Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -116,17 +116,14 @@ class Chatbot():
|
|
| 116 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
| 117 |
embedding_model = "text-embedding-ada-002"
|
| 118 |
# Get the embeddings for each text element in the dataframe
|
| 119 |
-
embeddings = df.text.apply(
|
| 120 |
embeddings = np.array(embeddings, dtype=np.float32)
|
| 121 |
return embeddings
|
| 122 |
|
| 123 |
def search_embeddings(self, embeddings, df, query, n=3, pprint=True):
|
| 124 |
|
| 125 |
# Step 1. Get an embedding for the question being asked to the PDF
|
| 126 |
-
query_embedding = get_embedding(
|
| 127 |
-
query,
|
| 128 |
-
engine="text-embedding-ada-002"
|
| 129 |
-
)
|
| 130 |
query_embedding = np.array(query_embedding, dtype=np.float32)
|
| 131 |
# Step 2. Create a FAISS index and add the embeddings
|
| 132 |
d = embeddings.shape[1]
|
|
|
|
| 116 |
openai.api_key = os.getenv('OPENAI_API_KEY')
|
| 117 |
embedding_model = "text-embedding-ada-002"
|
| 118 |
# Get the embeddings for each text element in the dataframe
|
| 119 |
+
embeddings = df.text.apply(lambda x: get_embedding(x, engine=embedding_model))
|
| 120 |
embeddings = np.array(embeddings, dtype=np.float32)
|
| 121 |
return embeddings
|
| 122 |
|
| 123 |
def search_embeddings(self, embeddings, df, query, n=3, pprint=True):
|
| 124 |
|
| 125 |
# Step 1. Get an embedding for the question being asked to the PDF
|
| 126 |
+
query_embedding = get_embedding(query, engine="text-embedding-ada-002")
|
|
|
|
|
|
|
|
|
|
| 127 |
query_embedding = np.array(query_embedding, dtype=np.float32)
|
| 128 |
# Step 2. Create a FAISS index and add the embeddings
|
| 129 |
d = embeddings.shape[1]
|