iBrokeTheCode commited on
Commit
5ff38a4
Β·
1 Parent(s): a061490

chore: Add About and Model sections

Browse files
Files changed (3) hide show
  1. .gitignore +216 -0
  2. __pycache__/predictor.cpython-310.pyc +0 -0
  3. app.py +48 -25
.gitignore ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[codz]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py.cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # UV
98
+ # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ #uv.lock
102
+
103
+ # poetry
104
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
106
+ # commonly ignored for libraries.
107
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108
+ #poetry.lock
109
+ #poetry.toml
110
+
111
+ # pdm
112
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
113
+ # pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
114
+ # https://pdm-project.org/en/latest/usage/project/#working-with-version-control
115
+ #pdm.lock
116
+ #pdm.toml
117
+ .pdm-python
118
+ .pdm-build/
119
+
120
+ # pixi
121
+ # Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
122
+ #pixi.lock
123
+ # Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
124
+ # in the .venv directory. It is recommended not to include this directory in version control.
125
+ .pixi
126
+
127
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
128
+ __pypackages__/
129
+
130
+ # Celery stuff
131
+ celerybeat-schedule
132
+ celerybeat.pid
133
+
134
+ # Redis
135
+ *.rdb
136
+ *.aof
137
+ *.pid
138
+
139
+ # RabbitMQ
140
+ mnesia/
141
+ rabbitmq/
142
+ rabbitmq-data/
143
+
144
+ # ActiveMQ
145
+ activemq-data/
146
+
147
+ # SageMath parsed files
148
+ *.sage.py
149
+
150
+ # Environments
151
+ .env
152
+ .envrc
153
+ .venv
154
+ env/
155
+ venv/
156
+ ENV/
157
+ env.bak/
158
+ venv.bak/
159
+
160
+ # Spyder project settings
161
+ .spyderproject
162
+ .spyproject
163
+
164
+ # Rope project settings
165
+ .ropeproject
166
+
167
+ # mkdocs documentation
168
+ /site
169
+
170
+ # mypy
171
+ .mypy_cache/
172
+ .dmypy.json
173
+ dmypy.json
174
+
175
+ # Pyre type checker
176
+ .pyre/
177
+
178
+ # pytype static type analyzer
179
+ .pytype/
180
+
181
+ # Cython debug symbols
182
+ cython_debug/
183
+
184
+ # PyCharm
185
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
186
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
187
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
188
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
189
+ #.idea/
190
+
191
+ # Abstra
192
+ # Abstra is an AI-powered process automation framework.
193
+ # Ignore directories containing user credentials, local state, and settings.
194
+ # Learn more at https://abstra.io/docs
195
+ .abstra/
196
+
197
+ # Visual Studio Code
198
+ # Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
199
+ # that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
200
+ # and can be added to the global gitignore or merged into this file. However, if you prefer,
201
+ # you could uncomment the following to ignore the entire vscode folder
202
+ # .vscode/
203
+
204
+ # Ruff stuff:
205
+ .ruff_cache/
206
+
207
+ # PyPI configuration file
208
+ .pypirc
209
+
210
+ # Marimo
211
+ marimo/_static/
212
+ marimo/_lsp/
213
+ __marimo__/
214
+
215
+ # Streamlit
216
+ .streamlit/secrets.toml
__pycache__/predictor.cpython-310.pyc DELETED
Binary file (1.27 kB)
 
app.py CHANGED
@@ -41,7 +41,7 @@ with gr.Blocks(
41
  ) as demo:
42
  with gr.Tabs():
43
  # πŸ“Œ APP TAB
44
- with gr.TabItem("App"):
45
  gr.Markdown("""
46
  <div style="text-align: center;">
47
  <h1>πŸ›οΈ Multimodal Product Classification</h1>
@@ -101,39 +101,62 @@ with gr.Blocks(
101
  )
102
 
103
  # πŸ“Œ ABOUT TAB
104
- with gr.TabItem("About"):
105
  gr.Markdown("""
106
- ## About This Project
 
 
 
 
107
 
108
- - This project is an image classification app powered by a Convolutional Neural Network (CNN).
109
- - Simply upload an image, and the app predicts its category from over 1,000 classes using a pre-trained ResNet50 model.
110
- - Originally developed as a multi-service ML system (FastAPI + Redis + Streamlit), this version has been adapted into a single Streamlit app for lightweight, cost-effective deployment on Hugging Face Spaces.
111
 
112
- ## Model & Description
113
- - Model: ResNet50 (pre-trained on the ImageNet dataset with 1,000+ categories).
114
- - Pipeline: Images are resized, normalized, and passed to the model.
115
- - Output: The app displays the Top prediction with confidence score.
116
- ResNet50 is widely used in both research and production, making it an excellent showcase of deep learning capabilities and transferable ML skills.
 
 
 
 
 
 
 
 
117
  """)
118
 
119
  # πŸ“Œ MODEL TAB
120
- with gr.TabItem("Model"):
121
  gr.Markdown("""
122
- ## Original Architecture
123
-
124
- - FastAPI β†’ REST API for image processing
125
- - Redis β†’ Message broker for service communication
126
- - Streamlit β†’ Interactive web UI
127
- - TensorFlow β†’ Deep learning inference engine
128
- - Locust β†’ Load testing & benchmarking
129
- - Docker Compose β†’ Service orchestration
130
 
131
- ## Simplified Version
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
- - Streamlit only β†’ UI and model combined in a single app
134
- - TensorFlow (ResNet50) β†’ Core prediction engine
135
- - Docker β†’ Containerized for Hugging Face Spaces deployment
136
- This evolution demonstrates the ability to design a scalable microservices system and also adapt it into a lightweight single-service solution for cost-effective demos.
137
  """)
138
 
139
  # πŸ“Œ FOOTER
 
41
  ) as demo:
42
  with gr.Tabs():
43
  # πŸ“Œ APP TAB
44
+ with gr.TabItem("πŸš€ App"):
45
  gr.Markdown("""
46
  <div style="text-align: center;">
47
  <h1>πŸ›οΈ Multimodal Product Classification</h1>
 
101
  )
102
 
103
  # πŸ“Œ ABOUT TAB
104
+ with gr.TabItem("ℹ️ About"):
105
  gr.Markdown("""
106
+ ## Project Overview
107
+
108
+ - This project is a multimodal product classification system for Best Buy products.
109
+ - The core objective is to categorize products using both their text descriptions and images.
110
+ - The system was trained on a dataset of **almost 50,000** products and their corresponding images to generate embeddings and train the classification models.
111
 
112
+ <br>
 
 
113
 
114
+ ## Technical Workflow
115
+
116
+ 1. **Data Preprocessing:** Product descriptions and images are extracted from the dataset, and a `categories.json` file is used to map product IDs to human-readable category names.
117
+ 2. **Embedding Generation:**
118
+ - **Text:** A pre-trained `SentenceTransformer` model (`all-MiniLM-L6-v2`) is used to generate dense vector embeddings from the product descriptions.
119
+ - **Image:** A pre-trained computer vision model from the Hugging Face `transformers` library (`TFConvNextV2Model`) is used to extract image features.
120
+ 3. **Model Training:** The generated text and image embeddings are then used to train a multi-layer perceptron (MLP) model for classification. Separate models were trained for text-only, image-only, and multimodal (combined embeddings) classification.
121
+ 4. **Deployment:** The trained models are deployed via a Gradio web interface, allowing for live prediction on new product data.
122
+
123
+ <br>
124
+
125
+ > **πŸ’‘ Want to explore the process in detail?**
126
+ > See the full πŸ‘‰ [Jupyter notebook](https://huggingface.co/spaces/iBrokeTheCode/Multimodal_Product_Classification/blob/main/notebook_guide.ipynb) πŸ‘ˆοΈ for an end-to-end walkthrough, including Exploratory Data Analysis, embeddings generation, models training, evaluation, and model selection.
127
  """)
128
 
129
  # πŸ“Œ MODEL TAB
130
+ with gr.TabItem("🎯 Model"):
131
  gr.Markdown("""
132
+ ## Model Details
133
+ The final classification is performed by a Multi-layer Perceptron (MLP) trained on the embeddings. This architecture allows the model to learn the relationships between the textual and visual features.
 
 
 
 
 
 
134
 
135
+ <br>
136
+
137
+ ## Performance Summary
138
+
139
+ The following table summarizes the performance of all models trained in this project.
140
+ <br>
141
+
142
+ | Model | Modality | Accuracy | Macro Avg F1-Score | Weighted Avg F1-Score |
143
+ | :------------------ | :----------- | :------- | :----------------- | :-------------------- |
144
+ | Random Forest | Text | 0.90 | 0.83 | 0.90 |
145
+ | Logistic Regression | Text | 0.90 | 0.84 | 0.90 |
146
+ | Random Forest | Image | 0.80 | 0.70 | 0.79 |
147
+ | Random Forest | Combined | 0.89 | 0.79 | 0.89 |
148
+ | Logistic Regression | Combined | 0.89 | 0.83 | 0.89 |
149
+ | **MLP** | **Image** | **0.84** | **0.77** | **0.84** |
150
+ | **MLP** | **Text** | **0.92** | **0.87** | **0.92** |
151
+ | **MLP** | **Combined** | **0.92** | **0.85** | **0.92** |
152
+
153
+ <br>
154
+
155
+ ## Conclusion
156
 
157
+ - Based on the overall results, the MLP models consistently outperformed their classical machine learning counterparts, demonstrating their ability to learn intricate, non-linear relationships within the data.
158
+ - Both the Text MLP and Combined MLP models achieved the highest accuracy and weighted F1-score, confirming their superior ability to classify the products.
159
+ - This modular approach demonstrates the ability to handle various data modalities and evaluate the contribution of each to the final prediction.
 
160
  """)
161
 
162
  # πŸ“Œ FOOTER