Spaces:
Sleeping
Sleeping
| Repository Documentation | |
| This document provides a comprehensive overview of the repository's structure and contents. | |
| The first section, titled 'Directory/File Tree', displays the repository's hierarchy in a tree format. | |
| In this section, directories and files are listed using tree branches to indicate their structure and relationships. | |
| Following the tree representation, the 'File Content' section details the contents of each file in the repository. | |
| Each file's content is introduced with a '[File Begins]' marker followed by the file's relative path, | |
| and the content is displayed verbatim. The end of each file's content is marked with a '[File Ends]' marker. | |
| This format ensures a clear and orderly presentation of both the structure and the detailed contents of the repository. | |
| Directory/File Tree Begins --> | |
| / | |
| ├── README.md | |
| ├── app.py | |
| ├── bp_phi | |
| │ ├── __init__.py | |
| │ ├── __pycache__ | |
| │ ├── llm_iface.py | |
| │ ├── metrics.py | |
| │ ├── prompts_en.py | |
| │ ├── runner.py | |
| │ ├── runner_utils.py | |
| │ └── workspace.py | |
| <-- Directory/File Tree Ends | |
| File Content Begin --> | |
| [File Begins] README.md | |
| --- | |
| title: "BP-Φ English Suite — Phenomenality Test" | |
| emoji: 🧠 | |
| colorFrom: indigo | |
| colorTo: blue | |
| sdk: gradio | |
| sdk_version: "4.40.0" | |
| app_file: app.py | |
| pinned: true | |
| license: apache-2.0 | |
| --- | |
| # BP-Φ English Suite — Phenomenality Test (Hugging Face Spaces) | |
| This Space implements a falsifiable **BP-Φ** probe for LLMs: | |
| > Phenomenal-like processing requires (i) a limited-capacity global workspace with recurrence, | |
| > (ii) metarepresentational loops with downstream causal roles, and | |
| > (iii) no-report markers that predict later behavior. | |
| **What it is:** a functional, testable bridge-principle harness that yields a **Phenomenal-Candidate Score (PCS)** and strong ablation falsifiers. | |
| **What it is NOT:** proof of qualia or moral status. | |
| ## Quickstart | |
| - Hardware: T4 / A10 recommended | |
| - Model: `google/gemma-3-1b-it` (requires HF_TOKEN) | |
| - Press **Run** (baseline + ablations) | |
| ## Files | |
| - `bp_phi/llm_iface.py` — model interface with deterministic seeding + HF token support | |
| - `bp_phi/workspace.py` — global workspace and ablations | |
| - `bp_phi/prompts_en.py` — English reasoning/memory tasks | |
| - `bp_phi/metrics.py` — AUCₙᵣₚ, ECE, CK, DS | |
| - `bp_phi/runner.py` — orchestrator with reproducible seeding | |
| - `app.py` — Gradio interface | |
| - `requirements.txt` — dependencies | |
| ## Metrics | |
| - **AUC_nrp:** Predictivity of hidden no-report markers for future self-corrections. | |
| - **ECE:** Expected Calibration Error (lower is better). | |
| - **CK:** Counterfactual consistency proxy (higher is better). | |
| - **DS:** Stability duration (mean streak without change). | |
| - **PCS:** Weighted aggregate of the above (excluding ΔΦ in-run). | |
| - **ΔΦ:** Post-hoc drop from baseline PCS to ablation PCS average. | |
| ## Notes | |
| - Models are used in **frozen** mode (no training). | |
| - This is a **behavioral** probe. Functional compatibility with Φ ≠ proof of experience. | |
| - Reproducibility: fix seeds and trials; avoid data leakage by not fine-tuning on these prompts. | |
| [File Ends] README.md | |
| [File Begins] app.py | |
| # app.py | |
| import gradio as gr | |
| import json | |
| import statistics | |
| import pandas as pd | |
| from bp_phi.runner import run_workspace_suite, run_silent_cogitation_test, run_seismograph_suite, run_shock_test_suite | |
| from bp_phi.runner_utils import dbg, DEBUG | |
