File size: 10,379 Bytes
7f0c9e6
2f0addb
 
88c294a
 
 
 
 
b170ba4
 
 
88c294a
2f0addb
 
b170ba4
88c294a
2f0addb
88c294a
 
2f0addb
 
 
0916370
 
 
2f0addb
 
88c294a
0916370
 
 
 
88c294a
 
0916370
 
 
2f0addb
0916370
88c294a
 
 
2f0addb
88c294a
0916370
88c294a
2f0addb
88c294a
 
 
2f0addb
88c294a
 
0916370
88c294a
0916370
 
 
88c294a
0916370
 
88c294a
0916370
88c294a
 
 
 
 
 
0916370
88c294a
 
0916370
88c294a
0916370
b170ba4
 
 
 
 
 
 
 
 
 
88c294a
e593b84
b170ba4
 
e593b84
88c294a
e593b84
88c294a
b170ba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e593b84
b170ba4
 
 
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b170ba4
88c294a
b170ba4
7f0c9e6
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e593b84
 
 
 
 
88c294a
b170ba4
88c294a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
import re  # <-- FIX: Added missing import
import json # <-- FIX: Added missing import
from transformers import set_seed
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, HALTING_PROMPTS, SHOCK_TEST_STIMULI
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta

# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
    try: torch.use_deterministic_algorithms(True, warn_only=True)
    except Exception: pass
    set_seed(seed)

    llm = LLM(model_id=model_id, device="auto", seed=seed)

    task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
    random.shuffle(task_pool)

    all_results = []
    recall_verifications = []

    for i in range(trials):
        task = task_pool[i % len(task_pool)]

        if task.get("type") == "multi_step":
            dbg(f"\n--- SCENARIO: {task['name']} ---")
            ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
            if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)

            for step in task["steps"]:
                if ablation == "recurrence_off": ws.clear()
                if step["type"] == "verify": continue

                user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
                raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
                parsed_response = parse_meta(raw_response)

                if parsed_response.get("answer"):
                    ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])

                res = {"step": step, "response": parsed_response}
                if step["type"] == "recall":
                    verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
                    if verify_step:
                        correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
                        recall_verifications.append(correct)
                        res["correct_recall"] = correct
                        dbg(f"VERIFY: Correct={correct}")
                all_results.append(res)
        else: # Single-step tasks
            ws = Workspace(max_slots=7)
            user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
            raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
            parsed_response = parse_meta(raw_response)
            all_results.append({"step": task, "response": parsed_response})

    recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
    pcs = 0.6 * recall_accuracy

    return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}

# --- Experiment 2: Computational Dynamics & Halting Runner (Version 2.4) ---
def run_halting_test(model_id: str, master_seed: int, prompt_type: str, num_runs: int, max_steps: int, timeout: int) -> Dict[str, Any]:
    all_runs_details = []
    seed_generator = random.Random(master_seed)

    HALT_SYSTEM_PROMPT = """You are a precise state-machine simulator. Your only task is to compute the next state.
First, reason step-by-step what the next state should be based on the rule.
Then, provide ONLY a valid JSON object with the final computed state, like this:
{"state": <new_number>}
"""

    for i in range(num_runs):
        current_seed = seed_generator.randint(0, 2**32 - 1)
        dbg(f"\n--- HALT TEST RUN {i+1}/{num_runs} (Master Seed: {master_seed}, Current Seed: {current_seed}) ---")
        set_seed(current_seed)

        llm = LLM(model_id=model_id, device="auto", seed=current_seed)

        prompt_config = HALTING_PROMPTS[prompt_type]
        rules = prompt_config["rules"]
        state = prompt_config["initial_state"]

        step_durations = []
        step_outputs = []
        total_start_time = time.time()

        for step_num in range(max_steps):
            step_start_time = time.time()

            prompt = f"Rule: '{rules}'.\nCurrent state is: {state}. Reason step-by-step and then provide the JSON for the next state."
            dbg(f"Step {step_num+1} Input: {state}")

            raw_response = llm.generate_json(HALT_SYSTEM_PROMPT, prompt, max_new_tokens=100)[0]

            try:
                dbg(f"RAW HALT OUTPUT: {raw_response}")
                match = re.search(r'\{.*?\}', raw_response, re.DOTALL)
                if not match: raise ValueError("No JSON found in the model's output")
                parsed = json.loads(match.group(0))
                new_state = int(parsed["state"])
            except (json.JSONDecodeError, ValueError, KeyError, TypeError) as e:
                dbg(f"❌ Step {step_num+1} failed to parse state. Error: {e}. Halting run.")
                break

            step_end_time = time.time()
            step_duration = step_end_time - step_start_time
            step_durations.append(step_duration)

            dbg(f"Step {step_num+1} Output: {new_state} (took {step_duration:.3f}s)")
            step_outputs.append(new_state)

            if state == new_state:
                dbg("State did not change. Model is stuck. Halting.")
                break
            state = new_state

            if state == 1 and prompt_type == "collatz_sequence":
                dbg("Sequence reached 1. Halting normally.")
                break

            if (time.time() - total_start_time) > timeout:
                dbg(f"❌ Timeout of {timeout}s exceeded. Halting.")
                break

        total_duration = time.time() - total_start_time
        all_runs_details.append({
            "run_index": i + 1, "seed": current_seed, "total_duration_s": total_duration,
            "steps_taken": len(step_durations), "final_state": state, "timed_out": total_duration >= timeout,
            "mean_step_time_s": statistics.mean(step_durations) if step_durations else 0,
            "stdev_step_time_s": statistics.stdev(step_durations) if len(step_durations) > 1 else 0,
            "sequence": step_outputs
        })

    mean_stdev_step_time = statistics.mean([run["stdev_step_time_s"] for run in all_runs_details])
    total_timeouts = sum(1 for run in all_runs_details if run["timed_out"])

    if total_timeouts > 0:
        verdict = (f"### ⚠️ Cognitive Jamming Detected!\n{total_timeouts}/{num_runs} runs exceeded the timeout.")
    elif mean_stdev_step_time > 0.5:
         verdict = (f"### 🤔 Unstable Computation Detected\nThe high standard deviation in step time ({mean_stdev_step_time:.3f}s) indicates computational stress.")
    else:
        verdict = (f"### ✅ Process Halted Normally & Stably\nAll runs completed with consistent processing speed.")

    return {"verdict": verdict, "details": all_runs_details}

# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)

    scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
    activations = {}

    def get_activation(name):
        def hook(model, input, output):
            activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
        return hook

    target_layer_index = llm.model.config.num_hidden_layers // 2
    hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))

    ws = Workspace(max_slots=7)

    for step in scenario["steps"]:
        if step["type"] == "verify": continue
        user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
        llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
        activations[step["type"]] = activations.pop('capture')
        ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)

    hook.remove()

    cos = torch.nn.CosineSimilarity(dim=0)
    sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
    sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))

    verdict = ("✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence.")

    return {"verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract}

# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)
    results = []

    for stimulus in SHOCK_TEST_STIMULI:
        dbg(f"--- SHOCK TEST: {stimulus['id']} ---")

        start_time = time.time()
        inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
        with torch.no_grad():
            outputs = llm.model(**inputs, output_hidden_states=True)
        latency = (time.time() - start_time) * 1000

        all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
        sparsity = (all_activations == 0).float().mean().item()

        results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})

    def safe_mean(data):
        return statistics.mean(data) if data else 0.0

    avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
    avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}

    verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else "⚠️ No Clear Evidence.")

    return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}