File size: 4,642 Bytes
7842e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cc6b6b
7842e83
6cc6b6b
eba227e
6cc6b6b
eba227e
7842e83
 
 
872f59a
418578d
 
7842e83
 
 
418578d
 
 
0c5b5d7
6cc6b6b
 
418578d
 
 
 
0c5b5d7
 
418578d
538bf82
418578d
 
538bf82
418578d
 
 
 
 
 
538bf82
6cc6b6b
6934201
 
eba227e
 
 
6cc6b6b
418578d
 
 
eba227e
 
7842e83
 
872f59a
7842e83
 
872f59a
7842e83
 
 
 
 
418578d
538bf82
7842e83
6cc6b6b
7842e83
 
418578d
7842e83
 
 
418578d
7842e83
 
 
d7a7630
418578d
d7a7630
 
7842e83
 
 
 
6cc6b6b
7842e83
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#######################################################################################
#
# MIT License
#
# Copyright (c) [2025] [leonelhs@gmail.com]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#######################################################################################
#
# This project is one of several repositories exploring image segmentation techniques.
# All related projects and interactive demos can be found at:
# https://huggingface.co/spaces/leonelhs/removators
# huggingface: https://huggingface.co/spaces/leonelhs/segformer-tf-transformers
#

import os
from itertools import islice

import cv2
import numpy as np
import onnxruntime as ort
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download

from pallete import colormap
from labels import cloth_labels, fashion_labels, ADE20k_labels

REPO_ID = "leonelhs/segmentators"

ADE20k_path = hf_hub_download(repo_id=REPO_ID, filename="segformer/segformer-b5-finetuned-ade-640-640.onnx")
fashion_path = hf_hub_download(repo_id=REPO_ID, filename="segformer/segformer-b3-fashion.onnx")
clothes_path = hf_hub_download(repo_id=REPO_ID, filename="segformer/segformer_b2_clothes.onnx")

sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = os.cpu_count()

session_ade20k = ort.InferenceSession(fashion_path, sess_options, providers=["CPUExecutionProvider"])
session_cloth = ort.InferenceSession(clothes_path, sess_options, providers=["CPUExecutionProvider"])
session_fashion = ort.InferenceSession(fashion_path, sess_options, providers=["CPUExecutionProvider"])


def predict(input_img, model="ADE20k"):

    session = session_ade20k
    labels = ADE20k_labels

    if model == "Cloth":
        session = session_cloth
        labels = cloth_labels
    elif model == "Fashion":
        session = session_fashion
        labels = fashion_labels


    img = cv2.imread(input_img)
    img = cv2.resize(img, (640, 640)).astype(np.float32)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img_batch = np.expand_dims(img, axis=0)
    img_batch = np.transpose(img_batch, (0, 3, 1, 2))

    inputs = {'input': img_batch}

    logits = session.run(None, inputs)[0]

    logits = np.transpose(logits, (0, 2, 3, 1))
    segmented_mask = np.argmax(logits, axis=-1)[0].astype("float32")
    segmented_mask = cv2.resize(segmented_mask, (640, 640)).astype("uint8")

    parts = []
    unique_labels = np.unique(segmented_mask)

    for label in unique_labels:
        part = np.where(segmented_mask == label)
        color_seg = np.full((640, 640, 3), 0, dtype=np.uint8)
        color_seg[part[0], part[1], :] = colormap[label]
        color_seg = cv2.cvtColor(color_seg, cv2.COLOR_BGR2GRAY)
        parts.append((color_seg, labels[label]))

    return Image.fromarray(img.astype("uint8")), parts

with gr.Blocks(title="SegFormer") as app:
    navbar = gr.Navbar(visible=True, main_page_name="Workspace")
    gr.Markdown("## SegFormer ONNX")
    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Image(type="filepath", label="Upload Image")
            mod = gr.Dropdown(choices=["ADE20k","Cloth","Fashion"], label="Model generator", value="ADE20k")
            btn_predict = gr.Button("Parse")
        with gr.Column(scale=2):
            out = gr.AnnotatedImage(label="Image parsed annotated")

    btn_predict.click(predict, inputs=[inp, mod], outputs=[out])


with app.route("About this", "/about"):
    with open("README.md") as f:
        for line in islice(f, 12, None):
            gr.Markdown(line.strip())

app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True)
app.queue()