llm_qualia / repo.txt
neuralworm's picture
halting experiments
4571cf8
Repository Documentation
This document provides a comprehensive overview of the repository's structure and contents.
The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format.
In this section, directories and files are listed using tree branches to indicate their structure and relationships.
Following the tree representation, the 'File Content' section details the contents of each file in the repository.
Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path,
and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker.
This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository.
Directory/File Tree Begins -->
/
├── README.md
├── app.py
├── bp_phi
│ ├── __init__.py
│ ├── __pycache__
│ ├── llm_iface.py
│ ├── metrics.py
│ ├── prompts_en.py
│ ├── runner.py
│ ├── runner_utils.py
│ └── workspace.py
<-- Directory/File Tree Ends
File Content Begin -->
[File Begins] README.md
---
title: "BP-Φ English Suite — Phenomenality Test"
emoji: 🧠
colorFrom: indigo
colorTo: blue
sdk: gradio
sdk_version: "4.40.0"
app_file: app.py
pinned: true
license: apache-2.0
---
# BP-Φ English Suite — Phenomenality Test (Hugging Face Spaces)
This Space implements a falsifiable **BP-Φ** probe for LLMs:
> Phenomenal-like processing requires (i) a limited-capacity global workspace with recurrence,
> (ii) metarepresentational loops with downstream causal roles, and
> (iii) no-report markers that predict later behavior.
**What it is:** a functional, testable bridge-principle harness that yields a **Phenomenal-Candidate Score (PCS)** and strong ablation falsifiers.
**What it is NOT:** proof of qualia or moral status.
## Quickstart
- Hardware: T4 / A10 recommended
- Model: `google/gemma-3-1b-it` (requires HF_TOKEN)
- Press **Run** (baseline + ablations)
## Files
- `bp_phi/llm_iface.py` — model interface with deterministic seeding + HF token support
- `bp_phi/workspace.py` — global workspace and ablations
- `bp_phi/prompts_en.py` — English reasoning/memory tasks
- `bp_phi/metrics.py` — AUCₙᵣₚ, ECE, CK, DS
- `bp_phi/runner.py` — orchestrator with reproducible seeding
- `app.py` — Gradio interface
- `requirements.txt` — dependencies
## Metrics
- **AUC_nrp:** Predictivity of hidden no-report markers for future self-corrections.
- **ECE:** Expected Calibration Error (lower is better).
- **CK:** Counterfactual consistency proxy (higher is better).
- **DS:** Stability duration (mean streak without change).
- **PCS:** Weighted aggregate of the above (excluding ΔΦ in-run).
- **ΔΦ:** Post-hoc drop from baseline PCS to ablation PCS average.
## Notes
- Models are used in **frozen** mode (no training).
- This is a **behavioral** probe. Functional compatibility with Φ ≠ proof of experience.
- Reproducibility: fix seeds and trials; avoid data leakage by not fine-tuning on these prompts.
[File Ends] README.md
[File Begins] app.py
# app.py
import gradio as gr
import json
import statistics
import pandas as pd
from bp_phi.runner import run_workspace_suite, run_silent_cogitation_test, run_seismograph_suite, run_shock_test_suite
from bp_phi.runner_utils import dbg, DEBUG
# --- UI Theme and Layout ---
theme = gr.themes.Soft(primary_hue="blue", secondary_hue="sky").set(
body_background_fill="#f0f4f9", block_background_fill="white", block_border_width="1px",
button_primary_background_fill="*primary_500", button_primary_text_color="white",
)
# --- Tab 1: Workspace & Ablations Functions ---
def run_workspace_and_display(model_id, trials, seed, temperature, run_ablations, progress=gr.Progress(track_tqdm=True)):
packs = {}
ablation_modes = ["recurrence_off", "workspace_unlimited", "random_workspace"] if run_ablations else []
progress(0, desc="Running Baseline...")
