Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import torch | |
| import logging | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.llms import HuggingFacePipeline | |
| from langchain.chains import RetrievalQA | |
| from langchain.prompts import PromptTemplate | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| from build_index import main as build_index_if_needed # 确保提交了 build_index.py | |
| logging.basicConfig(level=logging.INFO) | |
| # ─── 配置 ───────────────────────────────────────────────────── | |
| VECTOR_STORE_DIR = "./vector_store" | |
| MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" | |
| EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
| # 如果向量库不存在,自动构建 | |
| if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR): | |
| logging.info("向量库不存在,启动自动构建……") | |
| build_index_if_needed() | |
| # ─── 1. 加载 LLM ──────────────────────────────────────────────── | |
| logging.info("🔧 加载生成模型…") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto", | |
| ) | |
| gen_pipe = pipeline( | |
| task="text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, | |
| temperature=0.5, | |
| top_p=0.9, | |
| do_sample=True, | |
| trust_remote_code=True, | |
| ) | |
| llm = HuggingFacePipeline(pipeline=gen_pipe) | |
| logging.info("✅ 生成模型加载成功。") | |
| # ─── 2. 加载向量库 ───────────────────────────────────────────── | |
| logging.info("📚 加载向量库…") | |
| embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
| vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings) | |
| retriever = vectordb.as_retriever(search_kwargs={"k": 3}) | |
| logging.info("✅ 向量库加载成功。") | |
| # ─── 3. 自定义 Prompt ───────────────────────────────────────── | |
| prompt_template = PromptTemplate.from_template( | |
| """你是一位专业的数学助教,请根据以下参考资料回答用户的问题。 | |
| 如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。 | |
| 参考资料: | |
| {context} | |
| 用户问题: | |
| {question} | |
| 回答(只允许基于参考资料,不要编造): | |
| """ | |
| ) | |
| # ─── 4. 构建 RAG 问答链 ─────────────────────────────────────── | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| chain_type_kwargs={"prompt": prompt_template}, | |
| return_source_documents=True, | |
| ) | |
| logging.info("✅ RAG 问答链构建成功。") | |
| # ─── 5. 业务函数 ─────────────────────────────────────────────── | |
| def qa_fn(query: str): | |
| if not query.strip(): | |
| return "❌ 请输入问题内容。" | |
| result = qa_chain({"query": query}) | |
| answer = result["result"].strip() | |
| sources = result.get("source_documents", []) | |
| if not sources: | |
| return "📌 回答:未在知识库中找到相关内容,请尝试更换问题或补充教材。" | |
| sources_text = "\n\n".join( | |
| [f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)] | |
| ) | |
| return f"📌 回答:{answer}\n\n📚 参考:\n{sources_text}" | |
| # ─── 6. Gradio 界面 ───────────────────────────────────────────── | |
| with gr.Blocks(title="智能学习助手") as demo: | |
| gr.Markdown("## 📘 智能学习助手\n输入教材相关问题,例如:“什么是函数的定义域?”") | |
| with gr.Row(): | |
| query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2) | |
| answer = gr.Textbox(label="回答", lines=12) | |
| gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer) | |
| gr.Markdown( | |
| "---\n" | |
| "模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG \n" | |
| "由 Hugging Face Spaces 提供算力支持" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |