Spaces:
Runtime error
Runtime error
File size: 10,432 Bytes
7fdf0d6 736a5b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# server/localhosted models implementation (extended applications demo)
import torch
import lpips
import gradio as gr
import numpy as np
from PIL import Image
from dequantor import (
StableDiffusion3Pipeline,
GGUFQuantizationConfig,
SD3Transformer2DModel,
QwenImageEditPlusPipeline,
AutoencoderKLQwenImage,
)
from transformers import (
T5EncoderModel,
Qwen2_5_VLForConditionalGeneration,
AutoTokenizer,
AutoModelForCausalLM,
)
from nunchaku import (
NunchakuQwenImageTransformer2DModel,
)
from gguf_connector.vrm import get_gpu_vram
def launch_app(model_path1,model_path,dtype):
# image recognition model
MODEL_ID = "callgg/fastvlm-0.5b-bf16"
IMAGE_TOKEN_INDEX = -200
tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
def describe_image(img: Image.Image, prompt, num_tokens) -> str:
if img is None:
return "Please upload an image."
messages = [{"role": "user", "content": f"<image>\n{prompt}."}]
rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
pre, post = rendered.split("<image>", 1)
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
attention_mask = torch.ones_like(input_ids, device=model.device)
px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"]
px = px.to(model.device, dtype=model.dtype)
with torch.no_grad():
out = model.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=px,
max_new_tokens=num_tokens
)
return tok.decode(out[0], skip_special_tokens=True)
sample1_prompts = ['describe this image in detail',
'describe what you see in few words',
'tell me the difference']
sample1_prompts = [[x] for x in sample1_prompts]
# image generation model
transformer1 = SD3Transformer2DModel.from_single_file(
model_path1,
quantization_config=GGUFQuantizationConfig(compute_dtype=dtype),
torch_dtype=dtype,
config="callgg/sd3-decoder",
subfolder="transformer_2"
)
text_encoder1 = T5EncoderModel.from_pretrained(
"chatpig/t5-v1_1-xxl-encoder-fp32-gguf",
gguf_file="t5xxl-encoder-fp32-q2_k.gguf",
dtype=dtype
)
pipeline = StableDiffusion3Pipeline.from_pretrained(
"callgg/sd3-decoder",
transformer=transformer1,
text_encoder_3=text_encoder1,
torch_dtype=dtype
)
pipeline.enable_model_cpu_offload()
# Inference function
def generate_image2(prompt, num_steps, guidance):
result = pipeline(
prompt,
height=1024,
width=1024,
num_inference_steps=num_steps,
guidance_scale=guidance,
).images[0]
return result
sample_prompts2 = ['a cat in a hat',
'a pig in a hat',
'a raccoon in a hat',
'a dog walking with joy']
sample_prompts2 = [[x] for x in sample_prompts2]
# image transformation model
transformer = NunchakuQwenImageTransformer2DModel.from_pretrained(
model_path
)
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"callgg/qi-decoder",
subfolder="text_encoder",
dtype=dtype
)
vae = AutoencoderKLQwenImage.from_pretrained(
"callgg/qi-decoder",
subfolder="vae",
torch_dtype=dtype
)
pipe = QwenImageEditPlusPipeline.from_pretrained(
"callgg/image-edit-plus",
transformer=transformer,
text_encoder=text_encoder,
vae=vae,
torch_dtype=dtype
)
if get_gpu_vram() > 18:
pipe.enable_model_cpu_offload()
else:
transformer.set_offload(
True, use_pin_memory=False, num_blocks_on_gpu=1
)
pipe._exclude_from_cpu_offload.append("transformer")
pipe.enable_sequential_cpu_offload()
def generate_image(prompt, img1, img2, img3, steps, guidance):
images = []
for img in [img1, img2, img3]:
if img is not None:
if not isinstance(img, Image.Image):
img = Image.open(img)
images.append(img.convert("RGB"))
if not images:
return None
inputs = {
"image": images,
"prompt": prompt,
"true_cfg_scale": guidance,
"negative_prompt": " ",
"num_inference_steps": steps,
"num_images_per_prompt": 1,
}
with torch.inference_mode():
output = pipe(**inputs)
return output.images[0]
sample_prompts = ['merge it',
'color it',
'use image 1 as background of image 2']
sample_prompts = [[x] for x in sample_prompts]
# image discrimination model
def compare_images(img1,img2):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
lpips_model = lpips.LPIPS(net='squeeze').to(device)
if img1 is None or img2 is None:
return "Please upload both images."