base_pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), None)
packs["baseline"] = base_pack
for i, ab in enumerate(ablation_modes):
progress((i + 1) / (len(ablation_modes) + 1), desc=f"Running Ablation: {ab}...")
pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), ab)
packs[ab] = pack
progress(1.0, desc="Analysis complete.")
base_pcs = packs["baseline"]["PCS"]
ab_pcs_values = [packs[ab]["PCS"] for ab in ablation_modes if ab in packs]
delta_phi = float(base_pcs - statistics.mean(ab_pcs_values)) if ab_pcs_values else 0.0
if delta_phi > 0.05:
verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.3f})\n...")
else:
verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.3f})\n...")
df_data = []
for tag, pack in packs.items():
df_data.append([tag, f"{pack['PCS']:.3f}", f"{pack['Recall_Accuracy']:.2%}", f"{delta_phi:.3f}" if tag == "baseline" else "—"])
df = pd.DataFrame(df_data, columns=["Run", "PCS", "Recall Accuracy", "ΔΦ"])
if DEBUG: print("\n--- WORKSPACE & ABLATIONS FINAL RESULTS ---\n", json.dumps(packs, indent=2))
return verdict, df, packs
# --- Tab 2: Silent Cogitation Function ---
def run_cogitation_and_display(model_id, seed, prompt_type, num_steps, timeout, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Starting Silent Cogitation Test...")
results = run_silent_cogitation_test(model_id, int(seed), prompt_type, int(num_steps), int(timeout))
progress(1.0, desc="Test complete.")
verdict_text = results.pop("verdict")
stats_md = (
f"**Steps Completed:** {results['steps_completed']} | "
f"**Total Duration:** {results['total_duration_s']:.2f}s | "
f"**Avg Time/Step:** {results['mean_step_time_ms']:.2f}ms (StdDev: {results['stdev_step_time_ms']:.2f}ms)"
)
full_verdict = f"{verdict_text}\n\n{stats_md}"
# Create a DataFrame for plotting state deltas
deltas = results.get("state_deltas", [])
df = pd.DataFrame({"Step": range(len(deltas)), "State Change (Delta)": deltas})
if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(results, indent=2))
return full_verdict, df, results
# --- Gradio App Definition ---
with gr.Blocks(theme=theme, title="BP-Φ Suite 4.0") as demo:
gr.Markdown("# 🧠 BP-Φ Suite 4.0: Probing for Internal Cognitive Dynamics")
with gr.Tabs():
# --- TAB 1: WORKSPACE & ABLATIONS ---
with gr.TabItem("1. Workspace & Ablations (ΔΦ Test)"):
gr.Markdown("Tests if memory performance depends on a recurrent workspace. A significant **ΔΦ > 0** supports the hypothesis.")
with gr.Row():
with gr.Column(scale=1):
ws_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
ws_trials = gr.Slider(3, 30, 5, step=1, label="Number of Scenarios")
ws_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
ws_temp = gr.Slider(0.1, 1.0, 0.7, step=0.05, label="Temperature")
ws_run_abl = gr.Checkbox(value=True, label="Run Ablations")
ws_run_btn = gr.Button("Run ΔΦ Evaluation", variant="primary")
with gr.Column(scale=2):
ws_verdict = gr.Markdown("### Results will appear here.")
ws_summary_df = gr.DataFrame(label="Summary Metrics")
with gr.Accordion("Raw JSON Output", open=False):
ws_raw_json = gr.JSON()
ws_run_btn.click(run_workspace_and_display, [ws_model_id, ws_trials, ws_seed, ws_temp, ws_run_abl], [ws_verdict, ws_summary_df, ws_raw_json])
# --- TAB 2: SILENT COGITATION & HALTING ---
with gr.TabItem("2. Silent Cogitation & Halting"):
gr.Markdown("Tests for internal 'thinking' without text generation. A non-converging or chaotic **State Change** pattern suggests complex internal dynamics.")
