Spaces:
Sleeping
Sleeping
| title: ChatFed Generator | |
| emoji: 🤖 | |
| colorFrom: blue | |
| colorTo: purple | |
| sdk: docker | |
| pinned: false | |
| license: mit | |
| # ChatFed Generator - MCP Server | |
| A language model-based generation service designed for ChatFed RAG (Retrieval-Augmented Generation) pipelines. This module serves as an **MCP (Model Context Protocol) server** that generates contextual responses using configurable LLM providers with support for retrieval result processing. | |
| ## MCP Endpoint | |
| The main MCP function is `generate` which provides context-aware text generation using configurable LLM providers when properly configured with API credentials. | |
| **Parameters**: | |
| - `query` (str, required): The question or query to be answered | |
| - `context` (str|list, required): Context for answering - can be plain text or list of retrieval result dictionaries | |
| **Returns**: String containing the generated answer based on the provided context and query. | |
| **Example usage**: | |
| ```python | |
| from gradio_client import Client | |
| client = Client("ENTER CONTAINER URL / SPACE ID") | |
| result = client.predict( | |
| query="What are the key findings?", | |
| context="Your relevant documents or context here...", | |
| api_name="/generate" | |
| ) | |
| print(result) | |
| ``` | |
| ## Configuration | |
| ### LLM Provider Configuration | |
| 1. Set your preferred inference provider in `params.cfg` | |
| 2. Configure the model and generation parameters | |
| 3. Set the required API key environment variable | |
| 4. [Optional] Adjust temperature and max_tokens settings | |
| 5. Run the app: | |
| ```bash | |
| docker build -t chatfed-generator . | |
| docker run -p 7860:7860 chatfed-generator | |
| ``` | |
| ## Environment Variables Required | |
| # Make sure to set the appropriate environment variables: | |
| # - OpenAI: `OPENAI_API_KEY` | |
| # - Anthropic: `ANTHROPIC_API_KEY` | |
| # - Cohere: `COHERE_API_KEY` | |
| # - HuggingFace: `HF_TOKEN` | |