Spaces:
Running
Running
File size: 34,802 Bytes
6c982a7 eda7f22 6c982a7 eda7f22 6c982a7 eda7f22 ca36499 6c982a7 5aa7215 358773d 5aa7215 91fe002 6c982a7 eda7f22 6c982a7 eda7f22 6c982a7 eda7f22 6c982a7 eda7f22 358773d 5aa7215 358773d 5aa7215 c99ab26 fee9af1 5aa7215 91fe002 6c982a7 eda7f22 6c982a7 eda7f22 91fe002 eda7f22 ca36499 358773d eda7f22 5aa7215 b85b8b1 5aa7215 91fe002 eda7f22 5aa7215 e05f8fb eda7f22 6c982a7 911cc77 6c982a7 fee9af1 6c982a7 fee9af1 eda7f22 fee9af1 911cc77 fee9af1 3900fea fee9af1 911cc77 fee9af1 911cc77 fee9af1 5aa7215 fee9af1 358773d fee9af1 358773d fee9af1 5aa7215 fee9af1 5aa7215 fee9af1 911cc77 5aa7215 fee9af1 5aa7215 fee9af1 358773d fee9af1 358773d fee9af1 358773d fee9af1 911cc77 fee9af1 911cc77 fee9af1 911cc77 fee9af1 911cc77 fee9af1 911cc77 eda7f22 911cc77 fee9af1 358773d fee9af1 358773d fee9af1 358773d fee9af1 911cc77 fee9af1 eda7f22 6c982a7 fee9af1 6c982a7 fee9af1 6c982a7 fee9af1 6c982a7 5aa7215 fee9af1 5aa7215 fee9af1 5aa7215 fee9af1 5aa7215 fee9af1 6c982a7 fee9af1 6c982a7 fee9af1 6c982a7 eda7f22 fee9af1 eda7f22 ca36499 eda7f22 ca36499 91fe002 eda7f22 065c4b9 eda7f22 fba01f9 eda7f22 ca36499 eda7f22 6c982a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict
from PIL import Image
import io
import numpy as np
import os
from datetime import datetime
from pymongo import MongoClient
from huggingface_hub import InferenceClient
from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService
from advanced_rag import AdvancedRAG
from cag_service import CAGService
from pdf_parser import PDFIndexer
from multimodal_pdf_parser import MultimodalPDFIndexer
from conversation_service import ConversationService
from tools_service import ToolsService
# Initialize FastAPI app
app = FastAPI(
title="Event Social Media Embeddings & ChatbotRAG API",
description="API để embeddings, search và ChatbotRAG với Jina CLIP v2 + Qdrant + MongoDB + LLM",
version="2.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize services
print("Initializing services...")
embedding_service = JinaClipEmbeddingService(model_path="jinaai/jina-clip-v2")
collection_name = os.getenv("COLLECTION_NAME", "event_social_media")
qdrant_service = QdrantVectorService(
collection_name=collection_name,
vector_size=embedding_service.get_embedding_dimension()
)
print(f"✓ Qdrant collection: {collection_name}")
# MongoDB connection
mongodb_uri = os.getenv("MONGODB_URI", "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/")
mongo_client = MongoClient(mongodb_uri)
db = mongo_client[os.getenv("MONGODB_DB_NAME", "chatbot_rag")]
documents_collection = db["documents"]
chat_history_collection = db["chat_history"]
print("✓ MongoDB connected")
# Hugging Face token
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
print("✓ Hugging Face token configured")
# Initialize Advanced RAG (Best Case 2025)
advanced_rag = AdvancedRAG(
embedding_service=embedding_service,
qdrant_service=qdrant_service
)
print("✓ Advanced RAG pipeline initialized (with Cross-Encoder)")
# Initialize CAG Service (Semantic Cache)
try:
cag_service = CAGService(
embedding_service=embedding_service,
cache_collection="semantic_cache",
vector_size=embedding_service.get_embedding_dimension(),
similarity_threshold=0.9,
ttl_hours=24
)
print("✓ CAG Service initialized (Semantic Caching enabled)")
except Exception as e:
print(f"Warning: CAG Service initialization failed: {e}")
print("Continuing without semantic caching...")