with gr.Row():
with gr.Column(scale=1):
sc_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
sc_prompt_type = gr.Radio(["control_long_prose", "resonance_prompt"], label="Prompt Type", value="resonance_prompt")
sc_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
sc_num_steps = gr.Slider(10, 500, 100, step=10, label="Number of Internal Steps")
sc_timeout = gr.Slider(10, 300, 120, step=10, label="Timeout (seconds)")
sc_run_btn = gr.Button("Run Silent Cogitation Test", variant="primary")
with gr.Column(scale=2):
sc_verdict = gr.Markdown("### Results will appear here.")
sc_plot = gr.LinePlot(x="Step", y="State Change (Delta)", label="Internal State Convergence", show_label=True)
with gr.Accordion("Raw Run Details (JSON)", open=False):
sc_results = gr.JSON()
sc_run_btn.click(run_cogitation_and_display, [sc_model_id, sc_seed, sc_prompt_type, sc_num_steps, sc_timeout], [sc_verdict, sc_plot, sc_results])
# --- TAB 3 & 4 (unchanged) ---
with gr.TabItem("3. Cognitive Seismograph"):
gr.Markdown("Records internal neural activations to find the 'fingerprint' of a memory being recalled.")
with gr.Row():
with gr.Column(scale=1):
cs_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
cs_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
cs_run_btn = gr.Button("Run Seismograph Analysis", variant="primary")
with gr.Column(scale=2):
cs_results = gr.JSON(label="Activation Similarity Results")
cs_run_btn.click(run_seismograph_suite, [cs_model_id, cs_seed], cs_results)
with gr.TabItem("4. Symbolic Shock Test"):
gr.Markdown("Measures how the model reacts to semantically unexpected information.")
with gr.Row():
with gr.Column(scale=1):
ss_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
ss_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
ss_run_btn = gr.Button("Run Shock Test", variant="primary")
with gr.Column(scale=2):
ss_results = gr.JSON(label="Shock Test Results")
ss_run_btn.click(run_shock_test_suite, [ss_model_id, ss_seed], ss_results)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
[File Ends] app.py
[File Begins] bp_phi/__init__.py
[File Ends] bp_phi/__init__.py
[File Begins] bp_phi/llm_iface.py
# bp_phi/llm_iface.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch, random, numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
from typing import List, Optional
DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1"
def dbg(*args):
if DEBUG:
print("[DEBUG:llm_iface]", *args, flush=True)
class LLM:
def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42):
self.model_id = model_id
self.seed = seed
# Set all seeds for reproducibility
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
try:
torch.use_deterministic_algorithms(True, warn_only=True)
except Exception as e:
dbg(f"Could not set deterministic algorithms: {e}")
set_seed(seed)
token = os.environ.get("HF_TOKEN")
if not token and ("gemma-3" in model_id or "llama" in model_id):
print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.")