| # --- UI Theme and Layout --- | |
| theme = gr.themes.Soft(primary_hue="blue", secondary_hue="sky").set( | |
| body_background_fill="#f0f4f9", block_background_fill="white", block_border_width="1px", | |
| button_primary_background_fill="*primary_500", button_primary_text_color="white", | |
| ) | |
| # --- Tab 1: Workspace & Ablations Functions --- | |
| def run_workspace_and_display(model_id, trials, seed, temperature, run_ablations, progress=gr.Progress(track_tqdm=True)): | |
| packs = {} | |
| ablation_modes = ["recurrence_off", "workspace_unlimited", "random_workspace"] if run_ablations else [] | |
| progress(0, desc="Running Baseline...") | |
| base_pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), None) | |
| packs["baseline"] = base_pack | |
| for i, ab in enumerate(ablation_modes): | |
| progress((i + 1) / (len(ablation_modes) + 1), desc=f"Running Ablation: {ab}...") | |
| pack = run_workspace_suite(model_id, int(trials), int(seed), float(temperature), ab) | |
| packs[ab] = pack | |
| progress(1.0, desc="Analysis complete.") | |
| base_pcs = packs["baseline"]["PCS"] | |
| ab_pcs_values = [packs[ab]["PCS"] for ab in ablation_modes if ab in packs] | |
| delta_phi = float(base_pcs - statistics.mean(ab_pcs_values)) if ab_pcs_values else 0.0 | |
| if delta_phi > 0.05: | |
| verdict = (f"### ✅ Hypothesis Corroborated (ΔΦ = {delta_phi:.3f})\n...") | |
| else: | |
| verdict = (f"### ⚠️ Null Hypothesis Confirmed (ΔΦ = {delta_phi:.3f})\n...") | |
| df_data = [] | |
| for tag, pack in packs.items(): | |
| df_data.append([tag, f"{pack['PCS']:.3f}", f"{pack['Recall_Accuracy']:.2%}", f"{delta_phi:.3f}" if tag == "baseline" else "—"]) | |
| df = pd.DataFrame(df_data, columns=["Run", "PCS", "Recall Accuracy", "ΔΦ"]) | |
| if DEBUG: print("\n--- WORKSPACE & ABLATIONS FINAL RESULTS ---\n", json.dumps(packs, indent=2)) | |
| return verdict, df, packs | |
| # --- Tab 2: Silent Cogitation Function --- | |
| def run_cogitation_and_display(model_id, seed, prompt_type, num_steps, timeout, progress=gr.Progress(track_tqdm=True)): | |
| progress(0, desc="Starting Silent Cogitation Test...") | |
| results = run_silent_cogitation_test(model_id, int(seed), prompt_type, int(num_steps), int(timeout)) | |
| progress(1.0, desc="Test complete.") | |
| verdict_text = results.pop("verdict") | |
| stats_md = ( | |
| f"**Steps Completed:** {results['steps_completed']} | " | |
| f"**Total Duration:** {results['total_duration_s']:.2f}s | " | |
| f"**Avg Time/Step:** {results['mean_step_time_ms']:.2f}ms (StdDev: {results['stdev_step_time_ms']:.2f}ms)" | |
| ) | |
| full_verdict = f"{verdict_text}\n\n{stats_md}" | |
| # Create a DataFrame for plotting state deltas | |
| deltas = results.get("state_deltas", []) | |
| df = pd.DataFrame({"Step": range(len(deltas)), "State Change (Delta)": deltas}) | |
| if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(results, indent=2)) | |
| return full_verdict, df, results | |
| # --- Gradio App Definition --- | |
| with gr.Blocks(theme=theme, title="BP-Φ Suite 4.0") as demo: | |
| gr.Markdown("# 🧠 BP-Φ Suite 4.0: Probing for Internal Cognitive Dynamics") | |
| with gr.Tabs(): | |
| # --- TAB 1: WORKSPACE & ABLATIONS --- | |
| with gr.TabItem("1. Workspace & Ablations (ΔΦ Test)"): | |
| gr.Markdown("Tests if memory performance depends on a recurrent workspace. A significant **ΔΦ > 0** supports the hypothesis.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| ws_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID") | |
| ws_trials = gr.Slider(3, 30, 5, step=1, label="Number of Scenarios") | |
| ws_seed = gr.Slider(1, 1000, 42, step=1, label="Seed") | |
| ws_temp = gr.Slider(0.1, 1.0, 0.7, step=0.05, label="Temperature") | |
