| import os | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from langchain.embeddings import HuggingFaceBgeEmbeddings | |
| from langchain.document_loaders import PyPDFLoader | |
| model_name = "jhgan/ko-sroberta-multitask" | |
| model_kwargs = {'device': 'cpu'} | |
| encode_kwargs = {'normalize_embeddings': False} | |
| embeddings = HuggingFaceBgeEmbeddings( | |
| model_name=model_name, | |
| model_kwargs=model_kwargs, | |
| encode_kwargs=encode_kwargs | |
| ) | |
| loader = PyPDFLoader("23-24νμ΄κ²½κΈ°κ·μΉ.pdf") | |
| documents = loader.load() | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
| texts = text_splitter.split_documents(documents) | |
| vector_store = Chroma.from_documents(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/pet_cosine") | |
| print("Vector Store Created.......") |