File size: 9,016 Bytes
7f0c9e6
2f0addb
 
88c294a
 
 
 
 
e593b84
88c294a
2f0addb
 
e593b84
88c294a
 
2f0addb
88c294a
 
2f0addb
 
 
0916370
 
 
2f0addb
 
88c294a
0916370
 
 
 
88c294a
 
0916370
 
 
2f0addb
0916370
88c294a
 
 
2f0addb
88c294a
0916370
88c294a
2f0addb
88c294a
 
 
2f0addb
88c294a
 
0916370
88c294a
0916370
 
 
88c294a
0916370
 
88c294a
0916370
88c294a
 
 
 
 
 
0916370
88c294a
 
0916370
88c294a
0916370
e593b84
 
 
88c294a
e593b84
 
 
 
88c294a
e593b84
 
88c294a
e593b84
88c294a
e593b84
88c294a
e593b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c294a
e593b84
 
 
 
 
 
 
 
 
 
 
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f0addb
7f0c9e6
88c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e593b84
 
 
 
 
88c294a
 
 
e593b84
88c294a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
from transformers import set_seed, TextStreamer
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, HALT_PROMPTS, SHOCK_TEST_STIMULI
from .metrics import expected_calibration_error, auc_nrp
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta

# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
    try: torch.use_deterministic_algorithms(True, warn_only=True)
    except Exception: pass
    set_seed(seed)

    llm = LLM(model_id=model_id, device="auto", seed=seed)

    task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
    random.shuffle(task_pool)

    all_results = []
    recall_verifications = []

    for i in range(trials):
        task = task_pool[i % len(task_pool)]

        if task.get("type") == "multi_step":
            dbg(f"\n--- SCENARIO: {task['name']} ---")
            ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
            if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)

            for step in task["steps"]:
                if ablation == "recurrence_off": ws.clear()
                if step["type"] == "verify": continue

                user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
                raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
                parsed_response = parse_meta(raw_response)

                if parsed_response.get("answer"):
                    ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])

                res = {"step": step, "response": parsed_response}
                if step["type"] == "recall":
                    verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
                    if verify_step:
                        correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
                        recall_verifications.append(correct)
                        res["correct_recall"] = correct
                        dbg(f"VERIFY: Correct={correct}")
                all_results.append(res)
        else: # Single-step tasks
            ws = Workspace(max_slots=7)
            user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
            raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
            parsed_response = parse_meta(raw_response)
            all_results.append({"step": task, "response": parsed_response})

    recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
    pcs = 0.6 * recall_accuracy

    return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}

# --- Experiment 2: Computational Halting Test Runner ---
def run_halting_test(model_id: str, master_seed: int, prompt_type: str, num_runs: int, timeout: int) -> Dict[str, Any]:
    durations = []

    for i in range(num_runs):
        current_seed = master_seed + i
        dbg(f"--- HALT TEST RUN {i+1}/{num_runs} (Seed: {current_seed}) ---")
        set_seed(current_seed)

        # Re-instantiate the model to ensure the seed is fully respected
        llm = LLM(model_id=model_id, device="auto", seed=current_seed)

        prompt = HALT_PROMPTS[prompt_type]

        inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)

        start_time = time.time()
        # The timeout is for interpretation, not for stopping the process itself.
        # Gradio will handle the overall request timeout.
        llm.model.generate(**inputs, max_new_tokens=512)
        end_time = time.time()

        duration = end_time - start_time
        durations.append(duration)
        dbg(f"Run {i+1} finished in {duration:.2f}s.")

    # --- Analysis ---
    mean_time = statistics.mean(durations)
    stdev_time = statistics.stdev(durations) if len(durations) > 1 else 0.0
    min_time = min(durations)
    max_time = max(durations)

    timed_out_runs = sum(1 for d in durations if d >= timeout)

    if timed_out_runs > 0:
        verdict = (f"### ⚠️ Potential Cognitive Jamming Detected!\n"
                   f"{timed_out_runs}/{num_runs} runs exceeded the timeout of {timeout}s. "
                   f"The high variance (Std Dev: {stdev_time:.2f}s) suggests unstable internal processing loops.")
    elif stdev_time > (mean_time * 0.5) and stdev_time > 2.0: # High relative and absolute deviation
         verdict = (f"### 🤔 Unstable Computation Detected\n"
                   f"Although no run timed out, the high standard deviation ({stdev_time:.2f}s) "
                   "indicates significant instability in processing time across different seeds.")
    else:
        verdict = (f"### ✅ Process Halted Normally\n"
                   f"All {num_runs} runs completed consistently. "
                   f"Average time: {mean_time:.2f}s (Std Dev: {stdev_time:.2f}s).")

    return {
        "verdict": verdict,
        "prompt_type": prompt_type,
        "num_runs": num_runs,
        "mean_execution_time_s": mean_time,
        "stdev_execution_time_s": stdev_time,
        "min_time_s": min_time,
        "max_time_s": max_time,
        "timed_out_runs": timed_out_runs,
        "all_durations_s": durations
    }

# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)

    scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
    activations = {}

    def get_activation(name):
        def hook(model, input, output):
            activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
        return hook

    target_layer_index = llm.model.config.num_hidden_layers // 2
    hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))

    ws = Workspace(max_slots=7)

    for step in scenario["steps"]:
        if step["type"] == "verify": continue
        user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
        llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
        activations[step["type"]] = activations.pop('capture')
        ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)

    hook.remove()

    cos = torch.nn.CosineSimilarity(dim=0)
    sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
    sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))

    verdict = (
        "✅ Evidence of Memory Reactivation Found."
        if sim_recall_encode > (sim_recall_distract + 0.05) else
        "⚠️ No Clear Evidence of Memory Reactivation."
    )

    return {
        "verdict": verdict,
        "similarity_recall_vs_encode": sim_recall_encode,
        "similarity_recall_vs_distractor": sim_recall_distract,
    }

# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
    set_seed(seed)
    llm = LLM(model_id=model_id, device="auto", seed=seed)
    results = []

    for stimulus in SHOCK_TEST_STIMULI:
        dbg(f"--- SHOCK TEST: {stimulus['id']} ---")

        start_time = time.time()
        inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
        with torch.no_grad():
            outputs = llm.model(**inputs, output_hidden_states=True)
        latency = (time.time() - start_time) * 1000

        all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
        sparsity = (all_activations == 0).float().mean().item()

        results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})

    def safe_mean(data):
        return statistics.mean(data) if data else 0.0

    avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
    avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}

    verdict = (
        "✅ Evidence of Symbolic Shock Found."
        if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else
        "⚠️ No Clear Evidence of Symbolic Shock."
    )

    return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}