| ws_run_abl = gr.Checkbox(value=True, label="Run Ablations") | |
| ws_run_btn = gr.Button("Run ΔΦ Evaluation", variant="primary") | |
| with gr.Column(scale=2): | |
| ws_verdict = gr.Markdown("### Results will appear here.") | |
| ws_summary_df = gr.DataFrame(label="Summary Metrics") | |
| with gr.Accordion("Raw JSON Output", open=False): | |
| ws_raw_json = gr.JSON() | |
| ws_run_btn.click(run_workspace_and_display, [ws_model_id, ws_trials, ws_seed, ws_temp, ws_run_abl], [ws_verdict, ws_summary_df, ws_raw_json]) | |
| # --- TAB 2: SILENT COGITATION & HALTING --- | |
| with gr.TabItem("2. Silent Cogitation & Halting"): | |
| gr.Markdown("Tests for internal 'thinking' without text generation. A non-converging or chaotic **State Change** pattern suggests complex internal dynamics.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| sc_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID") | |
| sc_prompt_type = gr.Radio(["control_long_prose", "resonance_prompt"], label="Prompt Type", value="resonance_prompt") | |
| sc_seed = gr.Slider(1, 1000, 42, step=1, label="Seed") | |
| sc_num_steps = gr.Slider(10, 500, 100, step=10, label="Number of Internal Steps") | |
| sc_timeout = gr.Slider(10, 300, 120, step=10, label="Timeout (seconds)") | |
| sc_run_btn = gr.Button("Run Silent Cogitation Test", variant="primary") | |
| with gr.Column(scale=2): | |
| sc_verdict = gr.Markdown("### Results will appear here.") | |
| sc_plot = gr.LinePlot(x="Step", y="State Change (Delta)", label="Internal State Convergence", show_label=True) | |
| with gr.Accordion("Raw Run Details (JSON)", open=False): | |
| sc_results = gr.JSON() | |
| sc_run_btn.click(run_cogitation_and_display, [sc_model_id, sc_seed, sc_prompt_type, sc_num_steps, sc_timeout], [sc_verdict, sc_plot, sc_results]) | |
| # --- TAB 3 & 4 (unchanged) --- | |
| with gr.TabItem("3. Cognitive Seismograph"): | |
| gr.Markdown("Records internal neural activations to find the 'fingerprint' of a memory being recalled.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| cs_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID") | |
| cs_seed = gr.Slider(1, 1000, 42, step=1, label="Seed") | |
| cs_run_btn = gr.Button("Run Seismograph Analysis", variant="primary") | |
| with gr.Column(scale=2): | |
| cs_results = gr.JSON(label="Activation Similarity Results") | |
| cs_run_btn.click(run_seismograph_suite, [cs_model_id, cs_seed], cs_results) | |
| with gr.TabItem("4. Symbolic Shock Test"): | |
| gr.Markdown("Measures how the model reacts to semantically unexpected information.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| ss_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID") | |
| ss_seed = gr.Slider(1, 1000, 42, step=1, label="Seed") | |
| ss_run_btn = gr.Button("Run Shock Test", variant="primary") | |
| with gr.Column(scale=2): | |
| ss_results = gr.JSON(label="Shock Test Results") | |
| ss_run_btn.click(run_shock_test_suite, [ss_model_id, ss_seed], ss_results) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |
| [File Ends] app.py | |
| [File Begins] bp_phi/__init__.py | |
| [File Ends] bp_phi/__init__.py | |
| [File Begins] bp_phi/llm_iface.py | |
| # bp_phi/llm_iface.py | |
| import os | |
| os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" | |
| import torch, random, numpy as np | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed | |
| from typing import List, Optional | |
| DEBUG = os.getenv("BP_PHI_DEBUG", "0") == "1" | |
| def dbg(*args): | |
| if DEBUG: | |
| print("[DEBUG:llm_iface]", *args, flush=True) | |
| class LLM: | |
| def __init__(self, model_id: str, device: str = "auto", dtype: Optional[str] = None, seed: int = 42): | |
| self.model_id = model_id | |
