iBrokeTheCode's picture
chore: Get embeddings and predictions
df5c96c
raw
history blame
6.5 kB
import os
from typing import Any, Dict, Optional
from numpy import array, expand_dims, float32, ndarray, transpose, zeros
from PIL import Image
from sentence_transformers import SentenceTransformer
from tensorflow import constant
from tensorflow.keras.models import load_model
from transformers import TFConvNextV2Model
# TODO: Hardcoded class labels for the output, as discussed
CLASS_LABELS = [
"abcat0100000",
"abcat0200000",
"abcat0300000",
"abcat0400000",
"abcat0500000",
]
# πŸ“Œ LOAD MODELS
print("πŸ’¬ Loading embedding models...")
try:
text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
image_feature_extractor = TFConvNextV2Model.from_pretrained(
"facebook/convnextv2-tiny-22k-224"
)
print("βœ… Embedding models loaded successfully!")
except Exception as e:
print(f"❌ Error loading embedding models: {e}")
text_embedding_model, image_feature_extractor = None, None
# Load the final classification models (MLP heads)
print("πŸ’¬ Loading classification models...")
try:
text_model = load_model("./models/text_model")
image_model = load_model("./models/image_model")
multimodal_model = load_model("./models/multimodal_model")
print("βœ… Classification models loaded successfully!")
except Exception as e:
print(f"❌ Error loading classification models: {e}")
text_model, image_model, multimodal_model = None, None, None
# πŸ“Œ EMBEDDING FUNCTIONS
def get_text_embeddings(text: Optional[str]) -> ndarray:
"""
Generates a dense embedding vector from a text string.
Args:
text (Optional[str]): The input text. Can be None or an empty string.
Returns:
np.ndarray: A NumPy array of shape (1, 384) representing the text
embedding. Returns a zero vector if the input is empty.
"""
# Handle cases where no text is provided
if not text or not text.strip():
# Returns a zero vector with the correct dimension (384)
return zeros(
(1, text_embedding_model.get_sentence_embedding_dimension()), dtype=float32
)
# Use the pre-trained SentenceTransformer to encode the text
embeddings = text_embedding_model.encode([text])
return array(embeddings, dtype=float32)
def get_image_embeddings(image_path: Optional[str]) -> ndarray:
"""
Preprocesses an image and generates an embedding vector using a pre-trained model.
Args:
image_path (Optional[str]): The file path to the image.
Returns:
np.ndarray: A NumPy array of shape (1, 768) representing the image
embedding. Returns a zero vector if no image is provided.
"""
# Handle cases where no image is provided
if image_path is None:
return zeros((1, 768), dtype=float32)
# Load the image and convert to RGB format
image = Image.open(image_path).convert("RGB")
# Resize the image to the model's expected input size (224x224)
image = image.resize((224, 224), Image.Resampling.LANCZOS)
# Convert to NumPy array and add a batch dimension (1, H, W, C)
image_array = array(image, dtype=float32)
image_array = expand_dims(image_array, axis=0)
# Transpose the array to match the model's channel order (1, C, H, W)
image_array = transpose(image_array, (0, 3, 1, 2))
# Normalize the pixel values (not strictly necessary for this model, but good practice)
image_array = image_array / 255.0
# Pass the preprocessed image through the feature extractor model
embeddings_output = image_feature_extractor(constant(image_array))
# Extract the final embedding from the pooler_output
embeddings = embeddings_output.pooler_output
return embeddings.numpy()
# πŸ“Œ MAIN PREDICTION FUNCTION
def predict(
mode: str, text: Optional[str], image_path: Optional[str]
) -> Dict[str, Any]:
"""
Predicts the category of a product based on the selected mode.
Args:
mode (str): The prediction mode ("Multimodal", "Text Only", "Image Only").
text (Optional[str]): The product description text.
image_path (Optional[str]): The file path to the product image.
Returns:
Dict[str, Any]: A dictionary of class labels and their corresponding
prediction probabilities. Returns an empty dictionary
if the mode is invalid.
"""
# Generate embeddings for both inputs
text_emb = get_text_embeddings(text)
image_emb = get_image_embeddings(image_path)
# Get predictions based on the selected mode
if mode == "Multimodal":
predictions = multimodal_model.predict([text_emb, image_emb])
elif mode == "Text Only":
predictions = text_model.predict(text_emb)
elif mode == "Image Only":
predictions = image_model.predict(image_emb)
else:
# Return an empty dictionary if the mode is not recognized
return {}
# Format the output into a dictionary with labels and probabilities
# The model's output is a 2D array, so we take the first row (index 0)
prediction_dict = dict(zip(CLASS_LABELS, predictions[0]))
return prediction_dict
# πŸ“Œ SANITY CHECKS
if __name__ == "__main__":
print("\n--- Running sanity checks for predictor.py ---")
# Check text embedding function
print("\n--- Testing get_text_embeddings ---")
sample_text = (
"A sleek silver laptop with a large screen and high-resolution display."
)
text_emb = get_text_embeddings(sample_text)
print(f"Embedding shape for a normal string: {text_emb.shape}")
empty_text_emb = get_text_embeddings("")
print(f"Embedding shape for an empty string: {empty_text_emb.shape}")
spaces_text_emb = get_text_embeddings(" ")
print(f"Embedding shape for a string with spaces: {spaces_text_emb.shape}")
# Check image embedding function
print("\n--- Testing get_image_embeddings ---")
test_image_path = "test.jpeg" # Ensure this file exists for the test to pass
if os.path.exists(test_image_path):
image_emb = get_image_embeddings(test_image_path)
print(f"βœ… Embedding shape for an image file: {image_emb.shape}")
else:
print(
f"⚠️ Warning: Test image file not found at {test_image_path}. Skipping image embedding test."
)
empty_image_emb = get_image_embeddings(None)
print(f"Embedding shape for a None input: {empty_image_emb.shape}")
print("--- Sanity checks complete. ---")