pf-depth / app.py
jay208's picture
1.1.3
6ad08cd
import os
import tempfile
import numpy as np
import cv2
from pathlib import Path
import logging
from transformers import DepthProImageProcessorFast, DepthProForDepthEstimation
import torch
from PIL import Image
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.responses import JSONResponse, HTMLResponse
from typing import Any, Dict, List, Tuple, Union
import pillow_heif
import json
from depth_pro.utils import load_rgb, extract_exif
# Initialize FastAPI app
app = FastAPI(
title="Depth Pro Distance Estimation",
description="Estimate distance and depth using Apple's Depth Pro model",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# Force CPU usage
device = 'cpu'
def initialize_depth_pipeline():
"""Initialize the Depth Pro pipeline"""
try:
print("Initializing Depth Pro pipeline...")
image_processor = DepthProImageProcessorFast.from_pretrained("apple/DepthPro-hf")
model = DepthProForDepthEstimation.from_pretrained("apple/DepthPro-hf").to(device)
return model, image_processor
except Exception as e:
print(f"Error initializing pipeline: {e}")
print("Falling back to dummy pipeline...")
return None
class DepthEstimator:
def __init__(self, model=None, image_processor=None):
self.device = torch.device('cpu') # Force CPU
print("Initializing Depth Pro estimator...")
self.model = model
self.image_processor = image_processor
print("Depth Pro estimator initialized successfully!")
def estimate_depth(self, image_path):
try:
# Load image
image = Image.open(image_path)
# Resize image for processing
resized_image, new_size = self.resize_image(image_path)
rgb_image = load_rgb(resized_image.name)
f_px = rgb_image[-1]
eval_image = rgb_image[0]
# Perform inference using model
inputs = self.image_processor(eval_image, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
post_processed_output = self.image_processor.post_process_depth_estimation(
outputs, target_sizes=[(new_size[1], new_size[0])],
)
result = post_processed_output[0]
field_of_view = result["field_of_view"]
focal_length = result["focal_length"]
depth = result["predicted_depth"]
# Convert to numpy if needed
if isinstance(depth, torch.Tensor):
depth = depth.detach().cpu().numpy()
elif not isinstance(depth, np.ndarray):
depth = np.array(depth)
# Estimate focal length (rough estimation)
print(f_px,focal_length)
return depth, new_size, focal_length
except Exception as e:
print(f"Error in depth estimation: {e}")
return None, None, None
def resize_image(self, image_path, max_size=1536):
with Image.open(image_path) as img:
ratio = max_size / max(img.size)
new_size = (int(img.size[0] * ratio), int(img.size[1] * ratio))
img = img.resize(new_size, Image.Resampling.LANCZOS)
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
img.save(temp_file, format="PNG")
return temp_file, new_size
def find_topmost_pixel(mask):
'''Top Pixel from footpath mask'''
footpath_pixels = np.where(mask > 0)
if len(footpath_pixels[0]) == 0:
return None
min_y = np.min(footpath_pixels[0])
top_pixels_mask = footpath_pixels[0] == min_y
top_x_coords = footpath_pixels[1][top_pixels_mask]
center_idx = len(top_x_coords) // 2
return (min_y, top_x_coords[center_idx])
def find_bottommost_footpath_pixel(mask, topmost_pixel):
"""Find the bottommost pixel perpendicular to the topmost pixel within the mask"""
if topmost_pixel is None:
return None
top_y, top_x = topmost_pixel
# Find all mask pixels in the same x-column as the topmost pixel
mask_y_coords, mask_x_coords = np.where(mask > 0)
column_mask = mask_x_coords == top_x
column_y_coords = mask_y_coords[column_mask]
if len(column_y_coords) == 0:
# If no pixels in the same column, find the bottommost pixel in the entire mask
footpath_pixels = np.where(mask > 0)
if len(footpath_pixels[0]) == 0:
return None
max_y = np.max(footpath_pixels[0])
bottom_pixels_mask = footpath_pixels[0] == max_y
bottom_x_coords = footpath_pixels[1][bottom_pixels_mask]
center_idx = len(bottom_x_coords) // 2
return (max_y, bottom_x_coords[center_idx])
# Find the bottommost pixel in the same x-column
max_y_in_column = np.max(column_y_coords)
return (max_y_in_column, top_x)
def estimate_real_world_distance(depth_map, topmost_pixel, mask):
"""Estimate real-world distance between two pixels using depth information"""
if topmost_pixel is None or depth_map is None:
return None
# Find the bottommost pixel perpendicular to the topmost pixel
bottommost_pixel = find_bottommost_footpath_pixel(mask, topmost_pixel)
if bottommost_pixel is None:
return None
top_y, top_x = topmost_pixel
bottom_y, bottom_x = bottommost_pixel
# Ensure coordinates are within bounds
if (top_y >= depth_map.shape[0] or top_x >= depth_map.shape[1] or
bottom_y >= depth_map.shape[0] or bottom_x >= depth_map.shape[1]):
return None
topmost_depth = depth_map[top_y, top_x]
bottommost_depth = depth_map[bottom_y, bottom_x]
# Check if depth values are valid
if np.isnan(topmost_depth) or np.isnan(bottommost_depth):
print("Invalid depth values (NaN) found")
return None
distance_meters = float(topmost_depth - bottommost_depth)
print(f"Distance calculation:")
print(f" Topmost pixel: ({top_y}, {top_x}) = {topmost_depth:.3f}m")
print(f" Bottommost pixel: ({bottom_y}, {bottom_x}) = {bottommost_depth:.3f}m")
print(f" Distance: {distance_meters:.3f}m")
return distance_meters
# Initialize depth estimator globally
print("Initializing Depth Pro pipeline...")