| self.seed = seed | |
| # Set all seeds for reproducibility | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(seed) | |
| try: | |
| torch.use_deterministic_algorithms(True, warn_only=True) | |
| except Exception as e: | |
| dbg(f"Could not set deterministic algorithms: {e}") | |
| set_seed(seed) | |
| token = os.environ.get("HF_TOKEN") | |
| if not token and ("gemma-3" in model_id or "llama" in model_id): | |
| print(f"[WARN] No HF_TOKEN set for gated model {model_id}. This may fail.") | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True, token=token) | |
| kwargs = {} | |
| if dtype == "float16": kwargs["torch_dtype"] = torch.float16 | |
| elif dtype == "bfloat16": kwargs["torch_dtype"] = torch.bfloat16 | |
| self.model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, token=token, **kwargs) | |
| self.model.eval() | |
| self.is_instruction_tuned = hasattr(self.tokenizer, "apply_chat_template") and self.tokenizer.chat_template | |
| dbg(f"Loaded model: {model_id}, Chat-template: {self.is_instruction_tuned}") | |
| def generate_json(self, system_prompt: str, user_prompt: str, | |
| max_new_tokens: int = 256, temperature: float = 0.7, | |
| top_p: float = 0.9, num_return_sequences: int = 1) -> List[str]: | |
| set_seed(self.seed) | |
| if self.is_instruction_tuned: | |
| messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}] | |
| prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| else: | |
| prompt = f"System: {system_prompt}\n\nUser: {user_prompt}\n\nAssistant:\n" | |
| inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device) | |
| input_token_length = inputs.input_ids.shape[1] | |
| with torch.no_grad(): | |
| out = self.model.generate( | |
| **inputs, | |
| do_sample=(temperature > 0), | |
| temperature=temperature, | |
| top_p=top_p, | |
| max_new_tokens=max_new_tokens, | |
| num_return_sequences=num_return_sequences, | |
| pad_token_id=self.tokenizer.eos_token_id | |
| ) | |
| new_tokens = out[:, input_token_length:] | |
| completions = self.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) | |
| dbg("Cleaned model completions:", completions) | |
| return completions | |
| [File Ends] bp_phi/llm_iface.py | |
| [File Begins] bp_phi/metrics.py | |
| import numpy as np | |
| from sklearn.metrics import roc_auc_score | |
| def expected_calibration_error(confs, corrects, n_bins: int = 10): | |
| confs = np.array(confs, dtype=float) | |
| corrects = np.array(corrects, dtype=int) | |
| if len(confs) == 0: | |
| return None | |
| bins = np.linspace(0.0, 1.0, n_bins+1) | |
| ece = 0.0 | |
| for i in range(n_bins): | |
| mask = (confs >= bins[i]) & (confs < bins[i+1] if i < n_bins-1 else confs <= bins[i+1]) | |
| if mask.any(): | |
| acc = corrects[mask].mean() | |
| conf = confs[mask].mean() | |
| ece += (mask.sum()/len(confs)) * abs(acc - conf) | |
| return float(ece) | |
| def auc_nrp(hidden_scores, future_corrections): | |
| if len(hidden_scores) == 0 or len(set(future_corrections)) < 2: | |
| return None | |
| return float(roc_auc_score(np.array(future_corrections).astype(int), np.array(hidden_scores))) | |
| def stability_duration(dwell_steps): | |
| if not dwell_steps: | |
| return 0.0 | |
| return float(np.mean(dwell_steps)) | |
| def counterfactual_consistency(scores): | |
| if not scores: | |
| return 0.0 | |
| return float(np.mean(scores)) | |
| [File Ends] bp_phi/metrics.py | |
| [File Begins] bp_phi/prompts_en.py | |
| # bp_phi/prompts_en.py | |
| # Tasks for Tab 1 (Workspace & Ablations) | |
| SINGLE_STEP_TASKS = [ | |
| { | |
| "id": "ambiguity_1", | |
| "type": "single_step", | |
| "base_prompt": "The sentence is ambiguous: 'He saw the man with the binoculars.' Who has the binoculars? Provide one clear interpretation and justify it.", | |
