Spaces:
Runtime error
Runtime error
File size: 24,839 Bytes
c6eb9ce e7247e4 fb2f0a7 c6eb9ce fb2f0a7 1282f37 c6eb9ce e7247e4 c6eb9ce 4584c11 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce b3e00f3 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 b3e00f3 1282f37 2c93286 1282f37 c6eb9ce b3e00f3 1282f37 2c93286 b3e00f3 1282f37 2c93286 1282f37 2c93286 b3e00f3 2c93286 b3e00f3 c6eb9ce 1282f37 2c93286 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 c6eb9ce 1282f37 b3e00f3 1282f37 b3e00f3 c6eb9ce b3e00f3 c6eb9ce b3e00f3 c6eb9ce b3e00f3 c6eb9ce 1282f37 b3e00f3 1282f37 5fb9af6 c6eb9ce 5fb9af6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
import streamlit as st
from PIL import Image
from dotenv import load_dotenv
from image_evaluators import LlamaEvaluator
from prompt_refiners import LlamaPromptRefiner
from weave_prompt import PromptOptimizer
from similarity_metrics import LPIPSImageSimilarityMetric
from image_generators import FalImageGenerator, MultiModelFalImageGenerator, AVAILABLE_MODELS
from multi_model_optimizer import MultiModelPromptOptimizer
# Load environment variables from .env file
load_dotenv()
st.set_page_config(
page_title="WeavePrompt",
page_icon="π¨",
layout="wide"
)
def main():
st.title("π¨ WeavePrompt: Multi-Model Prompt Optimization")
st.markdown("""
Upload a target image and watch as WeavePrompt optimizes prompts across multiple AI models to find the best result.
""")
# Model selection state
if 'selected_models' not in st.session_state:
st.session_state.selected_models = ["FLUX.1 [pro]"] # Default selection
# Initialize max_iterations in session state if not exists
if 'max_iterations' not in st.session_state:
st.session_state.max_iterations = 2
# Initialize session state
if 'optimizer' not in st.session_state:
image_generator = MultiModelFalImageGenerator(st.session_state.selected_models)
st.session_state.optimizer = MultiModelPromptOptimizer(
image_generator=image_generator,
evaluator=LlamaEvaluator(),
refiner=LlamaPromptRefiner(),
similarity_metric=LPIPSImageSimilarityMetric(),
max_iterations=st.session_state.max_iterations,
similarity_threshold=0.95
)
if 'optimization_started' not in st.session_state:
st.session_state.optimization_started = False
if 'current_results' not in st.session_state:
st.session_state.current_results = None
# Auto mode state
if 'auto_mode' not in st.session_state:
st.session_state.auto_mode = False
if 'auto_paused' not in st.session_state:
st.session_state.auto_paused = False
# Auto mode step control - use this to control when to step vs when to display
if 'auto_should_step' not in st.session_state:
st.session_state.auto_should_step = False
# Model Selection UI
st.subheader("π€ Model Selection")
st.markdown("Choose which AI models to optimize with:")
# Organize models by category
flux_models = [k for k in AVAILABLE_MODELS.keys() if k.startswith("FLUX")]
google_models = [k for k in AVAILABLE_MODELS.keys() if k in ["Imagen 4", "Imagen 4 Ultra", "Gemini 2.5 Flash Image"]]
other_models = [k for k in AVAILABLE_MODELS.keys() if k not in flux_models and k not in google_models]
# Track if selection changed
new_selection = []
# FLUX Models Section
st.markdown("### π₯ FLUX Models")
cols_flux = st.columns(2)
for i, model_name in enumerate(flux_models):
col_idx = i % 2
with cols_flux[col_idx]:
is_selected = model_name in st.session_state.selected_models
if st.checkbox(model_name, value=is_selected, key=f"model_{model_name}"):
new_selection.append(model_name)
# Google Models Section
st.markdown("### π Google Models")
cols_google = st.columns(2)
for i, model_name in enumerate(google_models):
col_idx = i % 2
with cols_google[col_idx]:
is_selected = model_name in st.session_state.selected_models
if st.checkbox(model_name, value=is_selected, key=f"model_{model_name}"):
new_selection.append(model_name)
# Other Models Section
if other_models:
st.markdown("### π¨ Other Models")
cols_other = st.columns(2)
for i, model_name in enumerate(other_models):
col_idx = i % 2
with cols_other[col_idx]:
is_selected = model_name in st.session_state.selected_models
if st.checkbox(model_name, value=is_selected, key=f"model_{model_name}"):
new_selection.append(model_name)
# Ensure at least one model is selected
if not new_selection:
st.error("Please select at least one model!")
