face_sd15.bin", IP_BIN_FILE)
|
| 52 |
|
|
|
|
| 53 |
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
| 54 |
-
dl(
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
# 1-C. textual
|
| 57 |
EMB_URLS = {
|
| 58 |
"ng_deepnegative_v1_75t.pt": [
|
| 59 |
"https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
|
|
@@ -81,7 +87,7 @@ for fname, urls in EMB_URLS.items():
|
|
| 81 |
if idx == len(urls): raise
|
| 82 |
print(" ↳ fallback URL …")
|
| 83 |
|
| 84 |
-
# 1-D. Real-ESRGAN weights 8
|
| 85 |
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
|
| 86 |
RRG_URLS = [
|
| 87 |
"https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
|
|
@@ -96,38 +102,48 @@ for idx, link in enumerate(RRG_URLS, 1):
|
|
| 96 |
print(" ↳ fallback URL …")
|
| 97 |
|
| 98 |
##############################################################################
|
| 99 |
-
# 2.
|
| 100 |
##############################################################################
|
| 101 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 102 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 103 |
print("device:", device, "| dtype:", dtype)
|
| 104 |
|
| 105 |
-
providers =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
| 107 |
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
pipe.controlnet = controlnet
|
| 113 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
# 画像エンコーダは Lora/models/image_encoder/ に格納されている
|
| 117 |
-
IMAGE_ENCODER_DIR = LORA_DIR / "models" / "image_encoder"
|
| 118 |
|
|
|
|
| 119 |
pipe.load_ip_adapter(
|
| 120 |
-
|
| 121 |
-
subfolder="",
|
| 122 |
-
weight_name=
|
| 123 |
-
image_encoder_path=str(IMAGE_ENCODER_DIR) # 画像エンコーダの場所を明示
|
| 124 |
)
|
| 125 |
-
#
|
| 126 |
|
| 127 |
-
# FaceID LoRA
|
| 128 |
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
| 129 |
pipe.set_ip_adapter_scale(0.65)
|
| 130 |
|
|
|
|
| 131 |
for emb in EMB_DIR.glob("*.*"):
|
| 132 |
try:
|
| 133 |
pipe.load_textual_inversion(emb, token=emb.stem)
|
|
@@ -138,7 +154,7 @@ pipe.to(device)
|
|
| 138 |
print("pipeline ready ✔")
|
| 139 |
|
| 140 |
##############################################################################
|
| 141 |
-
# 3.
|
| 142 |
##############################################################################
|
| 143 |
try:
|
| 144 |
from basicsr.archs.rrdb_arch import RRDBNet
|
|
@@ -155,7 +171,7 @@ except Exception as e:
|
|
| 155 |
UPSCALE_OK = False
|
| 156 |
|
| 157 |
##############################################################################
|
| 158 |
-
# 4.
|
| 159 |
##############################################################################
|
| 160 |
BASE_PROMPT = (
|
| 161 |
"(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n"
|
|
@@ -177,7 +193,7 @@ NEG_PROMPT = (
|
|
| 177 |
@spaces.GPU(duration=90)
|
| 178 |
def generate(
|
| 179 |
face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
|
| 180 |
-
progress=gr.Progress(track_tqdm=True)
|
| 181 |
):
|
| 182 |
if face_np is None or face_np.size == 0:
|
| 183 |
raise gr.Error("顔画像をアップロードしてください。")
|
|
@@ -204,11 +220,15 @@ def generate(
|
|
| 204 |
|
| 205 |
if upscale:
|
| 206 |
if UPSCALE_OK:
|
| 207 |
-
up, _ = upsampler.enhance(
|
|
|
|
|
|
|
| 208 |
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
|
| 209 |
else:
|
| 210 |
-
result = result.resize(
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
return result
|
| 213 |
|
| 214 |
##############################################################################
|
|
|
|
| 1 |
# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache)
|
| 2 |
"""Persistent-cache backend for InstantID portrait generation.
