Spaces:
Runtime error
Runtime error
| # server/localhosted models implementation (extended applications demo) | |
| import torch | |
| import lpips | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| from dequantor import ( | |
| StableDiffusion3Pipeline, | |
| GGUFQuantizationConfig, | |
| SD3Transformer2DModel, | |
| QwenImageEditPlusPipeline, | |
| AutoencoderKLQwenImage, | |
| ) | |
| from transformers import ( | |
| T5EncoderModel, | |
| Qwen2_5_VLForConditionalGeneration, | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| ) | |
| from nunchaku import ( | |
| NunchakuQwenImageTransformer2DModel, | |
| ) | |
| from gguf_connector.vrm import get_gpu_vram | |
| def launch_app(model_path1,model_path,dtype): | |
| # image recognition model | |
| MODEL_ID = "callgg/fastvlm-0.5b-bf16" | |
| IMAGE_TOKEN_INDEX = -200 | |
| tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| def describe_image(img: Image.Image, prompt, num_tokens) -> str: | |
| if img is None: | |
| return "Please upload an image." | |
| messages = [{"role": "user", "content": f"<image>\n{prompt}."}] | |
| rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) | |
| pre, post = rendered.split("<image>", 1) | |
| pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids | |
| post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids | |
| img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype) | |
| input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device) | |
| attention_mask = torch.ones_like(input_ids, device=model.device) | |
| px = model.get_vision_tower().image_processor(images=img, return_tensors="pt")["pixel_values"] | |
| px = px.to(model.device, dtype=model.dtype) | |
| with torch.no_grad(): | |
| out = model.generate( | |
| inputs=input_ids, | |
| attention_mask=attention_mask, | |
| images=px, | |
| max_new_tokens=num_tokens | |
| ) | |
| return tok.decode(out[0], skip_special_tokens=True) | |
| sample1_prompts = ['describe this image in detail', | |
| 'describe what you see in few words', | |
| 'tell me the difference'] | |
| sample1_prompts = [[x] for x in sample1_prompts] | |
| # image generation model | |
| transformer1 = SD3Transformer2DModel.from_single_file( | |
| model_path1, | |
| quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), | |
| torch_dtype=dtype, | |
| config="callgg/sd3-decoder", | |
| subfolder="transformer_2" | |
| ) | |
| text_encoder1 = T5EncoderModel.from_pretrained( | |
| "chatpig/t5-v1_1-xxl-encoder-fp32-gguf", | |
| gguf_file="t5xxl-encoder-fp32-q2_k.gguf", | |
| dtype=dtype | |
| ) | |
| pipeline = StableDiffusion3Pipeline.from_pretrained( | |
| "callgg/sd3-decoder", | |
| transformer=transformer1, | |
| text_encoder_3=text_encoder1, | |
| torch_dtype=dtype | |
| ) | |
| pipeline.enable_model_cpu_offload() | |
| # Inference function | |
| def generate_image2(prompt, num_steps, guidance): | |
| result = pipeline( | |
| prompt, | |
| height=1024, | |
| width=1024, | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance, | |
| ).images[0] | |
| return result | |
| sample_prompts2 = ['a cat in a hat', | |
| 'a pig in a hat', | |
| 'a raccoon in a hat', | |
| 'a dog walking with joy'] | |
| sample_prompts2 = [[x] for x in sample_prompts2] | |
| # image transformation model | |
| transformer = NunchakuQwenImageTransformer2DModel.from_pretrained( | |
| model_path | |
| ) | |
| text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| "callgg/qi-decoder", | |
| subfolder="text_encoder", | |
| dtype=dtype | |
| ) | |
| vae = AutoencoderKLQwenImage.from_pretrained( | |
| "callgg/qi-decoder", | |
| subfolder="vae", | |
| torch_dtype=dtype | |
| ) | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "callgg/image-edit-plus", | |
| transformer=transformer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| torch_dtype=dtype | |
| ) | |
| if get_gpu_vram() > 18: | |
| pipe.enable_model_cpu_offload() | |
| else: | |
| transformer.set_offload( | |
| True, use_pin_memory=False, num_blocks_on_gpu=1 | |
| ) | |
| pipe._exclude_from_cpu_offload.append("transformer") | |
| pipe.enable_sequential_cpu_offload() | |
| def generate_image(prompt, img1, img2, img3, steps, guidance): | |
| images = [] | |
| for img in [img1, img2, img3]: | |
| if img is not None: | |
| if not isinstance(img, Image.Image): | |
| img = Image.open(img) | |
| images.append(img.convert("RGB")) | |
| if not images: | |
| return None | |
| inputs = { | |
| "image": images, | |
| "prompt": prompt, | |
| "true_cfg_scale": guidance, | |
| "negative_prompt": " ", | |
| "num_inference_steps": steps, | |