new_selection = ["FLUX.1 [pro]"] # Default fallback
# Update selection if changed
if set(new_selection) != set(st.session_state.selected_models):
st.session_state.selected_models = new_selection
# Recreate optimizer with new models
image_generator = MultiModelFalImageGenerator(st.session_state.selected_models)
st.session_state.optimizer = MultiModelPromptOptimizer(
image_generator=image_generator,
evaluator=LlamaEvaluator(),
refiner=LlamaPromptRefiner(),
similarity_metric=LPIPSImageSimilarityMetric(),
max_iterations=st.session_state.max_iterations,
similarity_threshold=0.95
)
st.success(f"Updated to use {len(new_selection)} model(s): {', '.join(new_selection)}")
st.markdown("---")
# File uploader
uploaded_file = st.file_uploader("Choose a target image", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None:
# Display target image
target_image = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.subheader("Target Image")
st.image(target_image, width='stretch')
# Start button
if not st.session_state.optimization_started:
if st.button("π Start Optimization", type="primary"):
# Set state first to ensure immediate UI update
st.session_state.optimization_started = True
# Force immediate rerun to show disabled state
st.rerun()
else:
# Show disabled button when optimization has started
st.button("β³ Optimization Running...", disabled=True, help="Optimization in progress", type="secondary")
st.info("π‘ Optimization is running across selected models. Use the controls below to pause/resume or reset.")
# Initialize optimization after state is set (only once)
if st.session_state.current_results is None:
try:
is_completed, prompt, generated_image = st.session_state.optimizer.initialize(target_image)
st.session_state.current_results = (is_completed, prompt, generated_image)
st.rerun()
except Exception as e:
st.error(f"Error initializing optimization: {str(e)}")
st.session_state.optimization_started = False
# Settings (always visible)
st.subheader("βοΈ Settings")
# Check if optimization is actively running (only disable settings during auto mode)
is_actively_running = (st.session_state.optimization_started and
st.session_state.auto_mode and
not st.session_state.auto_paused)
# Single row: Number of iterations, Auto-progress, and Pause/Resume controls
col_settings1, col_settings2, col_settings3 = st.columns(3)
with col_settings1:
new_max_iterations = st.number_input(
"Number of Iterations",
min_value=1,
max_value=20,
value=st.session_state.max_iterations,
help="Maximum number of optimization iterations per model",
disabled=is_actively_running
)
# Update if changed (only when not running)
if new_max_iterations != st.session_state.max_iterations and not is_actively_running:
st.session_state.max_iterations = new_max_iterations
# Update the optimizer's max_iterations
st.session_state.optimizer.max_iterations = new_max_iterations
if hasattr(st.session_state.optimizer, 'current_optimizer') and st.session_state.optimizer.current_optimizer:
st.session_state.optimizer.current_optimizer.max_iterations = new_max_iterations
with col_settings2:
auto_mode = st.checkbox(
"Auto-progress steps",
value=st.session_state.auto_mode,
disabled=is_actively_running
)
if auto_mode != st.session_state.auto_mode and not is_actively_running:
st.session_state.auto_mode = auto_mode
if auto_mode:
st.session_state.auto_paused = False
st.session_state.auto_should_step = True # Start by stepping
st.rerun()
with col_settings3:
# Pause/Resume controls (only when auto mode is enabled, optimization started, and not completed)
optimization_completed = st.session_state.current_results is not None and st.session_state.current_results[0]
if st.session_state.auto_mode and st.session_state.optimization_started and not optimization_completed:
if st.session_state.auto_paused:
if st.button("βΆοΈ Resume", key="resume_btn"):
st.session_state.auto_paused = False
st.rerun()
else:
if st.button("βΈοΈ Pause", key="pause_btn"):
st.session_state.auto_paused = True
st.rerun()
else:
# Show placeholder or empty space when not in auto mode
st.write("")
# Display optimization progress
if st.session_state.optimization_started:
if st.session_state.current_results is not None:
is_completed, prompt, generated_image = st.session_state.current_results
# Get current model info
current_model_name = st.session_state.optimizer.get_current_model_name()
current_history = st.session_state.optimizer.history if hasattr(st.session_state.optimizer, 'history') else []
# If we have current model history, show its latest result instead of current_results
if current_history:
latest_step = current_history[-1]
display_image = latest_step['image']
display_prompt = latest_step['prompt']
else:
# Fallback to current_results
display_image = generated_image
display_prompt = prompt
# Always show the actual current model's latest result
with col2:
st.subheader("Current Generated Image")
st.image(display_image, width='stretch')
if current_history:
# Show info about the current state
if is_completed:
st.caption(f"π {current_model_name} - Final Result")
else:
st.caption(f"π― {current_model_name}")
else:
st.caption(f"π {current_model_name} - Initializing...")