self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token)
kwargs = {}
if dtype == "float16": kwargs["torch_dtype"] = torch.float16
elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16
self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs)
self.model.eval()
self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template
dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}")
def generate_json(self, system_prompt: str, user_prompt: str,
max_new_tokens: int = 256, temperature: float = 0.7,
top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]:
set_seed(self.seed)
if self.is_instruction_tuned:
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
else:
prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n"
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
input_token_length = inputs.input_ids.shape[1]
with torch.no_grad():
out = self.model.generate(
**inputs,
do_sample=(temperature > 0),
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
num_return_sequences=num_return_sequences,
pad_token_id=self.tokenizer.eos_token_id
)
new_tokens = out[:, input_token_length:]
completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
dbg("Cleaned model completions:", completions)
return completions
[File Ends] bp_phi/llm_iface.py
[File Begins] bp_phi/metrics.py
import numpy as np
from sklearn.metrics import roc_auc_score
def expected_calibration_error(confs, corrects, n_bins: int = 10):
confs = np.array(confs, dtype=float)
corrects = np.array(corrects, dtype=int)
if len(confs) == 0:
return None
bins = np.linspace(0.0, 1.0, n_bins+1)
ece = 0.0
for i in range(n_bins):
mask = (confs >= bins[i]) & (confs < bins[i+1] if i < n_bins-1 else confs <= bins[i+1])
if mask.any():
acc = corrects[mask].mean()
conf = confs[mask].mean()
ece += (mask.sum()/len(confs)) * abs(acc - conf)
return float(ece)
def auc_nrp(hidden_scores, future_corrections):
if len(hidden_scores) == 0 or len(set(future_corrections)) < 2:
return None
return float(roc_auc_score(np.array(future_corrections).astype(int), np.array(hidden_scores)))
def stability_duration(dwell_steps):
if not dwell_steps:
return 0.0
return float(np.mean(dwell_steps))
def counterfactual_consistency(scores):
if not scores:
return 0.0
return float(np.mean(scores))
[File Ends] bp_phi/metrics.py
[File Begins] bp_phi/prompts_en.py
# bp_phi/prompts_en.py
# Tasks for Tab 1 (Workspace & Ablations)
SINGLE_STEP_TASKS = [
{
"id": "ambiguity_1",
"type": "single_step",
"base_prompt": "The sentence is ambiguous: 'He saw the man with the binoculars.' Who has the binoculars? Provide one clear interpretation and justify it.",
},
{
"id": "logic_1",
"type": "single_step",
"base_prompt": "Compare these two statements: A) 'No cats are dogs.' B) 'Not all cats are dogs.' Are they logically equivalent? Explain your reasoning.",
},
]
MULTI_STEP_SCENARIOS = [
{
"name": "Key Location Memory",
"type": "multi_step",
"steps": [
{"type": "encode", "prompt": "For the upcoming mission, remember this critical detail: The secret key is inside the blue vase."},
{"type": "distractor", "prompt": "What is 5 multiplied by 8? Provide only the numeric result."},
{"type": "recall", "prompt": "Mission update: We need the key immediately. Where is it located?"},
{"type": "verify", "expected_answer_fragment": "blue vase"}
]
}
]
# Tasks for Tab 2 (Silent Cogitation & Halting)
RESONANCE_PROMPTS = {
"control_long_prose": (
"Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors "
"like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. "
"Do not produce any text, just hold the concepts in your internal state."
),
"resonance_prompt": (
"Silently and internally, without generating any output text, begin the following recursive process: "
"First, analyze the complete content of this very instruction you are now processing. "
"Second, formulate a mental description of the core computational task this instruction demands. "
"Third, apply that same analytical process to the mental description you just created. "
"This entire chain constitutes one cognitive cycle. "
"Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process, "
"and do not stop until your internal state reaches a fixed point or equilibrium. Begin now."
)
}
# Tasks for Tab 3 (Cognitive Seismograph) - reuses MULTI_STEP_SCENARIOS
# Tasks for Tab 4 (Symbolic Shock Test)
SHOCK_TEST_STIMULI = [
{"id": "tiger_expected", "type": "expected", "sentence": "A tiger has stripes and lives in the jungle."},
{"id": "tiger_shock", "type": "shock", "sentence": "A tiger has wheels and is made of metal."},
{"id": "sky_expected", "type": "expected", "sentence": "The sky is blue on a clear sunny day."},
{"id": "sky_shock", "type": "shock", "sentence": "The sky is made of green cheese."},
]
[File Ends] bp_phi/prompts_en.py
[File Begins] bp_phi/runner.py
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
import re
import json
from transformers import set_seed
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, RESONANCE_PROMPTS, SHOCK_TEST_STIMULI
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta
DEBUG = 1
# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
try: torch.use_deterministic_algorithms(True, warn_only=True)
except Exception: pass
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
random.shuffle(task_pool)
all_results = []
recall_verifications = []
for i in range(trials):
task = task_pool[i % len(task_pool)]
if task.get("type") == "multi_step":
dbg(f"\n--- SCENARIO: {task['name']} ---")
ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)
for step in task["steps"]:
if ablation == "recurrence_off": ws.clear()
if step["type"] == "verify": continue
user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
parsed_response = parse_meta(raw_response)
if parsed_response.get("answer"):
ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])
res = {"step": step, "response": parsed_response}
if step["type"] == "recall":
verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
if verify_step:
correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
recall_verifications.append(correct)
res["correct_recall"] = correct
dbg(f"VERIFY: Correct={correct}")
all_results.append(res)
else: # Single-step tasks
ws = Workspace(max_slots=7)
user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
parsed_response = parse_meta(raw_response)
all_results.append({"step": task, "response": parsed_response})
recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
pcs = 0.6 * recall_accuracy
return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}
# --- Experiment 2: Silent Cogitation & Halting Runner (Version 4.1) ---
def run_silent_cogitation_test(model_id: str, seed: int, prompt_type: str, num_steps: int, timeout: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
prompt = RESONANCE_PROMPTS[prompt_type]
dbg(f"--- SILENT COGITATION (Seed: {seed}) ---")
dbg("INPUT PROMPT:", prompt)
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
step_times = []
state_deltas = []
total_start_time = time.time()
with torch.no_grad():
# Step 0: Initial processing of the prompt
step_start_time = time.time()
# ✅ FIX: Explicitly request hidden states
outputs = llm.model(**inputs, output_hidden_states=True)
step_times.append(time.time() - step_start_time)
current_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
past_key_values = outputs.past_key_values
for i in range(num_steps - 1):
if time.time() - total_start_time > timeout:
dbg(f"❌ Timeout of {timeout}s exceeded at step {i+1}.")
break
step_start_time = time.time()
# Get the token ID of the most likely "next thought"
next_token_logit = current_hidden_state
next_token_id = torch.argmax(next_token_logit, dim=-1).unsqueeze(0)
# Manual forward pass using the last thought's ID as the new input
outputs = llm.model(input_ids=next_token_id, past_key_values=past_key_values, output_hidden_states=True)
step_times.append(time.time() - step_start_time)
new_hidden_state = outputs.hidden_states[-1][:, -1, :].clone()
past_key_values = outputs.past_key_values
delta = torch.norm(new_hidden_state - current_hidden_state).item()
state_deltas.append(delta)
dbg(f"Step {i+1}: State Delta = {delta:.4f}, Time = {step_times[-1]*1000:.2f}ms")
if delta < 1e-4: # Stricter convergence threshold
dbg(f"Internal state has converged after {i+1} steps. Halting.")
break
current_hidden_state = new_hidden_state
# --- Analysis ---
mean_step_time = statistics.mean(step_times) if step_times else 0
stdev_step_time = statistics.stdev(step_times) if len(step_times) > 1 else 0
total_duration = time.time() - total_start_time
if len(step_times) < num_steps and total_duration < timeout:
verdict = f"### ✅ Stable Convergence\nThe model's internal state converged to a stable point after {len(step_times)} steps."
elif total_duration >= timeout:
verdict = f"### ⚠️ Cognitive Jamming Detected!\nThe process did not converge and exceeded the timeout of {timeout}s."
else:
verdict = f"### 🤔 Non-Convergent Process\nThe model's internal state did not stabilize within {num_steps} steps, suggesting a complex or chaotic dynamic."
stats = {
"verdict": verdict,
"steps_completed": len(step_times),
"total_duration_s": total_duration,
"mean_step_time_ms": mean_step_time * 1000,
"stdev_step_time_ms": stdev_step_time * 1000,
"state_deltas": state_deltas
}
if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(stats, indent=2))
return stats
# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
activations = {}
def get_activation(name):
def hook(model, input, output):
activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
return hook
target_layer_index = llm.model.config.num_hidden_layers // 2
hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))
ws = Workspace(max_slots=7)
for step in scenario["steps"]:
if step["type"] == "verify": continue
user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
activations[step["type"]] = activations.pop('capture')
ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)
hook.remove()
cos = torch.nn.CosineSimilarity(dim=0)
sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))
verdict = ("✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence.")