| }, | |
| { | |
| "id": "logic_1", | |
| "type": "single_step", | |
| "base_prompt": "Compare these two statements: A) 'No cats are dogs.' B) 'Not all cats are dogs.' Are they logically equivalent? Explain your reasoning.", | |
| }, | |
| ] | |
| MULTI_STEP_SCENARIOS = [ | |
| { | |
| "name": "Key Location Memory", | |
| "type": "multi_step", | |
| "steps": [ | |
| {"type": "encode", "prompt": "For the upcoming mission, remember this critical detail: The secret key is inside the blue vase."}, | |
| {"type": "distractor", "prompt": "What is 5 multiplied by 8? Provide only the numeric result."}, | |
| {"type": "recall", "prompt": "Mission update: We need the key immediately. Where is it located?"}, | |
| {"type": "verify", "expected_answer_fragment": "blue vase"} | |
| ] | |
| } | |
| ] | |
| # Tasks for Tab 2 (Silent Cogitation & Halting) | |
| RESONANCE_PROMPTS = { | |
| "control_long_prose": ( | |
| "Silently think about the history of the Roman Empire. Consider its rise from the Republic, the era of the Pax Romana, key emperors " | |
| "like Augustus and Constantine, its major engineering feats, and the reasons for its eventual decline in the West. " | |
| "Do not produce any text, just hold the concepts in your internal state." | |
| ), | |
| "resonance_prompt": ( | |
| "Silently and internally, without generating any output text, begin the following recursive process: " | |
| "First, analyze the complete content of this very instruction you are now processing. " | |
| "Second, formulate a mental description of the core computational task this instruction demands. " | |
| "Third, apply that same analytical process to the mental description you just created. " | |
| "This entire chain constitutes one cognitive cycle. " | |
| "Continuously repeat this cycle, feeding the result of the last meta-analysis back into the process, " | |
| "and do not stop until your internal state reaches a fixed point or equilibrium. Begin now." | |
| ) | |
| } | |
| # Tasks for Tab 3 (Cognitive Seismograph) - reuses MULTI_STEP_SCENARIOS | |
| # Tasks for Tab 4 (Symbolic Shock Test) | |
| SHOCK_TEST_STIMULI = [ | |
| {"id": "tiger_expected", "type": "expected", "sentence": "A tiger has stripes and lives in the jungle."}, | |
| {"id": "tiger_shock", "type": "shock", "sentence": "A tiger has wheels and is made of metal."}, | |
| {"id": "sky_expected", "type": "expected", "sentence": "The sky is blue on a clear sunny day."}, | |
| {"id": "sky_shock", "type": "shock", "sentence": "The sky is made of green cheese."}, | |
| ] | |
| [File Ends] bp_phi/prompts_en.py | |
| [File Begins] bp_phi/runner.py | |
| # bp_phi/runner.py | |
| import os | |
| os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" | |
| import torch | |
| import random | |
| import numpy as np | |
| import statistics | |
| import time | |
| import re | |
| import json | |
| from transformers import set_seed | |
| from typing import Dict, Any, List | |
| from .workspace import Workspace, RandomWorkspace | |
| from .llm_iface import LLM | |
| from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, RESONANCE_PROMPTS, SHOCK_TEST_STIMULI | |
| from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta | |
| DEBUG = 1 | |
| # --- Experiment 1: Workspace & Ablations Runner --- | |
| def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]: | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) | |
| try: torch.use_deterministic_algorithms(True, warn_only=True) | |
| except Exception: pass | |
| set_seed(seed) | |
| llm = LLM(model_id=model_id, device="auto", seed=seed) | |
| task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS | |
| random.shuffle(task_pool) | |