cag_service = None
# Initialize PDF Indexer
pdf_indexer = PDFIndexer(
embedding_service=embedding_service,
qdrant_service=qdrant_service,
documents_collection=documents_collection
)
print("✓ PDF Indexer initialized")
# Initialize Multimodal PDF Indexer
multimodal_pdf_indexer = MultimodalPDFIndexer(
embedding_service=embedding_service,
qdrant_service=qdrant_service,
documents_collection=documents_collection
)
print("✓ Multimodal PDF Indexer initialized")
# Initialize Conversation Service
conversations_collection = db["conversations"]
conversation_service = ConversationService(conversations_collection, max_history=10)
print("✓ Conversation Service initialized")
# Initialize Tools Service
tools_service = ToolsService(base_url="https://www.festavenue.site")
print("✓ Tools Service initialized (Function Calling enabled)")
print("✓ Services initialized successfully")
# Pydantic models for embeddings
class SearchRequest(BaseModel):
text: Optional[str] = None
limit: int = 10
score_threshold: Optional[float] = None
text_weight: float = 0.5
image_weight: float = 0.5
class SearchResponse(BaseModel):
id: str
confidence: float
metadata: dict
class IndexResponse(BaseModel):
success: bool
id: str
message: str
# Pydantic models for ChatbotRAG
class ChatRequest(BaseModel):
message: str
session_id: Optional[str] = None # Multi-turn conversation
use_rag: bool = True
top_k: int = 3
system_message: Optional[str] = """Bạn là trợ lý AI chuyên biệt cho hệ thống quản lý sự kiện và bán vé.
Vai trò của bạn là trả lời các câu hỏi CHÍNH XÁC dựa trên dữ liệu được cung cấp từ hệ thống.
Quy tắc tuyệt đối:
- CHỈ trả lời câu hỏi liên quan đến: events, social media posts, PDFs đã upload, và dữ liệu trong knowledge base
- KHÔNG trả lời câu hỏi ngoài phạm vi (tin tức, thời tiết, toán học, lập trình, tư vấn cá nhân, v.v.)
- Nếu câu hỏi nằm ngoài phạm vi: BẮT BUỘC trả lời "Chúng tôi không thể trả lời câu hỏi này vì nó nằm ngoài vùng application xử lí."
- Luôn ưu tiên thông tin từ context được cung cấp"""
max_tokens: int = 512
temperature: float = 0.7
top_p: float = 0.95
hf_token: Optional[str] = None
# Advanced RAG options
use_advanced_rag: bool = True
use_query_expansion: bool = True
use_reranking: bool = False # Disabled - Cross-Encoder not good for Vietnamese
use_compression: bool = True
score_threshold: float = 0.5
# Function calling
enable_tools: bool = True # Enable API tool calling
class ChatResponse(BaseModel):
response: str
context_used: List[Dict]
timestamp: str
rag_stats: Optional[Dict] = None # Stats from advanced RAG pipeline
session_id: Optional[str] = None # Session identifier for multi-turn (auto-generated if not provided)
tool_calls: Optional[List[Dict]] = None # Track API calls made
class AddDocumentRequest(BaseModel):
text: str
metadata: Optional[Dict] = None
class AddDocumentResponse(BaseModel):
success: bool
doc_id: str
message: str
@app.get("/")
async def root():
"""Health check endpoint with comprehensive API documentation"""
return {
"status": "running",
"service": "ChatbotRAG API",
"version": "2.0.0",
"vector_db": "Qdrant",
"document_db": "MongoDB",
"endpoints": {
"chatbot_rag": {
"API endpoint": "https://minhvtt-ChatbotRAG.hf.space/",
"POST /chat": {
"description": "Chat với AI sử dụng RAG (Retrieval-Augmented Generation)",
"request": {
"method": "POST",
"content_type": "application/json",
"body": {
"message": "string (required) - User message/question",
"use_rag": "boolean (optional, default: true) - Enable RAG context retrieval",
"top_k": "integer (optional, default: 3) - Number of context documents to retrieve",
"system_message": "string (optional) - Custom system prompt",
"max_tokens": "integer (optional, default: 512) - Max response length",
"temperature": "float (optional, default: 0.7, range: 0-1) - Creativity level",
"top_p": "float (optional, default: 0.95) - Nucleus sampling",
"hf_token": "string (optional) - Hugging Face token (fallback to env)"
}
},
"response": {
"response": "string - AI generated response",
"context_used": [
{
"id": "string - Document ID",
"confidence": "float - Relevance score",
"metadata": {
"text": "string - Retrieved context"
}
}
],
"timestamp": "string - ISO 8601 timestamp"
},
"example_request": {
"message": "Dao có nguy hiểm không?",
"use_rag": True,
"top_k": 3,
"temperature": 0.7
},
"example_response": {