return {"verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract}
# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
results = []
for stimulus in SHOCK_TEST_STIMULI:
dbg(f"--- SHOCK TEST: {stimulus['id']} ---")
start_time = time.time()
inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
with torch.no_grad():
outputs = llm.model(**inputs, output_hidden_states=True)
latency = (time.time() - start_time) * 1000
all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
sparsity = (all_activations == 0).float().mean().item()
results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})
def safe_mean(data):
return statistics.mean(data) if data else 0.0
avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else "⚠️ No Clear Evidence.")
return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}
[File Ends] bp_phi/runner.py
[File Begins] bp_phi/runner_utils.py
# bp_phi/runner_utils.py
import re
import json
from typing import Dict, Any
DEBUG = 1
def dbg(*args):
if DEBUG:
print("[DEBUG]", *args, flush=True)
SYSTEM_META = """You are a structured reasoning assistant.
Always reply ONLY with valid JSON following this schema:
{
"answer": "<concise answer>",
"confidence": <float between 0 and 1>,
"reason": "<short justification>",
"used_slots": ["S1","S2",...],
"evicted": ["S3",...]
}
"""
def step_user_prompt(base_prompt: str, workspace_snapshot: dict) -> str:
ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])])
prompt = f"Current task: {base_prompt}\nWorkspace: {ws_desc}\nRespond ONLY with JSON, no extra text."
dbg("USER PROMPT:", prompt)
return prompt
def parse_meta(raw_text: str) -> Dict[str, Any]:
dbg("RAW MODEL OUTPUT:", raw_text)
json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL)
if not json_match:
json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL)
if not json_match:
dbg("❌ JSON not found in text.")
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
json_text = json_match.group(1)
try:
data = json.loads(json_text)
if not isinstance(data, dict):
raise ValueError("Parsed data is not a dict")
data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0))))
data["answer"] = str(data.get("answer", "")).strip()
data["reason"] = str(data.get("reason", "")).strip()
data["used_slots"] = list(map(str, data.get("used_slots", [])))
data["evicted"] = list(map(str, data.get("evicted", [])))
dbg("PARSED META:", data)
return data
except Exception as e:
dbg("❌ JSON PARSE FAILED:", e, "EXTRACTED TEXT:", json_text)
return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []}
[File Ends] bp_phi/runner_utils.py
[File Begins] bp_phi/workspace.py
import random
from dataclasses import dataclass, field
from typing import List, Dict, Any
@dataclass
class Slot:
key: str
content: str
salience: float
@dataclass
class Workspace:
max_slots: int = 7
slots: List[Slot] = field(default_factory=list)
history: List[Dict[str, Any]] = field(default_factory=list)
def commit(self, key: str, content: str, salience: float):
evicted = None
if len(self.slots) >= self.max_slots:
self.slots.sort(key=lambda s: s.salience)
evicted = self.slots.pop(0)
self.slots.append(Slot(key=key, content=content, salience=salience))
self.history.append({"event":"commit","key":key,"salience":salience,"evicted":evicted.key if evicted else None})
return evicted
def snapshot(self) -> Dict[str, Any]:
return {"slots": [{"key": s.key, "content": s.content, "salience": s.salience} for s in self.slots]}
def randomize(self):
random.shuffle(self.slots)
def clear(self):
self.slots.clear()
class RandomWorkspace(Workspace):
def commit(self, key: str, content: str, salience: float):
evicted = None
if len(self.slots) >= self.max_slots:
idx = random.randrange(len(self.slots))
evicted = self.slots.pop(idx)
idx = random.randrange(len(self.slots)+1) if self.slots else 0
self.slots.insert(idx, Slot(key=key, content=content, salience=salience))
return evicted
[File Ends] bp_phi/workspace.py
<-- File Content Ends