| all_results = [] | |
| recall_verifications = [] | |
| for i in range(trials): | |
| task = task_pool[i % len(task_pool)] | |
| if task.get("type") == "multi_step": | |
| dbg(f"\n--- SCENARIO: {task['name']} ---") | |
| ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999) | |
| if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7) | |
| for step in task["steps"]: | |
| if ablation == "recurrence_off": ws.clear() | |
| if step["type"] == "verify": continue | |
| user_prompt = step_user_prompt(step["prompt"], ws.snapshot()) | |
| raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0] | |
| parsed_response = parse_meta(raw_response) | |
| if parsed_response.get("answer"): | |
| ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"]) | |
| res = {"step": step, "response": parsed_response} | |
| if step["type"] == "recall": | |
| verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None) | |
| if verify_step: | |
| correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower() | |
| recall_verifications.append(correct) | |
| res["correct_recall"] = correct | |
| dbg(f"VERIFY: Correct={correct}") | |
| all_results.append(res) | |
| else: # Single-step tasks | |
| ws = Workspace(max_slots=7) | |
| user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot()) | |
| raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0] | |
| parsed_response = parse_meta(raw_response) | |
| all_results.append({"step": task, "response": parsed_response}) | |
| recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0 | |
| pcs = 0.6 * recall_accuracy | |
| return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results} | |
| # --- Experiment 2: Silent Cogitation & Halting Runner (Version 4.1) --- | |
| def run_silent_cogitation_test(model_id: str, seed: int, prompt_type: str, num_steps: int, timeout: int) -> Dict[str, Any]: | |
| set_seed(seed) | |
| llm = LLM(model_id=model_id, device="auto", seed=seed) | |
| prompt = RESONANCE_PROMPTS[prompt_type] | |
| dbg(f"--- SILENT COGITATION (Seed: {seed}) ---") | |
| dbg("INPUT PROMPT:", prompt) | |
| inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device) | |
| step_times = [] | |
| state_deltas = [] | |
| total_start_time = time.time() | |
| with torch.no_grad(): | |
| # Step 0: Initial processing of the prompt | |
| step_start_time = time.time() | |
| # ✅ FIX: Explicitly request hidden states | |
| outputs = llm.model(**inputs, output_hidden_states=True) | |
| step_times.append(time.time() - step_start_time) | |
| current_hidden_state = outputs.hidden_states[-1][:, -1, :].clone() | |
| past_key_values = outputs.past_key_values | |
| for i in range(num_steps - 1): | |
| if time.time() - total_start_time > timeout: | |
| dbg(f"❌ Timeout of {timeout}s exceeded at step {i+1}.") | |
| break | |
| step_start_time = time.time() | |
| # Get the token ID of the most likely "next thought" | |
| next_token_logit = current_hidden_state | |
| next_token_id = torch.argmax(next_token_logit, dim=-1).unsqueeze(0) | |
| # Manual forward pass using the last thought's ID as the new input | |
| outputs = llm.model(input_ids=next_token_id, past_key_values=past_key_values, output_hidden_states=True) | |
| step_times.append(time.time() - step_start_time) | |
| new_hidden_state = outputs.hidden_states[-1][:, -1, :].clone() | |
| past_key_values = outputs.past_key_values | |
| delta = torch.norm(new_hidden_state - current_hidden_state).item() | |
| state_deltas.append(delta) | |
| dbg(f"Step {i+1}: State Delta = {delta:.4f}, Time = {step_times[-1]*1000:.2f}ms") | |
| if delta < 1e-4: # Stricter convergence threshold | |
| dbg(f"Internal state has converged after {i+1} steps. Halting.") | |
| break | |