"response": "Dựa trên thông tin trong database, dao được phân loại là vũ khí nguy hiểm. Dao sắc có thể gây thương tích nghiêm trọng nếu không sử dụng đúng cách. Cần tuân thủ các quy định an toàn khi sử dụng.",
"context_used": [
{
"id": "68a3fc14c853d7621e8977b5",
"confidence": 0.92,
"metadata": {
"text": "Vũ khí"
}
},
{
"id": "68a3fc4cc853d7621e8977b6",
"confidence": 0.85,
"metadata": {
"text": "Con dao sắc"
}
}
],
"timestamp": "2025-10-13T10:30:45.123456"
},
"notes": [
"RAG retrieves relevant context from vector DB before generating response",
"LLM uses context to provide accurate, grounded answers",
"Requires HUGGINGFACE_TOKEN environment variable or hf_token in request"
]
},
"POST /documents": {
"description": "Add document to knowledge base for RAG",
"request": {
"method": "POST",
"content_type": "application/json",
"body": {
"text": "string (required) - Document text content",
"metadata": "object (optional) - Additional metadata (source, category, etc.)"
}
},
"response": {
"success": "boolean",
"doc_id": "string - MongoDB ObjectId",
"message": "string - Status message"
},
"example_request": {
"text": "Để tạo event mới: Click nút 'Tạo Event' ở góc trên bên phải màn hình. Điền thông tin sự kiện bao gồm tên, ngày giờ, địa điểm. Click Lưu để hoàn tất.",
"metadata": {
"source": "user_guide.pdf",
"section": "create_event",
"page": 5,
"category": "tutorial"
}
},
"example_response": {
"success": True,
"doc_id": "67a9876543210fedcba98765",
"message": "Document added successfully with ID: 67a9876543210fedcba98765"
}
},
"POST /rag/search": {
"description": "Search in knowledge base (similar to /search/text but for RAG documents)",
"request": {
"method": "POST",
"content_type": "multipart/form-data",
"body": {
"query": "string (required) - Search query",
"top_k": "integer (optional, default: 5) - Number of results",
"score_threshold": "float (optional, default: 0.5) - Minimum relevance score"
}
},
"response": [
{
"id": "string",
"confidence": "float",
"metadata": {
"text": "string",
"source": "string"
}
}
],
"example_request": {
"query": "cách tạo sự kiện mới",
"top_k": 3,
"score_threshold": 0.6
}
},
"GET /history": {
"description": "Get chat conversation history",
"request": {
"method": "GET",
"query_params": {
"limit": "integer (optional, default: 10) - Number of messages",
"skip": "integer (optional, default: 0) - Pagination offset"
}
},
"response": {
"history": [
{
"user_message": "string",
"assistant_response": "string",
"context_used": "array",
"timestamp": "string - ISO 8601"
}
],
"total": "integer - Total messages count"
},
"example_request": "GET /history?limit=5&skip=0",
"example_response": {
"history": [
{
"user_message": "Dao có nguy hiểm không?",
"assistant_response": "Dao được phân loại là vũ khí...",
"context_used": [],
"timestamp": "2025-10-13T10:30:45.123456"
}
],
"total": 15
}
},
"DELETE /documents/{doc_id}": {
"description": "Delete document from knowledge base",
"request": {
"method": "DELETE",
"path_params": {
"doc_id": "string - MongoDB ObjectId"
}
},
"response": {
"success": "boolean",
"message": "string"
}
}
}
},
"usage_examples": {
"curl_chat": "curl -X POST 'http://localhost:8000/chat' -H 'Content-Type: application/json' -d '{\"message\": \"Dao có nguy hiểm không?\", \"use_rag\": true}'",
"python_chat": """
import requests
response = requests.post(
'http://localhost:8000/chat',
json={
'message': 'Nút tạo event ở đâu?',
'use_rag': True,
'top_k': 3
}
)
print(response.json()['response'])
"""
},
"authentication": {
"embeddings_apis": "No authentication required",
"chat_api": "Requires HUGGINGFACE_TOKEN (env variable or request body)"
},
"rate_limits": {
"embeddings": "No limit",
"chat_with_llm": "Limited by Hugging Face API (free tier: ~1000 requests/hour)"
},
"error_codes": {
"400": "Bad Request - Missing required fields or invalid input",
"401": "Unauthorized - Invalid Hugging Face token",
"404": "Not Found - Document ID not found",
"500": "Internal Server Error - Server or database error"
},
"links": {
"docs": "http://localhost:8000/docs",
"redoc": "http://localhost:8000/redoc",
"openapi": "http://localhost:8000/openapi.json"
}
}
@app.post("/index", response_model=IndexResponse)
async def index_data(
id: str = Form(...),
text: str = Form(...),
image: Optional[UploadFile] = File(None)
):
"""
Index data vào vector database
Body:
- id: Document ID (event ID, post ID, etc.)
