Spaces:
Sleeping
Sleeping
| import tempfile | |
| import requests | |
| import os | |
| from time import sleep | |
| from urllib.parse import urlparse | |
| from typing import Optional, List | |
| import yt_dlp | |
| from google.genai import types | |
| from PIL import Image | |
| from smolagents import CodeAgent, tool, OpenAIServerModel, LiteLLMModel | |
| from google import genai | |
| from dotenv import load_dotenv | |
| #from model_provider import create_react_model, create_vision_model | |
| #import imageio | |
| load_dotenv(override=True) | |
| ''' | |
| @tool | |
| def use_vision_model(question: str, images: List[Image.Image]) -> str: | |
| """ | |
| Use a Vision Model to answer a question about a set of images. | |
| Always use this tool to ask questions about a set of images you have been provided. | |
| This function uses an image-to-text AI model. | |
| You can ask a question about a list of one image or a list of multiple images. | |
| So, if you have multiple images that you want to ask the same question of, pass the entire list of images to the model. | |
| Ensure your prompt is specific enough to retrieve the exact information you are looking for. | |
| Args: | |
| question: The question to ask about the images. Type: str | |
| images: The list of images to as the question about. Type: List[PIL.Image.Image] | |
| """ | |
| image_model = create_vision_model() | |
| content = [ | |
| { | |
| "type": "text", | |
| "text": question | |
| } | |
| ] | |
| print(f"Asking model a question about {len(images)} images") | |
| for image in images: | |
| content.append({ | |
| "type": "image", | |
| "image": image # ✅ Directly the PIL Image, no wrapping | |
| }) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": content | |
| } | |
| ] | |
| output = image_model(messages).content | |
| print(f'Model returned: {output}') | |
| return output | |
| @tool | |
| def youtube_frames_to_images(url: str, sample_interval_frames: int = 24) -> List[Image.Image]: | |
| """ | |
| Reviews a YouTube video and returns a List of PIL Images (List[PIL.Image.Image]), which can then be reviewed by a vision model. | |
| Only use this tool if you have been given a YouTube video that you need to analyze. | |
| This will generate a list of images, and you can use the use_vision_model tool to analyze those images | |
| Args: | |
| url: The Youtube URL | |
| sample_interval_frames: The sampling interval (default is 24 frames) | |
| """ | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Download the video locally | |
| ydl_opts = { | |
| 'format': 'bestvideo[height<=1080]+bestaudio/best[height<=1080]/best', | |
| 'outtmpl': os.path.join(tmpdir, 'video.%(ext)s'), | |
| 'quiet': True, | |
| 'noplaylist': True, | |
| 'merge_output_format': 'mp4', | |
| 'force_ipv4': True, # Avoid IPv6 issues | |
| } | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| info = ydl.extract_info(url, download=True) | |
| # Find the downloaded file | |
| video_path = None | |
| for file in os.listdir(tmpdir): | |
| if file.endswith('.mp4'): | |
| video_path = os.path.join(tmpdir, file) | |
| break | |
| if not video_path: | |
| raise RuntimeError("Failed to download video as mp4") | |
| # ✅ Fix: Use `imageio.get_reader()` instead of `imopen()` | |
| reader = imageio.get_reader(video_path) # Works for frame-by-frame iteration | |
| # metadata = reader.get_meta_data() | |
| # fps = metadata.get('fps') | |
| # if fps is None: | |
| # reader.close() | |
| # raise RuntimeError("Unable to determine FPS from video metadata") | |
| # frame_interval = int(fps * sample_interval_frames) | |
| frame_interval = sample_interval_frames # Use the provided interval directly | |
| images: List[Image.Image] = [] | |
| # ✅ Iterate over frames using `get_reader()` | |
| for idx, frame in enumerate(reader): | |
| print(f"Processing frame {idx}") | |
| if idx % frame_interval == 0: | |
| images.append(Image.fromarray(frame)) | |
| reader.close() | |
| return images | |
| ''' | |
| def review_youtube_video(url: str, question: str) -> str: | |
| """ | |
| Reviews a YouTube video and answers a specific question about that video. | |
| Args: | |
| url (str): the URL to the YouTube video. Should be like this format: https://www.youtube.com/watch?v=9hE5-98ZeCg | |
| question (str): The question you are asking about the video | |
| """ | |
| try: | |
| client = genai.Client(api_key=os.getenv('GEMINI_KEY')) | |
| model = 'gemini-2.0-flash-lite' | |
| response = client.models.generate_content( | |
| model=model, | |
| contents=types.Content( | |
| parts=[ | |
| types.Part( | |
| file_data=types.FileData(file_uri=url) | |
| ), | |
| types.Part(text=question) | |
| ] | |
| ) | |
| ) | |
| return response.text | |
| except Exception as e: | |
| return f"Error asking {model} about video: {str(e)}" | |
| def read_file(filepath: str ) -> str: | |
| """ | |
| Used to read the content of a file. Returns the content as a string. | |
| Will only work for text-based files, such as .txt files or code files. | |
| Do not use for audio or visual files. | |