|
| 3 |
+
* 依存モデルは /data が書込可ならそこへ、それ以外は ~/.cache に保存
|
| 4 |
+
* wget を使った簡易リトライ DL
|
| 5 |
"""
|
| 6 |
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
|
| 7 |
from pathlib import Path
|
|
|
|
| 13 |
from insightface.app import FaceAnalysis
|
| 14 |
|
| 15 |
##############################################################################
|
| 16 |
+
# 0. キャッシュ用ディレクトリ
|
| 17 |
##############################################################################
|
| 18 |
PERSIST_BASE = Path("/data")
|
| 19 |
+
CACHE_ROOT = (
|
| 20 |
+
PERSIST_BASE / "instantid_cache"
|
| 21 |
+
if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
|
| 22 |
+
else Path.home() / ".cache" / "instantid_cache"
|
| 23 |
+
)
|
| 24 |
print("cache →", CACHE_ROOT)
|
| 25 |
|
| 26 |
MODELS_DIR = CACHE_ROOT / "models"
|
| 27 |
+
LORA_DIR = MODELS_DIR / "Lora" # FaceID LoRA などを置く
|
| 28 |
EMB_DIR = CACHE_ROOT / "embeddings"
|
| 29 |
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
|
| 30 |
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
|
| 31 |
p.mkdir(parents=True, exist_ok=True)
|
| 32 |
|
|
|
|
| 33 |
def dl(url: str, dst: Path, attempts: int = 2):
|
| 34 |
+
"""wget + リトライの簡易ダウンローダ"""
|
| 35 |
if dst.exists():
|
| 36 |
print("✓", dst.relative_to(CACHE_ROOT)); return
|
| 37 |
for i in range(1, attempts + 1):
|
|
|
|
| 41 |
raise RuntimeError(f"download failed → {url}")
|
| 42 |
|
| 43 |
##############################################################################
|
| 44 |
+
# 1. 必要アセットのダウンロード
|
| 45 |
##############################################################################
|
| 46 |
print("— asset check —")
|
| 47 |
|
| 48 |
+
# 1-A. ベース checkpoint
|
| 49 |
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
| 50 |
+
dl(
|
| 51 |
+
"https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16",
|
| 52 |
+
BASE_CKPT,
|
| 53 |
+
)
|
|
|
|
| 54 |
|
| 55 |
+
# 1-B. FaceID LoRA(Δのみ)
|
| 56 |
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
| 57 |
+
dl(
|
| 58 |
+
"https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors",
|
| 59 |
+
LORA_FILE,
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
# 1-C. textual inversion Embeddings
|
| 63 |
EMB_URLS = {
|
| 64 |
"ng_deepnegative_v1_75t.pt": [
|
| 65 |
"https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
|
|
|
|
| 87 |
if idx == len(urls): raise
|
| 88 |
print(" ↳ fallback URL …")
|
| 89 |
|
| 90 |
+
# 1-D. Real-ESRGAN weights (×8)
|
| 91 |
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
|
| 92 |
RRG_URLS = [
|
| 93 |
"https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
|
|
|
|
| 102 |
print(" ↳ fallback URL …")
|
| 103 |
|
| 104 |
##############################################################################
|
| 105 |
+
# 2. ランタイム初期化
|
| 106 |
##############################################################################
|
| 107 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 108 |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 109 |
print("device:", device, "| dtype:", dtype)
|
| 110 |
|
| 111 |
+
providers = (
|
| 112 |
+
["CUDAExecutionProvider", "CPUExecutionProvider"]
|
| 113 |
+
if torch.cuda.is_available()
|
| 114 |
+
else ["CPUExecutionProvider"]
|
| 115 |
+
)
|
| 116 |
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
| 117 |
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
|
| 118 |
|
| 119 |
+
# ControlNet + SD パイプライン
|
| 120 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 121 |
+
"InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype
|
| 122 |
+
)
|
| 123 |
+
pipe = StableDiffusionPipeline.from_single_file(
|
| 124 |
+
BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
|
| 125 |
+
)
|
| 126 |
+
pipe.vae = AutoencoderKL.from_pretrained(
|
| 127 |
+
"stabilityai/sd-vae-ft-mse", torch_dtype=dtype
|
| 128 |
+
).to(device)
|
| 129 |
pipe.controlnet = controlnet
|
| 130 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 131 |
+
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
|
| 132 |
+
)
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
# --- ここが核心:画像エンコーダ込みで公式レポから直接ロード ------------------
|
| 135 |
pipe.load_ip_adapter(
|
| 136 |
+
"h94/IP-Adapter", # Hugging Face Hub ID
|
| 137 |
+
subfolder="models", # ip-adapter-plus-face_sd15.bin が入っているフォルダ
|
| 138 |
+
weight_name="ip-adapter-plus-face_sd15.bin",
|
|
|
|
| 139 |
)
|
| 140 |
+
# ---------------------------------------------------------------------------
|
| 141 |
|
| 142 |
+
# FaceID LoRA(差分 LoRA のみ)
|
| 143 |
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
| 144 |
pipe.set_ip_adapter_scale(0.65)
|
| 145 |
|
| 146 |
+
# textual inversion 読み込み
|
| 147 |
for emb in EMB_DIR.glob("*.*"):
|
| 148 |
try:
|
| 149 |
pipe.load_textual_inversion(emb, token=emb.stem)
|
|
|
|
| 154 |
print("pipeline ready ✔")
|
| 155 |
|
| 156 |
##############################################################################
|
| 157 |
+
# 3. アップスケーラ
|
| 158 |
##############################################################################
|
| 159 |
try:
|
| 160 |
from basicsr.archs.rrdb_arch import RRDBNet
|
|
|
|
| 171 |
UPSCALE_OK = False
|
| 172 |
|
| 173 |
##############################################################################
|
| 174 |
+
# 4. プロンプト & 生成関数
|
| 175 |
##############################################################################
|
| 176 |
BASE_PROMPT = (
|
| 177 |
"(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n"
|
|
|
|
| 193 |
@spaces.GPU(duration=90)
|
| 194 |
def generate(
|
| 195 |
face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
|
| 196 |
+
progress=gr.Progress(track_tqdm=True),
|
| 197 |
):
|
| 198 |
if face_np is None or face_np.size == 0:
|
| 199 |
raise gr.Error("顔画像をアップロードしてください。")
|
|
|
|
| 220 |
|
| 221 |
if upscale:
|
| 222 |
if UPSCALE_OK:
|
| 223 |
+
up, _ = upsampler.enhance(
|
| 224 |
+
cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor
|
| 225 |
+
)
|
| 226 |
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
|
| 227 |
else:
|
| 228 |
+
result = result.resize(
|
| 229 |
+
(int(result.width * up_factor), int(result.height * up_factor)),
|
| 230 |
+
Image.LANCZOS,
|
| 231 |
+
)
|
| 232 |
return result
|
| 233 |
|
| 234 |
##############################################################################
|