Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- models/app.py +235 -1
models/app.py
CHANGED
|
@@ -1 +1,235 @@
|
|
| 1 |
-
# server/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# server/localhosted models implementation
|
| 2 |
+
import torch
|
| 3 |
+
import lpips
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from dequantor import (
|
| 8 |
+
StableDiffusion3Pipeline,
|
| 9 |
+
GGUFQuantizationConfig,
|
| 10 |
+
SD3Transformer2DModel,
|
| 11 |
+
QwenImageEditPlusPipeline,
|
| 12 |
+
AutoencoderKLQwenImage,
|
| 13 |
+
)
|
| 14 |
+
from transformers import (
|
| 15 |
+
T5EncoderModel,
|
| 16 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 17 |
+
AutoTokenizer,
|
| 18 |
+
AutoModelForCausalLM,
|
| 19 |
+
)
|
| 20 |
+
from nunchaku import (
|
| 21 |
+
NunchakuQwenImageTransformer2DModel,
|
| 22 |
+
)
|
| 23 |
+
from gguf_connector.vrm import get_gpu_vram
|
| 24 |
+
|
| 25 |
+
def launch_app(model_path1,model_path,dtype):
|
| 26 |
+
# image recognition model
|
| 27 |
+
MODEL_ID = "callgg/fastvlm-0.5b-bf16"
|
| 28 |
+
IMAGE_TOKEN_INDEX = -200
|
| 29 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
MODEL_ID,
|
| 32 |
+
dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 33 |
+
device_map="auto",
|
| 34 |
+
trust_remote_code=True,
|
| 35 |
+
)
|
| 36 |
+
def describe_image(img: Image.Image, prompt, num_tokens) -> str:
|
| 37 |
+
if img is None:
|
| 38 |
+
return "Please upload an image."
|
| 39 |
+
messages = [{"role": "user", "content": f"<image>\n{prompt}."}]
|
| 40 |
+
rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
| 41 |
+
pre, post = rendered.split("<image>", 1)
|
| 42 |
+
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
|
| 43 |
+
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
|
| 44 |
+
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
|
| 45 |
+
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
|
| 46 |
+
attention_mask = torch.ones_like(input_ids, device=model.device)
|
| 47 |
+
px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"]
|
| 48 |
+
px = px.to(model.device, dtype=model.dtype)
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
out = model.generate(
|
| 51 |
+
inputs=input_ids,
|
| 52 |
+
attention_mask=attention_mask,
|
| 53 |
+
images=px,
|
| 54 |
+
max_new_tokens=num_tokens
|
| 55 |
+
)
|
| 56 |
+
return tok.decode(out[0], skip_special_tokens=True)
|
| 57 |
+
sample1_prompts = ['describe this image in detail',
|
| 58 |
+
'describe what you see in few words',
|
| 59 |
+
'tell me the difference']
|
| 60 |
+
sample1_prompts = [[x] for x in sample1_prompts]
|
| 61 |
+
# image generation model
|
| 62 |
+
transformer1 = SD3Transformer2DModel.from_single_file(
|
| 63 |
+
model_path1,
|
| 64 |
+
quantization_config=GGUFQuantizationConfig(compute_dtype=dtype),
|
| 65 |
+
torch_dtype=dtype,
|
| 66 |
+
config="callgg/sd3-decoder",
|
| 67 |
+
subfolder="transformer_2"
|
| 68 |
+
)
|
| 69 |
+
text_encoder1 = T5EncoderModel.from_pretrained(
|
| 70 |
+
"chatpig/t5-v1_1-xxl-encoder-fp32-gguf",
|
| 71 |
+
gguf_file="t5xxl-encoder-fp32-q2_k.gguf",
|