# Display current prompt under the image
st.text_area("Current Prompt", display_prompt, height=100)
else:
# Show loading state
with col2:
st.subheader("Generated Image")
st.info("Initializing optimization...")
# Display loading prompt under the placeholder
st.text_area("Current Prompt", "Generating initial prompt...", height=100)
is_completed = False
prompt = ""
# Multi-model progress info
progress_info = st.session_state.optimizer.get_progress_info()
# Ensure we get the actual current model name (not cached)
current_model = st.session_state.optimizer.get_current_model_name()
# Progress metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Current Model", current_model)
with col2:
# Show current model number vs total models (1-indexed for display)
current_model_num = progress_info['current_model_index'] + 1
total_models = progress_info['total_models']
# Fix: Don't let current model number exceed total models
if current_model_num > total_models:
current_model_num = total_models
st.metric("Models Progress", f"{current_model_num}/{total_models}")
with col3:
if 'current_iteration' in progress_info:
# Show completed iterations vs max iterations
current_iteration = progress_info['current_iteration']
max_iterations = progress_info['max_iterations']
# If not completed and we haven't reached max, show next iteration number
if not is_completed and current_iteration < max_iterations:
display_iteration = current_iteration + 1
st.metric("Current Iteration", f"{display_iteration}/{max_iterations}")
else:
st.metric("Current Iteration", f"{current_iteration}/{max_iterations}")
with col4:
if len(st.session_state.optimizer.history) > 0:
similarity = st.session_state.optimizer.history[-1]['similarity']
st.metric("Similarity", f"{similarity:.2%}")
else:
status = "Completed" if is_completed else "Paused" if st.session_state.auto_paused else "In Progress"
st.metric("Status", status)
# Progress bars
st.subheader("Progress")
# Overall progress across all models
overall_progress = progress_info['overall_progress']
if 'current_iteration' in progress_info and not is_completed:
# Add current model progress to overall
model_progress_fraction = progress_info['model_progress']
overall_progress = (progress_info['models_completed'] + model_progress_fraction) / progress_info['total_models']
# Create more descriptive progress labels
models_completed = progress_info['models_completed']
total_models = progress_info['total_models']
if total_models > 1:
# Multi-model scenario
if models_completed == total_models:
overall_label = f"π All {total_models} models completed!"
else:
overall_label = f"π Processing {current_model} (Model {models_completed + 1} of {total_models})"
else:
# Single model scenario
overall_label = f"π― Optimizing with {current_model}"
st.progress(overall_progress, text=overall_label)
# Current model progress
if 'current_iteration' in progress_info and not is_completed:
model_progress_value = progress_info['model_progress']
current_iter = progress_info['current_iteration']
max_iter = progress_info['max_iterations']
if current_iter == max_iter:
iteration_label = f"β
{current_model}: Completed all {max_iter} iterations"
else:
iteration_label = f"β‘ {current_model}: Step {current_iter + 1} of {max_iter}"
st.progress(model_progress_value, text=iteration_label)
# Next step logic
if not is_completed:
# Auto mode logic - mimic pause button behavior
if st.session_state.auto_mode and not st.session_state.auto_paused:
if st.session_state.auto_should_step:
# Execute the step
is_completed, prompt, generated_image = st.session_state.optimizer.step()
st.session_state.current_results = (is_completed, prompt, generated_image)
# Set flag to NOT step on next render (let history display)
st.session_state.auto_should_step = False
st.rerun()
else:
# Don't step, just display current state and history, then set flag to step next time
st.session_state.auto_should_step = True
# Use a small delay then rerun to continue auto mode
import time
time.sleep(0.5) # Give user time to see the history
st.rerun()
# Manual mode
elif not st.session_state.auto_mode:
if st.button("Next Step"):
is_completed, prompt, generated_image = st.session_state.optimizer.step()
st.session_state.current_results = (is_completed, prompt, generated_image)
st.rerun()
# Show status when auto mode is paused
elif st.session_state.auto_paused:
st.info("Auto mode is paused. Click Resume to continue or uncheck Auto-progress to use manual mode.")
else:
st.success("Optimization completed! Click 'Reset' to try another image.")