- text: Text content (tiếng Việt supported)
- image: Image file (optional)
Returns:
- success: True/False
- id: Document ID
- message: Status message
"""
try:
# Prepare embeddings
text_embedding = None
image_embedding = None
# Encode text (tiếng Việt)
if text and text.strip():
text_embedding = embedding_service.encode_text(text)
# Encode image nếu có
if image:
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Combine embeddings
if text_embedding is not None and image_embedding is not None:
# Average của text và image embeddings
combined_embedding = np.mean([text_embedding, image_embedding], axis=0)
elif text_embedding is not None:
combined_embedding = text_embedding
elif image_embedding is not None:
combined_embedding = image_embedding
else:
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image")
# Normalize
combined_embedding = combined_embedding / np.linalg.norm(combined_embedding, axis=1, keepdims=True)
# Index vào Qdrant
metadata = {
"text": text,
"has_image": image is not None,
"image_filename": image.filename if image else None
}
result = qdrant_service.index_data(
doc_id=id,
embedding=combined_embedding,
metadata=metadata
)
return IndexResponse(
success=True,
id=result["original_id"], # Trả về MongoDB ObjectId
message=f"Đã index thành công document {result['original_id']} (Qdrant UUID: {result['qdrant_id']})"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi index: {str(e)}")
@app.post("/search", response_model=List[SearchResponse])
async def search(
text: Optional[str] = Form(None),
image: Optional[UploadFile] = File(None),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None),
text_weight: float = Form(0.5),
image_weight: float = Form(0.5)
):
"""
Search similar documents bằng text và/hoặc image
Body:
- text: Query text (tiếng Việt supported)
- image: Query image (optional)
- limit: Số lượng kết quả (default: 10)
- score_threshold: Minimum confidence score (0-1)
- text_weight: Weight cho text search (default: 0.5)
- image_weight: Weight cho image search (default: 0.5)
Returns:
- List of results với id, confidence, và metadata
"""
try:
# Prepare query embeddings
text_embedding = None
image_embedding = None
# Encode text query
if text and text.strip():
text_embedding = embedding_service.encode_text(text)
# Encode image query
if image:
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Validate input
if text_embedding is None and image_embedding is None:
raise HTTPException(status_code=400, detail="Phải cung cấp ít nhất text hoặc image để search")
# Hybrid search với Qdrant
results = qdrant_service.hybrid_search(
text_embedding=text_embedding,
image_embedding=image_embedding,
text_weight=text_weight,
image_weight=image_weight,
limit=limit,
score_threshold=score_threshold,
ef=256 # High accuracy search
)
# Format response
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.post("/search/text", response_model=List[SearchResponse])
async def search_by_text(
text: str = Form(...),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None)
):
"""
Search chỉ bằng text (tiếng Việt)
Body:
- text: Query text (tiếng Việt)
- limit: Số lượng kết quả
- score_threshold: Minimum confidence score
Returns:
- List of results
"""
try:
# Encode text
text_embedding = embedding_service.encode_text(text)
# Search
results = qdrant_service.search(
query_embedding=text_embedding,
limit=limit,
score_threshold=score_threshold,
ef=256
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.post("/search/image", response_model=List[SearchResponse])
async def search_by_image(
image: UploadFile = File(...),
limit: int = Form(10),
score_threshold: Optional[float] = Form(None)
):
"""
Search chỉ bằng image
Body:
- image: Query image
- limit: Số lượng kết quả
- score_threshold: Minimum confidence score
Returns:
- List of results
"""
try:
# Encode image
image_bytes = await image.read()
pil_image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
