Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,628 Bytes
593b176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoModel
import os
import torchvision.transforms.functional as F
from src.plot import plot_qualitative
from PIL import Image
from io import BytesIO
import base64
from pathlib import Path
# --- Setup ---
os.environ["GRADIO_TEMP_DIR"] = "tmp"
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Load Models ---
model_B = AutoModel.from_pretrained("lorebianchi98/Talk2DINO-ViTB", trust_remote_code=True).to(device).eval()
model_L = AutoModel.from_pretrained("lorebianchi98/Talk2DINO-ViTL", trust_remote_code=True).to(device).eval()
MODELS = {"ViT-B": model_B, "ViT-L": model_L}
# --- Example Setup ---
EXAMPLE_IMAGES_DIR = Path("examples").resolve()
example_images = sorted([str(p) for p in EXAMPLE_IMAGES_DIR.glob("*.png")])
DEFAULT_CLASSES = {
"0_pikachu.png": "pikachu,traffic_sign,forest,road,cap",
"1_jurassic.png": "dinosaur,smoke,vegetation,person",
"2_falcon.png": "millenium_falcon,space"
}
DEFAULT_BG_THRESH = 0.55
DEFAULT_BG_CLEAN = False
# --- Inference Function ---
def talk2dino_infer(input_image, class_text, selected_model="ViT-B",
apply_pamr=True, with_background=False, bg_thresh=0.55, apply_bg_clean=False):
if input_image is None:
raise gr.Error("No image detected. Please select or upload an image first.")
model = MODELS[selected_model]
text = [t.strip() for t in class_text.replace("_", " ").split(",") if t.strip()]
if len(text) == 0:
raise gr.Error("Please provide at least one class name before generating segmentation.")
img = F.to_tensor(input_image).unsqueeze(0).float().to(device) * 255.0
# Generate color palette
palette = [
[255, 0, 0],
[255, 255, 0],
[0, 255, 0],
[0, 255, 255],
[0, 0, 255],
[128, 128, 128]
]
if len(text) > len(palette):
for _ in range(len(text) - len(palette)):
palette.append([np.random.randint(0, 255) for _ in range(3)])
if with_background:
palette.insert(0, [0, 0, 0])
model.with_bg_clean = apply_bg_clean
with torch.no_grad():
text_emb = model.build_dataset_class_tokens("sub_imagenet_template", text)
text_emb = model.build_text_embedding(text_emb)
mask, _ = model.generate_masks(img, img_metas=None, text_emb=text_emb,
classnames=text, apply_pamr=apply_pamr)
if with_background:
background = torch.ones_like(mask[:, :1]) * bg_thresh
mask = torch.cat([background, mask], dim=1)
mask = mask.argmax(dim=1)
if with_background:
text = ["background"] + text
img_out = plot_qualitative(
img.cpu()[0].permute(1, 2, 0).int().numpy(),
mask.cpu()[0].numpy(),
palette,
texts=text
)
return img_out
# --- Gradio Interface ---
with gr.Blocks(title="Talk2DINO Demo") as demo:
# Overview Section
overview_img = Image.open("assets/overview.png").convert("RGB")
overview_img = overview_img.resize((int(overview_img.width * 0.7), int(overview_img.height * 0.7)))
buffered = BytesIO()
overview_img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
gr.Markdown(f"""
# 🦖 Talk2DINO Demo

<div style="font-size: x-large; white-space: nowrap; display: flex; align-items: center; gap: 10px;">
<a href="https://lorebianchi98.github.io/Talk2DINO/" target="_blank">Project page</a>
<span>|</span>
<a href="http://arxiv.org/abs/2411.19331" target="_blank">
<img src="https://img.shields.io/badge/arXiv-2411.19331-b31b1b.svg" style="height:28px; vertical-align:middle;">
</a>
<span>|</span>
<a href="https://huggingface.co/papers/2411.19331" target="_blank">
<img src="https://img.shields.io/badge/HuggingFace-Paper-yellow.svg" style="height:28px; vertical-align:middle;">
</a>
</div>
---
This demo allows you to **perform open-vocabulary semantic segmentation** on images using Talk2DINO.
**How to use:**
1. Upload an image or select one from the example gallery.
2. Enter a comma-separated list of class names you want to segment (e.g., `pikachu, forest, road`).
3. Adjust optional parameters:
- **Model**: choose between ViT-B and ViT-L
- **Apply PAMR**: refine masks after initial prediction
- **Include Background**: visualize background areas
- **Background Threshold**: threshold for background intensity
- **Apply Background Cleaning**: remove background noise when enabled
4. Click **Generate Segmentation** to see the segmentation overlay.
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image", value=None)
if example_images:
example_gallery = gr.Gallery(
value=example_images,
label="Or select from example images",
show_label=True,
columns=3,
object_fit="contain",
height="auto"
)
with gr.Column():
model_selector = gr.Dropdown(
label="Select Model",
choices=["ViT-B", "ViT-L"],
value="ViT-B"
)
class_text = gr.Textbox(
label="Comma-separated Classes",
value="",
placeholder="e.g. pikachu, road, tree"
)
apply_pamr = gr.Checkbox(label="Apply PAMR", value=True)
with_background = gr.Checkbox(label="Include Background", value=False)
bg_thresh = gr.Slider(
label="Background Threshold",
minimum=0.0,
maximum=1.0,
value=DEFAULT_BG_THRESH,
step=0.01,
interactive=False
)
apply_bg_clean = gr.Checkbox(
label="Apply Background Cleaning",
value=False,
interactive=False
)
generate_button = gr.Button("🚀 Generate Segmentation", interactive=False)
output_image = gr.Image(type="numpy", label="Segmentation Overlay")
# --- Background Option Toggle ---
def toggle_bg_options(with_bg):
if with_bg:
return gr.update(interactive=True, value=DEFAULT_BG_THRESH), gr.update(interactive=True, value=DEFAULT_BG_CLEAN)
else:
return gr.update(interactive=False, value=DEFAULT_BG_THRESH), gr.update(interactive=False, value=DEFAULT_BG_CLEAN)
with_background.change(
fn=toggle_bg_options,
inputs=[with_background],
outputs=[bg_thresh, apply_bg_clean]
)
# --- Enable Button Only When Classes Exist ---
def enable_generate_button(text):
return gr.update(interactive=bool(text.strip()))
class_text.change(fn=enable_generate_button, inputs=[class_text], outputs=[generate_button])
# --- Example Image Loader ---
def load_example_image(evt: gr.SelectData):
selected = evt.value["image"]
if isinstance(selected, str):
img = Image.open(selected).convert("RGB")
filename = Path(selected).name
elif isinstance(selected, dict):
img = Image.open(selected["path"]).convert("RGB")
filename = Path(selected["path"]).name
else:
img = Image.fromarray(selected)
filename = None
class_val = DEFAULT_CLASSES.get(filename, "")
return img, class_val, gr.update(interactive=bool(class_val.strip()))
if example_images:
example_gallery.select(
fn=load_example_image,
inputs=[],
outputs=[input_image, class_text, generate_button]
)
# --- User Upload Reset ---
def on_upload_image(img):
if img is None:
return None, "", gr.update(interactive=False)
return img, "", gr.update(interactive=False)
input_image.upload(
fn=on_upload_image,
inputs=[input_image],
outputs=[input_image, class_text, generate_button]
)
# --- Generate Segmentation ---
generate_button.click(
talk2dino_infer,
inputs=[input_image, class_text, model_selector, apply_pamr, with_background, bg_thresh, apply_bg_clean],
outputs=output_image
)
demo.launch(server_port=7870, share=False)
|