| "num_images_per_prompt": 1, | |
| } | |
| with torch.inference_mode(): | |
| output = pipe(**inputs) | |
| return output.images[0] | |
| sample_prompts = ['merge it', | |
| 'color it', | |
| 'use image 1 as background of image 2'] | |
| sample_prompts = [[x] for x in sample_prompts] | |
| # image discrimination model | |
| def compare_images(img1,img2): | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| lpips_model = lpips.LPIPS(net='squeeze').to(device) | |
| if img1 is None or img2 is None: | |
| return "Please upload both images." | |
| img1_np = np.array(img1).astype(np.float32) / 255.0 | |
| img2_np = np.array(img2).astype(np.float32) / 255.0 | |
| # convert to tensor in LPIPS format | |
| img1_tensor = lpips.im2tensor(img1_np).to(device) | |
| img2_tensor = lpips.im2tensor(img2_np).to(device) | |
| # compute LPIPS distance | |
| with torch.no_grad(): | |
| distance = lpips_model(img1_tensor, img2_tensor) | |
| score = distance.item() | |
| similarity = max(0.0, 1.0 - score*100) # normalize to positive similarity | |
| result_text = ( | |
| f"LPIPS Distance: {score:.4f}\n" | |
| f"Estimated Similarity: {similarity*100:.4f}%" | |
| ) | |
| return result_text | |
| # UI | |
| block = gr.Blocks(title="image studio").queue() | |
| with block: | |
| gr.Markdown("## Discriminator") | |
| with gr.Row(): | |
| img1 = gr.Image(type="pil", label="Image 1") | |
| img2 = gr.Image(type="pil", label="Image 2") | |
| compare_btn = gr.Button("Discriminate") | |
| output_box = gr.Textbox(label="Statistics", lines=2) | |
| compare_btn.click(compare_images, inputs=[img1,img2], outputs=output_box) | |
| gr.Markdown("## Descriptor") | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_input = gr.Image(type="pil", label="Input Image") | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="") | |
| quick_prompts = gr.Dataset(samples=sample1_prompts, label='Sample Prompt', samples_per_page=1000, components=[prompt]) | |
| quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False) | |
| btn = gr.Button("Describe") | |
| num_tokens = gr.Slider(minimum=64, maximum=1024, value=128, step=1, label="Output Token") | |
| with gr.Column(): | |
| output = gr.Textbox(label="Description", lines=5) | |
| btn.click(fn=describe_image, inputs=[img_input,prompt,num_tokens], outputs=output) | |
| gr.Markdown("## Generator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="") | |
| quick_prompts = gr.Dataset(samples=sample_prompts2, label='Sample Prompt', samples_per_page=1000, components=[prompt]) | |
| quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False) | |
| submit_btn = gr.Button("Generate") | |
| num_steps = gr.Slider(minimum=4, maximum=100, value=8, step=1, label="Step") | |
| guidance = gr.Slider(minimum=1.0, maximum=10.0, value=2.5, step=0.1, label="Scale") | |
| with gr.Column(): | |
| output_image = gr.Image(type="pil", label="Output Image") | |
| submit_btn.click(fn=generate_image2, inputs=[prompt, num_steps, guidance], outputs=output_image) | |
| gr.Markdown("## Transformer") | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| img1 = gr.Image(label="Image 1", type="pil") | |
| img2 = gr.Image(label="Image 2", type="pil") | |
| img3 = gr.Image(label="Image 3", type="pil") | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (or click Sample Prompt)", value="") | |
| quick_prompts = gr.Dataset(samples=sample_prompts, label='Sample Prompt', samples_per_page=1000, components=[prompt]) | |
| quick_prompts.click(lambda x: x[0], inputs=[quick_prompts], outputs=prompt, show_progress=False, queue=False) | |
| generate_btn = gr.Button("Transform") | |
| steps = gr.Slider(1, 50, value=4, step=1, label="Inference Steps", visible=False) | |
| guidance = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Guidance Scale", visible=False) | |
| with gr.Column(): | |
| output_image = gr.Image(label="Output", type="pil") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt, img1, img2, img3, steps, guidance], | |
| outputs=output_image, | |
| ) | |
| block.launch() | |
| # detect your device and assign dtype accordingly | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.bfloat16 if device == "cuda" else torch.float32 | |
| # load the model from cache; or pull it from huggingface repo if you don't have | |
| model_path1 = "https://huggingface.co/calcuis/sd3.5-lite-gguf/blob/main/sd3.5-8b-lite-mxfp4_moe.gguf" | |
| model_path = "https://huggingface.co/calcuis/sketch/blob/main/sketch-s9-20b-int4.safetensors" | |
| # launch the app; call the app function above | |
| launch_app(model_path1, model_path, dtype) | |