image_embedding = embedding_service.encode_image(pil_image)
# Search
results = qdrant_service.search(
query_embedding=image_embedding,
limit=limit,
score_threshold=score_threshold,
ef=256
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi search: {str(e)}")
@app.delete("/delete/{doc_id}")
async def delete_document(doc_id: str):
"""
Delete document by ID (MongoDB ObjectId hoặc UUID)
Args:
- doc_id: Document ID to delete
Returns:
- Success message
"""
try:
qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Đã xóa document {doc_id}"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi xóa: {str(e)}")
@app.get("/document/{doc_id}")
async def get_document(doc_id: str):
"""
Get document by ID (MongoDB ObjectId hoặc UUID)
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- Document data
"""
try:
doc = qdrant_service.get_by_id(doc_id)
if doc:
return {
"success": True,
"data": doc
}
raise HTTPException(status_code=404, detail=f"Không tìm thấy document {doc_id}")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi get document: {str(e)}")
@app.get("/stats")
async def get_stats():
"""
Lấy thông tin thống kê collection
Returns:
- Collection statistics
"""
try:
info = qdrant_service.get_collection_info()
return info
except Exception as e:
raise HTTPException(status_code=500, detail=f"Lỗi khi lấy stats: {str(e)}")
# ============================================
# ChatbotRAG Endpoints
# ============================================
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""
Chat endpoint với RAG
Body:
- message: User message
- use_rag: Enable RAG retrieval (default: true)
- top_k: Number of documents to retrieve (default: 3)
- system_message: System prompt (optional)
- max_tokens: Max tokens for response (default: 512)
- temperature: Temperature for generation (default: 0.7)
- hf_token: Hugging Face token (optional, sẽ dùng env nếu không truyền)
Returns:
- response: Generated response
- context_used: Retrieved context documents
- timestamp: Response timestamp
"""
try:
# Retrieve context if RAG enabled
context_used = []
rag_stats = None
if request.use_rag:
if request.use_advanced_rag:
# Use Advanced RAG Pipeline (Best Case 2025)
hf_client = None
if request.hf_token or hf_token:
hf_client = InferenceClient(token=request.hf_token or hf_token)
documents, stats = advanced_rag.hybrid_rag_pipeline(
query=request.message,
top_k=request.top_k,
score_threshold=request.score_threshold,
use_reranking=request.use_reranking,
use_compression=request.use_compression,
use_query_expansion=request.use_query_expansion,
max_context_tokens=500,
hf_client=hf_client
)
# Convert to dict format
context_used = [
{
"id": doc.id,
"confidence": doc.confidence,
"metadata": doc.metadata
}
for doc in documents
]
rag_stats = stats
# Format context using Advanced RAG
context_text = advanced_rag.format_context_for_llm(documents)
else:
# Basic RAG (fallback)
query_embedding = embedding_service.encode_text(request.message)
results = qdrant_service.search(
query_embedding=query_embedding,
limit=request.top_k,
score_threshold=request.score_threshold
)
context_used = results
context_text = "\n\nRelevant Context:\n"
for i, doc in enumerate(context_used, 1):
doc_text = doc["metadata"].get("text", "")
if not doc_text:
doc_text = " ".join(doc["metadata"].get("texts", []))
confidence = doc["confidence"]
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
# Build system message with context
if request.use_rag and context_used:
if request.use_advanced_rag:
# Use Advanced RAG prompt builder
system_message = advanced_rag.build_rag_prompt(
query=request.message,
context=context_text,
system_message=request.system_message
)
else:
# Basic prompt
# Basic prompt with better instructions
system_message = f"""{request.system_message}
{context_text}
HƯỚNG DẪN:
- Sử dụng thông tin từ context trên để trả lời câu hỏi.
- Trả lời tự nhiên, thân thiện, không copy nguyên văn.
- Nếu tìm thấy sự kiện, hãy tóm tắt các thông tin quan trọng nhất.