| 72 |
+
dtype=dtype
|
| 73 |
+
)
|
| 74 |
+
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
| 75 |
+
"callgg/sd3-decoder",
|
| 76 |
+
transformer=transformer1,
|
| 77 |
+
text_encoder_3=text_encoder1,
|
| 78 |
+
torch_dtype=dtype
|
| 79 |
+
)
|
| 80 |
+
pipeline.enable_model_cpu_offload()
|
| 81 |
+
# Inference function
|
| 82 |
+
def generate_image2(prompt, num_steps, guidance):
|
| 83 |
+
result = pipeline(
|
| 84 |
+
prompt,
|
| 85 |
+
height=1024,
|
| 86 |
+
width=1024,
|
| 87 |
+
num_inference_steps=num_steps,
|
| 88 |
+
guidance_scale=guidance,
|
| 89 |
+
).images[0]
|
| 90 |
+
return result
|
| 91 |
+
sample_prompts2 = ['a cat in a hat',
|
| 92 |
+
'a pig in a hat',
|
| 93 |
+
'a raccoon in a hat',
|
| 94 |
+
'a dog walking with joy']
|
| 95 |
+
sample_prompts2 = [[x] for x in sample_prompts2]
|
| 96 |
+
# image transformation model
|
| 97 |
+
transformer = NunchakuQwenImageTransformer2DModel.from_pretrained(
|
| 98 |
+
model_path
|
| 99 |
+
)
|
| 100 |
+
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 101 |
+
"callgg/qi-decoder",
|
| 102 |
+
subfolder="text_encoder",
|
| 103 |
+
dtype=dtype
|
| 104 |
+
)
|
| 105 |
+
vae = AutoencoderKLQwenImage.from_pretrained(
|
| 106 |
+
"callgg/qi-decoder",
|
| 107 |
+
subfolder="vae",
|
| 108 |
+
torch_dtype=dtype
|
| 109 |
+
)
|
| 110 |
+
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 111 |
+
"callgg/image-edit-plus",
|
| 112 |
+
transformer=transformer,
|
| 113 |
+
text_encoder=text_encoder,
|
| 114 |
+
vae=vae,
|
| 115 |
+
torch_dtype=dtype
|
| 116 |
+
)
|
| 117 |
+
if get_gpu_vram() > 18:
|
| 118 |
+
pipe.enable_model_cpu_offload()
|
| 119 |
+
else:
|
| 120 |
+
transformer.set_offload(
|
| 121 |
+
True, use_pin_memory=False, num_blocks_on_gpu=1
|
| 122 |
+
)
|
| 123 |
+
pipe._exclude_from_cpu_offload.append("transformer")
|
| 124 |
+
pipe.enable_sequential_cpu_offload()
|
| 125 |
+
def generate_image(prompt, img1, img2, img3, steps, guidance):
|
| 126 |
+
images = []
|
| 127 |
+
for img in [img1, img2, img3]:
|
| 128 |
+
if img is not None:
|
| 129 |
+
if not isinstance(img, Image.Image):
|
| 130 |
+
img = Image.open(img)
|
| 131 |
+
images.append(img.convert("RGB"))
|
| 132 |
+
if not images:
|
| 133 |
+
return None
|
| 134 |
+
inputs = {
|
| 135 |
+
"image": images,
|
| 136 |
+
"prompt": prompt,
|
| 137 |
+
"true_cfg_scale": guidance,
|
| 138 |
+
"negative_prompt": " ",
|
| 139 |
+
"num_inference_steps": steps,
|
| 140 |
+
"num_images_per_prompt": 1,
|
| 141 |
+
}
|
| 142 |
+
with torch.inference_mode():
|
| 143 |
+
output = pipe(**inputs)
|
| 144 |
+
return output.images[0]
|
| 145 |
+
sample_prompts = ['merge it',
|
| 146 |
+
'color it',
|
| 147 |
+
'use image 1 as background of image 2']
|
| 148 |
+
sample_prompts = [[x] for x in sample_prompts]
|
| 149 |
+
# image discrimination model
|
| 150 |
+
def compare_images(img1,img2):
|
| 151 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 152 |
+
lpips_model = lpips.LPIPS(net='squeeze').to(device)
|
| 153 |
+
if img1 is None or img2 is None:
|
| 154 |
+
return "Please upload both images."