depth_model, image_processor = initialize_depth_pipeline()
depth_estimator = DepthEstimator(depth_model, image_processor)
@app.get("/health")
async def health_check():
"""Health check endpoint for Docker"""
return {"status": "healthy", "service": "Depth Pro Distance Estimation"}
@app.get("/api")
async def api_info():
"""API information endpoint"""
return {
"message": "Depth Pro Distance Estimation API",
"docs": "/docs",
"health": "/health",
"estimate_endpoint": "/estimate-depth"
}
@app.post("/estimate-depth")
async def estimate_depth_endpoint(file: UploadFile = File(...), mask: UploadFile = File(...)):
"""FastAPI endpoint for depth estimation and distance calculation"""
try:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
content = await file.read()
temp_file.write(content)
temp_file_path = temp_file.name
# Save uploaded mask temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as mtemp_file:
content = await mask.read()
mtemp_file.write(content)
temp_file_path_mask = mtemp_file.name
# Load image for pixel detection
image = cv2.imread(temp_file_path)
mask = cv2.imread(temp_file_path_mask)
if image is None or mask is None:
return JSONResponse(
status_code=400,
content={"error": "Could not load image or mask"}
)
# Estimate depth
depth_map, new_size, focal_length_px = depth_estimator.estimate_depth(temp_file_path)
if depth_map is None:
return JSONResponse(
status_code=500,
content={"error": "Depth estimation failed"}
)
# Resize image and mask to match depth map size
resized_image = cv2.resize(image, new_size)
resized_mask = cv2.resize(mask, new_size)
# Convert mask to grayscale if it's not already
if len(resized_mask.shape) == 3:
resized_mask = cv2.cvtColor(resized_mask, cv2.COLOR_BGR2GRAY)
# Find key pixels from the mask
topmost_pixel = find_topmost_pixel(resized_mask)
# Calculate distance
distance_meters = estimate_real_world_distance(depth_map, topmost_pixel, resized_mask)
# Clean up
os.unlink(temp_file_path)
os.unlink(temp_file_path_mask)
result = {
"depth_map_shape": depth_map.shape,
"focal_length_px": float(focal_length_px) if focal_length_px is not None else None,
"topmost_pixel": [ int(topmost_pixel[0]), int(topmost_pixel[1])] if topmost_pixel else None,
"distance_meters": distance_meters,
"depth_stats": {
"min_depth": float(np.min(depth_map)),
"max_depth": float(np.max(depth_map)),
"mean_depth": float(np.mean(depth_map))
}
}
return JSONResponse(content=result)
except Exception as e:
# Clean up on error
if 'temp_file_path' in locals():
try:
os.unlink(temp_file_path)
except:
pass
if 'temp_file_path_mask' in locals():
try:
os.unlink(temp_file_path_mask)
except:
pass
return JSONResponse(
status_code=500,
content={"error": str(e)}
)
@app.get("/", response_class=HTMLResponse)
async def root():
"""Root endpoint with simple HTML interface"""
html_content = """
<!DOCTYPE html>
<html>
<head>
<title>Depth Pro Distance Estimation</title>
<style>
body {
font-family: Arial, sans-serif;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: #f5f5f5;
}
.container {
background-color: white;
padding: 30px;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1 {
color: #2c3e50;
text-align: center;
margin-bottom: 10px;
}
.subtitle {
text-align: center;
color: #7f8c8d;
margin-bottom: 30px;
}
.upload-section {
border: 2px dashed #3498db;
border-radius: 10px;
padding: 30px;
text-align: center;
margin: 20px 0;
background-color: #ecf0f1;
}
input[type="file"] {
margin: 10px 0;
padding: 10px;
border: 1px solid #bdc3c7;
border-radius: 5px;
}
.file-group {
margin: 20px 0;
}
.file-label {
display: block;
margin-bottom: 8px;
font-weight: bold;
color: #2c3e50;
}
button {
background-color: #3498db;
color: white;
padding: 12px 25px;
border: none;
border-radius: 5px;
cursor: pointer;
font-size: 16px;
}
button:hover {
background-color: #2980b9;
}
.results {
margin-top: 20px;
padding: 20px;
border-radius: 5px;
background-color: #e8f5e8;
display: none;
}
.error {
background-color: #ffeaa7;
border-left: 4px solid #fdcb6e;
padding: 10px;
margin: 10px 0;
}
.endpoint-info {
background-color: #74b9ff;