img1_np = np.array(img1).astype(np.float32) / 255.0
img2_np = np.array(img2).astype(np.float32) / 255.0
# convert to tensor in LPIPS format
img1_tensor = lpips.im2tensor(img1_np).to(device)
img2_tensor = lpips.im2tensor(img2_np).to(device)
# compute LPIPS distance
with torch.no_grad():
distance = lpips_model(img1_tensor, img2_tensor)
score = distance.item()
similarity = max(0.0, 1.0 - score*100) # normalize to positive similarity
result_text = (
f"LPIPS Distance: {score:.4f}\n"
f"Estimated Similarity: {similarity*100:.4f}%"
)
return result_text
# UI
block = gr.Blocks(title="image studio").queue()
with block:
gr.Markdown("## Discriminator")
with gr.Row():
img1 = gr.Image(type="pil", label="Image 1")
img2 = gr.Image(type="pil", label="Image 2")
compare_btn = gr.Button("Discriminate")
output_box = gr.Textbox(label="Statistics", lines=2)
compare_btn.click(compare_images, inputs=[img1,img2], outputs=output_box)
gr.Markdown("## Descriptor")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Input Image")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="")
quick_prompts = gr.Dataset(samples=sample1_prompts, label='Sample Prompt', samples_per_page=1000, components=[prompt])
quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False)
btn = gr.Button("Describe")
num_tokens = gr.Slider(minimum=64, maximum=1024, value=128, step=1, label="Output Token")
with gr.Column():
output = gr.Textbox(label="Description", lines=5)
btn.click(fn=describe_image, inputs=[img_input,prompt,num_tokens], outputs=output)
gr.Markdown("## Generator")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="")
quick_prompts = gr.Dataset(samples=sample_prompts2, label='Sample Prompt', samples_per_page=1000, components=[prompt])
quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False)
submit_btn = gr.Button("Generate")
num_steps = gr.Slider(minimum=4, maximum=100, value=8, step=1, label="Step")
guidance = gr.Slider(minimum=1.0, maximum=10.0, value=2.5, step=0.1, label="Scale")
with gr.Column():
output_image = gr.Image(type="pil", label="Output Image")
submit_btn.click(fn=generate_image2, inputs=[prompt, num_steps, guidance], outputs=output_image)
gr.Markdown("## Transformer")
with gr.Row():
with gr.Column():
with gr.Row():
img1 = gr.Image(label="Image 1", type="pil")
img2 = gr.Image(label="Image 2", type="pil")
img3 = gr.Image(label="Image 3", type="pil")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="")
quick_prompts = gr.Dataset(samples=sample_prompts, label='Sample Prompt', samples_per_page=1000, components=[prompt])
quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False)
generate_btn = gr.Button("Transform")
steps = gr.Slider(1, 50, value=4, step=1, label="Inference Steps", visible=False)
guidance = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Guidance Scale", visible=False)
with gr.Column():
output_image = gr.Image(label="Output", type="pil")
generate_btn.click(
fn=generate_image,
inputs=[prompt, img1, img2, img3, steps, guidance],
outputs=output_image,
)
block.launch()
# detect your device and assign dtype accordingly
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if device == "cuda" else torch.float32
# load the model from cache; or pull it from huggingface repo if you don't have
model_path1 = "https://huggingface.co/calcuis/sd3.5-lite-gguf/blob/main/sd3.5-8b-lite-mxfp4_moe.gguf"
model_path = "https://huggingface.co/calcuis/sketch/blob/main/sketch-s9-20b-int4.safetensors"
# launch the app; call the app function above
launch_app(model_path1, model_path, dtype)
|