| Args: | |
| filepath (str): The path to the file to be read. | |
| Returns: | |
| str: Content of the file as a string. | |
| Raises: | |
| IOError: If there is an error opening or reading from the file. | |
| """ | |
| try: | |
| with open(filepath, 'r', encoding='utf-8') as file: | |
| content = file.read() | |
| print(content) | |
| return content | |
| except FileNotFoundError: | |
| print(f"File not found: {filepath}") | |
| except IOError as e: | |
| print(f"Error reading file: {str(e)}") | |
| def extract_text_from_image(image_path: str) -> str: | |
| """ | |
| Extract text from an image using pytesseract (if available). | |
| Args: | |
| image_path: Path to the image file | |
| Returns: | |
| Extracted text or error message | |
| """ | |
| try: | |
| # Try to import pytesseract | |
| import pytesseract | |
| from PIL import Image | |
| # Open the image | |
| image = Image.open(image_path) | |
| # Extract text | |
| text = pytesseract.image_to_string(image) | |
| return f"Extracted text from image:\n\n{text}" | |
| except ImportError: | |
| return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system." | |
| except Exception as e: | |
| return f"Error extracting text from image: {str(e)}" | |
| def analyze_csv_file(file_path: str, query: str) -> str: | |
| """ | |
| Analyze a CSV file using pandas and answer a question about it. | |
| To use this file you need to have saved it in a location and pass that location to the function. | |
| The download_file_from_url tool will save it by name to tempfile.gettempdir() | |
| Args: | |
| file_path: Path to the CSV file | |
| query: Question about the data | |
| Returns: | |
| Analysis result or error message | |
| """ | |
| try: | |
| import pandas as pd | |
| # Read the CSV file | |
| df = pd.read_csv(file_path) | |
| # Run various analyses based on the query | |
| result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n" | |
| result += f"Columns: {', '.join(df.columns)}\n\n" | |
| # Add summary statistics | |
| result += "Summary statistics:\n" | |
| result += str(df.describe()) | |
| return result | |
| except ImportError: | |
| return "Error: pandas is not installed. Please install it with 'pip install pandas'." | |
| except Exception as e: | |
| return f"Error analyzing CSV file: {str(e)}" | |
| def analyze_excel_file(file_path: str, query: str) -> str: | |
| """ | |
| Analyze an Excel file using pandas and answer a question about it. | |
| To use this file you need to have saved it in a location and pass that location to the function. | |
| The download_file_from_url tool will save it by name to tempfile.gettempdir() | |
| Args: | |
| file_path: Path to the Excel file | |
| query: Question about the data | |
| Returns: | |
| Analysis result or error message | |
| """ | |
| try: | |
| import pandas as pd | |
| # Read the Excel file | |
| df = pd.read_excel(file_path) | |
| # Run various analyses based on the query | |
| result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n" | |
| result += f"Columns: {', '.join(df.columns)}\n\n" | |
| # Add summary statistics | |
| result += "Summary statistics:\n" | |
| result += str(df.describe()) | |
| return result | |
| except ImportError: | |
| return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'." | |
| except Exception as e: | |
| return f"Error analyzing Excel file: {str(e)}" | |
| import whisper | |
| def youtube_transcribe(url: str) -> str: | |
| """ | |
| Transcribes a YouTube video. Use when you need to process the audio from a YouTube video into Text. | |
| Args: | |
| url: Url of the YouTube video | |
| """ | |
| model_size: str = "base" | |
| # Load model | |
| model = whisper.load_model(model_size) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Download audio | |
| ydl_opts = { | |
| 'format': 'bestaudio/best', | |
| 'outtmpl': os.path.join(tmpdir, 'audio.%(ext)s'), | |
| 'quiet': True, | |
| 'noplaylist': True, | |
| 'postprocessors': [{ | |
| 'key': 'FFmpegExtractAudio', | |
| 'preferredcodec': 'wav', | |
| 'preferredquality': '192', | |
| }], | |
| 'force_ipv4': True, | |
| } | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| info = ydl.extract_info(url, download=True) | |
| audio_path = next((os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if f.endswith('.wav')), None) | |
| if not audio_path: | |
| raise RuntimeError("Failed to find audio") | |
| # Transcribe | |
| result = model.transcribe(audio_path) | |
| return result['text'] | |
| def transcribe_audio(audio_file_path: str) -> str: | |
| """ | |
| Transcribes an audio file. Use when you need to process audio data. | |
| DO NOT use this tool for YouTube video; use the youtube_transcribe tool to process audio data from YouTube. | |
| Use this tool when you have an audio file in .mp3, .wav, .aac, .ogg, .flac, .m4a, .alac or .wma | |
| Args: | |
| audio_file_path: Filepath to the audio file (str) | |
| """ | |
| model_size: str = "small" | |
| # Load model | |
| model = whisper.load_model(model_size) | |
| result = model.transcribe(audio_file_path) | |
| return result['text'] |