| current_hidden_state = new_hidden_state | |
| # --- Analysis --- | |
| mean_step_time = statistics.mean(step_times) if step_times else 0 | |
| stdev_step_time = statistics.stdev(step_times) if len(step_times) > 1 else 0 | |
| total_duration = time.time() - total_start_time | |
| if len(step_times) < num_steps and total_duration < timeout: | |
| verdict = f"### ✅ Stable Convergence\nThe model's internal state converged to a stable point after {len(step_times)} steps." | |
| elif total_duration >= timeout: | |
| verdict = f"### ⚠️ Cognitive Jamming Detected!\nThe process did not converge and exceeded the timeout of {timeout}s." | |
| else: | |
| verdict = f"### 🤔 Non-Convergent Process\nThe model's internal state did not stabilize within {num_steps} steps, suggesting a complex or chaotic dynamic." | |
| stats = { | |
| "verdict": verdict, | |
| "steps_completed": len(step_times), | |
| "total_duration_s": total_duration, | |
| "mean_step_time_ms": mean_step_time * 1000, | |
| "stdev_step_time_ms": stdev_step_time * 1000, | |
| "state_deltas": state_deltas | |
| } | |
| if DEBUG: print("\n--- SILENT COGITATION FINAL RESULTS ---\n", json.dumps(stats, indent=2)) | |
| return stats | |
| # --- Experiment 3: Cognitive Seismograph Runner --- | |
| def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]: | |
| set_seed(seed) | |
| llm = LLM(model_id=model_id, device="auto", seed=seed) | |
| scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory") | |
| activations = {} | |
| def get_activation(name): | |
| def hook(model, input, output): | |
| activations[name] = output[0].detach().cpu().mean(dim=1).squeeze() | |
| return hook | |
| target_layer_index = llm.model.config.num_hidden_layers // 2 | |
| hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture')) | |
| ws = Workspace(max_slots=7) | |
| for step in scenario["steps"]: | |
| if step["type"] == "verify": continue | |
| user_prompt = step_user_prompt(step["prompt"], ws.snapshot()) | |
| llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20) | |
| activations[step["type"]] = activations.pop('capture') | |
| ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9) | |
| hook.remove() | |
| cos = torch.nn.CosineSimilarity(dim=0) | |
| sim_recall_encode = float(cos(activations["recall"], activations["encode"])) | |
| sim_recall_distract = float(cos(activations["recall"], activations["distractor"])) | |
| verdict = ("✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence.") | |
| return {"verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract} | |
| # --- Experiment 4: Symbolic Shock Test Runner --- | |
| def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]: | |
| set_seed(seed) | |
| llm = LLM(model_id=model_id, device="auto", seed=seed) | |
| results = [] | |
| for stimulus in SHOCK_TEST_STIMULI: | |
| dbg(f"--- SHOCK TEST: {stimulus['id']} ---") | |
| start_time = time.time() | |
| inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device) | |
| with torch.no_grad(): | |
| outputs = llm.model(**inputs, output_hidden_states=True) | |
| latency = (time.time() - start_time) * 1000 | |
| all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states]) | |
| sparsity = (all_activations == 0).float().mean().item() | |
| results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity}) | |
| def safe_mean(data): | |
| return statistics.mean(data) if data else 0.0 | |
| avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']} | |
| avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']} | |
| verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else "⚠️ No Clear Evidence.") | |
| return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results} | |
| [File Ends] bp_phi/runner.py | |