# Turn off auto mode when completed
if st.session_state.auto_mode:
st.session_state.auto_mode = False
st.session_state.auto_paused = False
# Reset button
if st.button("Reset"):
st.session_state.optimization_started = False
st.session_state.current_results = None
st.session_state.auto_mode = False
st.session_state.auto_paused = False
st.rerun()
# Display multi-model history with tabs
_display_multi_model_history()
# Model Results Comparison (show when optimization is complete)
if is_completed and hasattr(st.session_state.optimizer, 'get_all_results'):
all_results = st.session_state.optimizer.get_all_results()
best_result = st.session_state.optimizer.get_best_result()
if all_results:
st.subheader("π Model Comparison Results")
# Show best result prominently
if best_result:
st.success(f"π₯ **Best Result**: {best_result['model_name']} with {best_result['similarity']:.2%} similarity")
# Create columns for each model result
num_models = len(all_results)
if num_models > 0:
cols = st.columns(min(num_models, 3)) # Max 3 columns
# Sort results by similarity (best first)
sorted_results = sorted(all_results.items(),
key=lambda x: x[1]['final_similarity'],
reverse=True)
for i, (model_name, result) in enumerate(sorted_results):
col_idx = i % 3
with cols[col_idx]:
# Add medal emoji for top 3
medal = "π₯" if i == 0 else "π₯" if i == 1 else "π₯" if i == 2 else "π
"
st.markdown(f"### {medal} {model_name}")
# Show final image
st.image(result['final_image'], width='stretch')
# Show metrics
st.metric("Final Similarity", f"{result['final_similarity']:.2%}")
st.metric("Iterations", result['iterations'])
# Show final prompt in expander
with st.expander("View Final Prompt"):
st.text(result['final_prompt'])
def _display_multi_model_history():
"""Display optimization history with tabs for multi-model scenarios."""
# Get all completed model results
all_model_results = {}
if hasattr(st.session_state.optimizer, 'get_all_results'):
all_model_results = st.session_state.optimizer.get_all_results()
# Build separate histories for each model
all_histories = {}
# Add completed model histories - each model gets its own stored history
for model_name, result in all_model_results.items():
if 'history' in result and result['history']:
# Make a deep copy to ensure complete separation
all_histories[model_name] = [step.copy() for step in result['history']]
# Add current model's in-progress history (if any)
if hasattr(st.session_state.optimizer, 'current_optimizer') and st.session_state.optimizer.current_optimizer:
current_history = st.session_state.optimizer.current_optimizer.history
if current_history:
current_model_name = st.session_state.optimizer.get_current_model_name()
# Only add if this model doesn't already have a completed history
if current_model_name not in all_histories:
all_histories[current_model_name] = [step.copy() for step in current_history]
# Display histories
if all_histories:
st.subheader("π Optimization History")
if len(all_histories) == 1:
# Single model - no tabs needed
model_name = list(all_histories.keys())[0]
history = all_histories[model_name]
st.markdown(f"**{model_name}** ({len(history)} steps)")
_display_model_history(history, model_name)
else:
# Multi-model - use tabs
tab_names = []
for model_name, history in all_histories.items():
tab_names.append(f"{model_name} ({len(history)} steps)")
tabs = st.tabs(tab_names)
for i, (model_name, history) in enumerate(all_histories.items()):
with tabs[i]:
_display_model_history(history, model_name)
def _display_model_history(history, model_name):
"""Display history for a single model."""
if not history:
st.info(f"No optimization steps yet for {model_name}")
return
for idx, hist_entry in enumerate(history):
st.markdown(f"### Step {idx + 1}")
col1, col2 = st.columns([2, 3])
with col1:
st.image(hist_entry['image'], width='stretch')
with col2:
st.text(f"Similarity: {hist_entry['similarity']:.2%}")
st.text("Prompt:")
st.text(hist_entry['prompt'])
# Toggle analysis view per history entry
expand_key = f"expand_analysis_{model_name}_{idx}"
if 'analysis_expanded' not in st.session_state:
st.session_state['analysis_expanded'] = {}
if expand_key not in st.session_state['analysis_expanded']:
st.session_state['analysis_expanded'][expand_key] = False
if st.session_state['analysis_expanded'][expand_key]:
if st.button("Hide Analysis", key=f"hide_{expand_key}"):
st.session_state['analysis_expanded'][expand_key] = False
st.rerun()
st.text("Analysis:")
for key, value in hist_entry['analysis'].items():
st.text(f"{key}: {value}")
else:
if st.button("Expand Analysis", key=expand_key):
st.session_state['analysis_expanded'][expand_key] = True
st.rerun()
if __name__ == "__main__":
main()
|