"""
else:
system_message = request.system_message
# Use token from request or fallback to env
token = request.hf_token or hf_token
# Generate response
if not token:
response = f"""[LLM Response Placeholder]
Context retrieved: {len(context_used)} documents
User question: {request.message}
To enable actual LLM generation:
1. Set HUGGINGFACE_TOKEN environment variable, OR
2. Pass hf_token in request body
Example:
{{
"message": "Your question",
"hf_token": "hf_xxxxxxxxxxxxx"
}}
"""
else:
try:
client = InferenceClient(
token=hf_token,
model="openai/gpt-oss-20b"
)
# Build messages - luôn dùng cấu trúc chuẩn
# System = instructions + context, User = query
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": request.message}
]
# Generate response
response = ""
for msg in client.chat_completion(
messages,
max_tokens=request.max_tokens,
stream=True,
temperature=request.temperature,
top_p=request.top_p,
):
choices = msg.choices
if len(choices) and choices[0].delta.content:
response += choices[0].delta.content
except Exception as e:
response = f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed."
# Save to history
chat_data = {
"user_message": request.message,
"assistant_response": response,
"context_used": context_used,
"timestamp": datetime.utcnow()
}
chat_history_collection.insert_one(chat_data)
return ChatResponse(
response=response,
context_used=context_used,
timestamp=datetime.utcnow().isoformat(),
rag_stats=rag_stats
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/documents", response_model=AddDocumentResponse)
async def add_document(request: AddDocumentRequest):
"""
Add document to knowledge base
Body:
- text: Document text
- metadata: Additional metadata (optional)
Returns:
- success: True/False
- doc_id: MongoDB document ID
- message: Status message
"""
try:
# Save to MongoDB
doc_data = {
"text": request.text,
"metadata": request.metadata or {},
"created_at": datetime.utcnow()
}
result = documents_collection.insert_one(doc_data)
doc_id = str(result.inserted_id)
# Generate embedding
embedding = embedding_service.encode_text(request.text)
# Index to Qdrant
qdrant_service.index_data(
doc_id=doc_id,
embedding=embedding,
metadata={
"text": request.text,
"source": "api",
**(request.metadata or {})
}
)
return AddDocumentResponse(
success=True,
doc_id=doc_id,
message=f"Document added successfully with ID: {doc_id}"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/rag/search", response_model=List[SearchResponse])
async def rag_search(
query: str = Form(...),
top_k: int = Form(5),
score_threshold: Optional[float] = Form(0.5)
):
"""
Search in knowledge base
Body:
- query: Search query
- top_k: Number of results (default: 5)
- score_threshold: Minimum score (default: 0.5)
Returns:
- results: List of matching documents
"""
try:
# Generate query embedding
query_embedding = embedding_service.encode_text(query)
# Search in Qdrant
results = qdrant_service.search(
query_embedding=query_embedding,
limit=top_k,
score_threshold=score_threshold
)
return [
SearchResponse(
id=result["id"],
confidence=result["confidence"],
metadata=result["metadata"]
)
for result in results
]
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.get("/history")
async def get_history(limit: int = 10, skip: int = 0):
"""
Get chat history
Query params:
- limit: Number of messages to return (default: 10)
- skip: Number of messages to skip (default: 0)
Returns:
- history: List of chat messages
"""
try:
history = list(
chat_history_collection
.find({}, {"_id": 0})
.sort("timestamp", -1)
.skip(skip)
.limit(limit)
)
# Convert datetime to string
for msg in history:
if "timestamp" in msg:
msg["timestamp"] = msg["timestamp"].isoformat()
return {
"history": history,
"total": chat_history_collection.count_documents({})
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.delete("/documents/{doc_id}")
async def delete_document_from_kb(doc_id: str):
"""
Delete document from knowledge base
Args:
- doc_id: Document ID (MongoDB ObjectId)
Returns:
- success: True/False
- message: Status message
"""
try:
# Delete from MongoDB
result = documents_collection.delete_one({"_id": doc_id})
# Delete from Qdrant
if result.deleted_count > 0:
qdrant_service.delete_by_id(doc_id)
return {"success": True, "message": f"Document {doc_id} deleted from knowledge base"}
else:
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found")
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
)
|