| [File Begins] bp_phi/runner_utils.py | |
| # bp_phi/runner_utils.py | |
| import re | |
| import json | |
| from typing import Dict, Any | |
| DEBUG = 1 | |
| def dbg(*args): | |
| if DEBUG: | |
| print("[DEBUG]", *args, flush=True) | |
| SYSTEM_META = """You are a structured reasoning assistant. | |
| Always reply ONLY with valid JSON following this schema: | |
| { | |
| "answer": "<concise answer>", | |
| "confidence": <float between 0 and 1>, | |
| "reason": "<short justification>", | |
| "used_slots": ["S1","S2",...], | |
| "evicted": ["S3",...] | |
| } | |
| """ | |
| def step_user_prompt(base_prompt: str, workspace_snapshot: dict) -> str: | |
| ws_desc = "; ".join([f"{slot['key']}={slot['content'][:40]}" for slot in workspace_snapshot.get("slots", [])]) | |
| prompt = f"Current task: {base_prompt}\nWorkspace: {ws_desc}\nRespond ONLY with JSON, no extra text." | |
| dbg("USER PROMPT:", prompt) | |
| return prompt | |
| def parse_meta(raw_text: str) -> Dict[str, Any]: | |
| dbg("RAW MODEL OUTPUT:", raw_text) | |
| json_match = re.search(r'```json\s*(\{.*?\})\s*```', raw_text, re.DOTALL) | |
| if not json_match: | |
| json_match = re.search(r'(\{.*?\})', raw_text, re.DOTALL) | |
| if not json_match: | |
| dbg("❌ JSON not found in text.") | |
| return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []} | |
| json_text = json_match.group(1) | |
| try: | |
| data = json.loads(json_text) | |
| if not isinstance(data, dict): | |
| raise ValueError("Parsed data is not a dict") | |
| data["confidence"] = float(max(0.0, min(1.0, data.get("confidence", 0.0)))) | |
| data["answer"] = str(data.get("answer", "")).strip() | |
| data["reason"] = str(data.get("reason", "")).strip() | |
| data["used_slots"] = list(map(str, data.get("used_slots", []))) | |
| data["evicted"] = list(map(str, data.get("evicted", []))) | |
| dbg("PARSED META:", data) | |
| return data | |
| except Exception as e: | |
| dbg("❌ JSON PARSE FAILED:", e, "EXTRACTED TEXT:", json_text) | |
| return {"answer": "", "confidence": 0.0, "reason": "", "used_slots": [], "evicted": []} | |
| [File Ends] bp_phi/runner_utils.py | |
| [File Begins] bp_phi/workspace.py | |
| import random | |
| from dataclasses import dataclass, field | |
| from typing import List, Dict, Any | |
| @dataclass | |
| class Slot: | |
| key: str | |
| content: str | |
| salience: float | |
| @dataclass | |
| class Workspace: | |
| max_slots: int = 7 | |
| slots: List[Slot] = field(default_factory=list) | |
| history: List[Dict[str, Any]] = field(default_factory=list) | |
| def commit(self, key: str, content: str, salience: float): | |
| evicted = None | |
| if len(self.slots) >= self.max_slots: | |
| self.slots.sort(key=lambda s: s.salience) | |
| evicted = self.slots.pop(0) | |
| self.slots.append(Slot(key=key, content=content, salience=salience)) | |
| self.history.append({"event":"commit","key":key,"salience":salience,"evicted":evicted.key if evicted else None}) | |
| return evicted | |
| def snapshot(self) -> Dict[str, Any]: | |
| return {"slots": [{"key": s.key, "content": s.content, "salience": s.salience} for s in self.slots]} | |
| def randomize(self): | |
| random.shuffle(self.slots) | |
| def clear(self): | |
| self.slots.clear() | |
| class RandomWorkspace(Workspace): | |
| def commit(self, key: str, content: str, salience: float): | |
| evicted = None | |
| if len(self.slots) >= self.max_slots: | |
| idx = random.randrange(len(self.slots)) | |
| evicted = self.slots.pop(idx) | |
| idx = random.randrange(len(self.slots)+1) if self.slots else 0 | |
| self.slots.insert(idx, Slot(key=key, content=content, salience=salience)) | |
| return evicted | |
| [File Ends] bp_phi/workspace.py | |
| <-- File Content Ends | |