|
| 155 |
+
img1_np = np.array(img1).astype(np.float32) / 255.0
|
| 156 |
+
img2_np = np.array(img2).astype(np.float32) / 255.0
|
| 157 |
+
# convert to tensor in LPIPS format
|
| 158 |
+
img1_tensor = lpips.im2tensor(img1_np).to(device)
|
| 159 |
+
img2_tensor = lpips.im2tensor(img2_np).to(device)
|
| 160 |
+
# compute LPIPS distance
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
distance = lpips_model(img1_tensor, img2_tensor)
|
| 163 |
+
score = distance.item()
|
| 164 |
+
similarity = max(0.0, 1.0 - score*100) # normalize to positive similarity
|
| 165 |
+
result_text = (
|
| 166 |
+
f"LPIPS Distance: {score:.4f}\n"
|
| 167 |
+
f"Estimated Similarity: {similarity*100:.4f}%"
|
| 168 |
+
)
|
| 169 |
+
return result_text
|
| 170 |
+
# UI
|
| 171 |
+
block = gr.Blocks(title="image studio").queue()
|
| 172 |
+
with block:
|
| 173 |
+
gr.Markdown("## Discriminator")
|
| 174 |
+
with gr.Row():
|
| 175 |
+
img1 = gr.Image(type="pil", label="Image 1")
|
| 176 |
+
img2 = gr.Image(type="pil", label="Image 2")
|
| 177 |
+
compare_btn = gr.Button("Discriminate")
|
| 178 |
+
output_box = gr.Textbox(label="Statistics", lines=2)
|
| 179 |
+
compare_btn.click(compare_images, inputs=[img1,img2], outputs=output_box)
|
| 180 |
+
gr.Markdown("## Descriptor")
|
| 181 |
+
with gr.Row():
|
| 182 |
+
with gr.Column():
|
| 183 |
+
img_input = gr.Image(type="pil", label="Input Image")
|
| 184 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="")
|
| 185 |
+
quick_prompts = gr.Dataset(samples=sample1_prompts, label='Sample Prompt', samples_per_page=1000, components=[prompt])
|
| 186 |
+
quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
| 187 |
+
btn = gr.Button("Describe")
|
| 188 |
+
num_tokens = gr.Slider(minimum=64, maximum=1024, value=128, step=1, label="Output Token")
|
| 189 |
+
with gr.Column():
|
| 190 |
+
output = gr.Textbox(label="Description", lines=5)
|
| 191 |
+
btn.click(fn=describe_image, inputs=[img_input,prompt,num_tokens], outputs=output)
|
| 192 |
+
gr.Markdown("## Generator")
|
| 193 |
+
with gr.Row():
|
| 194 |
+
with gr.Column():
|
| 195 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="")
|
| 196 |
+
quick_prompts = gr.Dataset(samples=sample_prompts2, label='Sample Prompt', samples_per_page=1000, components=[prompt])
|
| 197 |
+
quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
| 198 |
+
submit_btn = gr.Button("Generate")
|
| 199 |
+
num_steps = gr.Slider(minimum=4, maximum=100, value=8, step=1, label="Step")
|
| 200 |
+
guidance = gr.Slider(minimum=1.0, maximum=10.0, value=2.5, step=0.1, label="Scale")
|
| 201 |
+
with gr.Column():
|
| 202 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
| 203 |
+
submit_btn.click(fn=generate_image2, inputs=[prompt, num_steps, guidance], outputs=output_image)
|
| 204 |
+
gr.Markdown("## Transformer")
|
| 205 |
+
with gr.Row():
|
| 206 |
+
with gr.Column():
|
| 207 |
+
with gr.Row():
|
| 208 |
+
img1 = gr.Image(label="Image 1", type="pil")
|
| 209 |
+
img2 = gr.Image(label="Image 2", type="pil")
|
| 210 |
+
img3 = gr.Image(label="Image 3", type="pil")
|
| 211 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="")
|
| 212 |
+
quick_prompts = gr.Dataset(samples=sample_prompts, label='Sample Prompt', samples_per_page=1000, components=[prompt])
|
| 213 |
+
quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
| 214 |
+
generate_btn = gr.Button("Transform")
|
| 215 |
+
steps = gr.Slider(1, 50, value=4, step=1, label="Inference Steps", visible=False)
|
| 216 |
+
guidance = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Guidance Scale", visible=False)
|
| 217 |
+
with gr.Column():
|
| 218 |
+
output_image = gr.Image(label="Output", type="pil")
|
| 219 |
+
generate_btn.click(
|
| 220 |
+
fn=generate_image,
|
| 221 |
+
inputs=[prompt, img1, img2, img3, steps, guidance],
|
| 222 |
+
outputs=output_image,
|
| 223 |
+
)
|
| 224 |
+
block.launch()
|
| 225 |
+
|
| 226 |
+
# detect your device and assign dtype accordingly
|
| 227 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 228 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 229 |
+
|
| 230 |
+
# load the model from cache; or pull it from huggingface repo if you don't have
|
| 231 |
+
model_path1 = "https://huggingface.co/calcuis/sd3.5-lite-gguf/blob/main/sd3.5-8b-lite-mxfp4_moe.gguf"
|
| 232 |
+
model_path = "https://huggingface.co/calcuis/sketch/blob/main/sketch-s9-20b-int4.safetensors"
|
| 233 |
+
|
| 234 |
+
# launch the app; call the app function above
|
| 235 |
+
launch_app(model_path1, model_path, dtype)
|