Spaces:
Sleeping
Sleeping
Upload build_vector_store.py
Browse files
vector_build/build_vector_store.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 4 |
+
from langchain_community.vectorstores import Chroma
|
| 5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain.schema import Document
|
| 7 |
+
|
| 8 |
+
# ====== 1. 设置路径 ======
|
| 9 |
+
md_folder = "../" # markdown 文件所在目录
|
| 10 |
+
persist_path = "../vector_store" # 向量库保存路径
|
| 11 |
+
|
| 12 |
+
# ====== 2. 清空旧向量库(如存在) ======
|
| 13 |
+
if os.path.exists(persist_path):
|
| 14 |
+
print("⚠️ 检测到旧向量库,自动删除重建…")
|
| 15 |
+
shutil.rmtree(persist_path)
|
| 16 |
+
|
| 17 |
+
# ====== 3. 加载 Markdown 文件 ======
|
| 18 |
+
docs = []
|
| 19 |
+
for filename in os.listdir(md_folder):
|
| 20 |
+
if filename.endswith(".md"):
|
| 21 |
+
file_path = os.path.join(md_folder, filename)
|
| 22 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 23 |
+
text = f.read()
|
| 24 |
+
docs.append(Document(page_content=text, metadata={"source": filename}))
|
| 25 |
+
|
| 26 |
+
if not docs:
|
| 27 |
+
print("❌ 未发现任何 Markdown 文件,请检查路径和文件名")
|
| 28 |
+
exit()
|
| 29 |
+
|
| 30 |
+
# ====== 4. 分割文本块 ======
|
| 31 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 32 |
+
chunk_size=500,
|
| 33 |
+
chunk_overlap=100,
|
| 34 |
+
separators=["\n\n", "\n", "。", ".", ",", ","],
|
| 35 |
+
)
|
| 36 |
+
split_docs = splitter.split_documents(docs)
|
| 37 |
+
print(f"🐣 共切分出 {len(split_docs)} 段文本,准备向量化…")
|
| 38 |
+
|
| 39 |
+
# ====== 5. 构建向量库并保存 ======
|
| 40 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 41 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 42 |
+
)
|
| 43 |
+
vectordb = Chroma.from_documents(
|
| 44 |
+
documents=split_docs,
|
| 45 |
+
embedding=embedding_model,
|
| 46 |
+
persist_directory=persist_path,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
vectordb.persist()
|
| 50 |
+
print(f"✅ 向量库已保存到:{persist_path}")
|