color: white;
padding: 15px;
border-radius: 5px;
margin: 20px 0;
}
.feature {
margin: 10px 0;
padding: 10px;
border-left: 3px solid #3498db;
background-color: #f8f9fa;
}
</style>
</head>
<body>
<div class="container">
<h1>πŸ” Depth Pro Distance Estimation</h1>
<p class="subtitle">Upload an image and a footpath mask to estimate depth and calculate distances using Apple's Depth Pro model</p>
<div class="upload-section">
<h3>Upload Image and Mask</h3>
<form id="uploadForm" enctype="multipart/form-data">
<div style="margin: 20px 0;">
<label for="imageFile" style="display: block; margin-bottom: 5px; font-weight: bold;">πŸ“Έ Main Image:</label>
<input type="file" id="imageFile" name="file" accept="image/*" required style="width: 100%;">
</div>
<div style="margin: 20px 0;">
<label for="maskFile" style="display: block; margin-bottom: 5px; font-weight: bold;">🎭 Footpath Mask:</label>
<input type="file" id="maskFile" name="mask" accept="image/*" required style="width: 100%;">
</div>
<button type="submit">Analyze Image with Mask</button>
</form>
<div id="results" class="results">
<h3>Analysis Results:</h3>
<div id="resultsContent"></div>
</div>
</div>
<div class="endpoint-info">
<h3>πŸ”— API Endpoints</h3>
<p><strong>POST /estimate-depth</strong> - Upload image and footpath mask for depth estimation</p>
<p><strong>GET /docs</strong> - API documentation</p>
<p><strong>GET /health</strong> - Health check</p>
</div>
<div class="feature">
<h3>✨ Features</h3>
<ul>
<li>🎯 Monocular depth estimation using Depth Pro</li>
<li>🎭 Footpath mask-based analysis</li>
<li>πŸ“ Real-world distance calculation between mask boundaries</li>
<li>πŸ–₯️ CPU-optimized processing</li>
<li>πŸš€ Fast inference suitable for real-time use</li>
</ul>
</div>
</div>
<script>
document.getElementById('uploadForm').addEventListener('submit', async function(e) {
e.preventDefault();
const fileInput = document.getElementById('imageFile');
const maskInput = document.getElementById('maskFile');
const resultsDiv = document.getElementById('results');
const resultsContent = document.getElementById('resultsContent');
if (!fileInput.files[0]) {
alert('Please select a main image file');
return;
}
if (!maskInput.files[0]) {
alert('Please select a footpath mask file');
return;
}
const formData = new FormData();
formData.append('file', fileInput.files[0]);
formData.append('mask', maskInput.files[0]);
try {
resultsContent.innerHTML = '<p>πŸ”„ Processing image and mask...</p>';
resultsDiv.style.display = 'block';
const response = await fetch('/estimate-depth', {
method: 'POST',
body: formData
});
if (response.ok) {
const result = await response.json();
let html = '<h4>πŸ“Š Results:</h4>';
html += `<p><strong>πŸ“ Distance:</strong> ${result.distance_meters ? result.distance_meters.toFixed(3) + ' meters' : 'N/A'}</p>`;
html += `<p><strong>🎯 Focal Length:</strong> ${result.focal_length_px ? result.focal_length_px.toFixed(2) + ' pixels' : 'N/A'}</p>`;
html += `<p><strong>πŸ“Š Depth Map Shape:</strong> ${result.depth_map_shape ? result.depth_map_shape.join(' x ') : 'N/A'}</p>`;
html += `<p><strong>πŸ” Top Mask Pixel:</strong> ${result.topmost_pixel ? `(${result.topmost_pixel[0]}, ${result.topmost_pixel[1]})` : 'N/A'}</p>`;
if (result.depth_stats) {
html += '<h4>πŸ“ˆ Depth Statistics:</h4>';
html += `<p><strong>Min Depth:</strong> ${result.depth_stats.min_depth.toFixed(3)}m</p>`;
html += `<p><strong>Max Depth:</strong> ${result.depth_stats.max_depth.toFixed(3)}m</p>`;
html += `<p><strong>Mean Depth:</strong> ${result.depth_stats.mean_depth.toFixed(3)}m</p>`;
}
resultsContent.innerHTML = html;
} else {
const error = await response.json();
resultsContent.innerHTML = `<div class="error">❌ Error: ${error.error || 'Processing failed'}</div>`;
}
} catch (error) {
resultsContent.innerHTML = `<div class="error">❌ Network error: ${error.message}</div>`;
}
});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
# FastAPI app is ready to run
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
log_level="info",
access_log=True
)