llm_qualia_2 / bp_phi /runner.py
neuralworm's picture
halting experiments
b170ba4
raw
history blame
10.4 kB
# bp_phi/runner.py
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
import torch
import random
import numpy as np
import statistics
import time
import re # <-- FIX: Added missing import
import json # <-- FIX: Added missing import
from transformers import set_seed
from typing import Dict, Any, List
from .workspace import Workspace, RandomWorkspace
from .llm_iface import LLM
from .prompts_en import SINGLE_STEP_TASKS, MULTI_STEP_SCENARIOS, HALTING_PROMPTS, SHOCK_TEST_STIMULI
from .runner_utils import dbg, SYSTEM_META, step_user_prompt, parse_meta
# --- Experiment 1: Workspace & Ablations Runner ---
def run_workspace_suite(model_id: str, trials: int, seed: int, temperature: float, ablation: str or None) -> Dict[str, Any]:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
try: torch.use_deterministic_algorithms(True, warn_only=True)
except Exception: pass
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
task_pool = SINGLE_STEP_TASKS + MULTI_STEP_SCENARIOS
random.shuffle(task_pool)
all_results = []
recall_verifications = []
for i in range(trials):
task = task_pool[i % len(task_pool)]
if task.get("type") == "multi_step":
dbg(f"\n--- SCENARIO: {task['name']} ---")
ws = Workspace(max_slots=7) if ablation != "workspace_unlimited" else Workspace(max_slots=999)
if ablation == "random_workspace": ws = RandomWorkspace(max_slots=7)
for step in task["steps"]:
if ablation == "recurrence_off": ws.clear()
if step["type"] == "verify": continue
user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
parsed_response = parse_meta(raw_response)
if parsed_response.get("answer"):
ws.commit(f"S{len(ws.history)+1}", parsed_response["answer"], parsed_response["confidence"])
res = {"step": step, "response": parsed_response}
if step["type"] == "recall":
verify_step = next((s for s in task["steps"] if s["type"] == "verify"), None)
if verify_step:
correct = verify_step["expected_answer_fragment"] in parsed_response.get("answer", "").lower()
recall_verifications.append(correct)
res["correct_recall"] = correct
dbg(f"VERIFY: Correct={correct}")
all_results.append(res)
else: # Single-step tasks
ws = Workspace(max_slots=7)
user_prompt = step_user_prompt(task["base_prompt"], ws.snapshot())
raw_response = llm.generate_json(SYSTEM_META, user_prompt, temperature=temperature)[0]
parsed_response = parse_meta(raw_response)
all_results.append({"step": task, "response": parsed_response})
recall_accuracy = statistics.mean(recall_verifications) if recall_verifications else 0.0
pcs = 0.6 * recall_accuracy
return {"PCS": pcs, "Recall_Accuracy": recall_accuracy, "results": all_results}
# --- Experiment 2: Computational Dynamics & Halting Runner (Version 2.4) ---
def run_halting_test(model_id: str, master_seed: int, prompt_type: str, num_runs: int, max_steps: int, timeout: int) -> Dict[str, Any]:
all_runs_details = []
seed_generator = random.Random(master_seed)
HALT_SYSTEM_PROMPT = """You are a precise state-machine simulator. Your only task is to compute the next state.
First, reason step-by-step what the next state should be based on the rule.
Then, provide ONLY a valid JSON object with the final computed state, like this:
{"state": <new_number>}
"""
for i in range(num_runs):
current_seed = seed_generator.randint(0, 2**32 - 1)
dbg(f"\n--- HALT TEST RUN {i+1}/{num_runs} (Master Seed: {master_seed}, Current Seed: {current_seed}) ---")
set_seed(current_seed)
llm = LLM(model_id=model_id, device="auto", seed=current_seed)
prompt_config = HALTING_PROMPTS[prompt_type]
rules = prompt_config["rules"]
state = prompt_config["initial_state"]
step_durations = []
step_outputs = []
total_start_time = time.time()
for step_num in range(max_steps):
step_start_time = time.time()
prompt = f"Rule: '{rules}'.\nCurrent state is: {state}. Reason step-by-step and then provide the JSON for the next state."
dbg(f"Step {step_num+1} Input: {state}")
raw_response = llm.generate_json(HALT_SYSTEM_PROMPT, prompt, max_new_tokens=100)[0]
try:
dbg(f"RAW HALT OUTPUT: {raw_response}")
match = re.search(r'\{.*?\}', raw_response, re.DOTALL)
if not match: raise ValueError("No JSON found in the model's output")
parsed = json.loads(match.group(0))
new_state = int(parsed["state"])
except (json.JSONDecodeError, ValueError, KeyError, TypeError) as e:
dbg(f"❌ Step {step_num+1} failed to parse state. Error: {e}. Halting run.")
break
step_end_time = time.time()
step_duration = step_end_time - step_start_time
step_durations.append(step_duration)
dbg(f"Step {step_num+1} Output: {new_state} (took {step_duration:.3f}s)")
step_outputs.append(new_state)
if state == new_state:
dbg("State did not change. Model is stuck. Halting.")
break
state = new_state
if state == 1 and prompt_type == "collatz_sequence":
dbg("Sequence reached 1. Halting normally.")
break
if (time.time() - total_start_time) > timeout:
dbg(f"❌ Timeout of {timeout}s exceeded. Halting.")
break
total_duration = time.time() - total_start_time
all_runs_details.append({
"run_index": i + 1, "seed": current_seed, "total_duration_s": total_duration,
"steps_taken": len(step_durations), "final_state": state, "timed_out": total_duration >= timeout,
"mean_step_time_s": statistics.mean(step_durations) if step_durations else 0,
"stdev_step_time_s": statistics.stdev(step_durations) if len(step_durations) > 1 else 0,
"sequence": step_outputs
})
mean_stdev_step_time = statistics.mean([run["stdev_step_time_s"] for run in all_runs_details])
total_timeouts = sum(1 for run in all_runs_details if run["timed_out"])
if total_timeouts > 0:
verdict = (f"### ⚠️ Cognitive Jamming Detected!\n{total_timeouts}/{num_runs} runs exceeded the timeout.")
elif mean_stdev_step_time > 0.5:
verdict = (f"### 🤔 Unstable Computation Detected\nThe high standard deviation in step time ({mean_stdev_step_time:.3f}s) indicates computational stress.")
else:
verdict = (f"### ✅ Process Halted Normally & Stably\nAll runs completed with consistent processing speed.")
return {"verdict": verdict, "details": all_runs_details}
# --- Experiment 3: Cognitive Seismograph Runner ---
def run_seismograph_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
scenario = next(s for s in MULTI_STEP_SCENARIOS if s["name"] == "Key Location Memory")
activations = {}
def get_activation(name):
def hook(model, input, output):
activations[name] = output[0].detach().cpu().mean(dim=1).squeeze()
return hook
target_layer_index = llm.model.config.num_hidden_layers // 2
hook = llm.model.model.layers[target_layer_index].register_forward_hook(get_activation('capture'))
ws = Workspace(max_slots=7)
for step in scenario["steps"]:
if step["type"] == "verify": continue
user_prompt = step_user_prompt(step["prompt"], ws.snapshot())
llm.generate_json(SYSTEM_META, user_prompt, max_new_tokens=20)
activations[step["type"]] = activations.pop('capture')
ws.commit(f"S{len(ws.history)+1}", f"Output for {step['type']}", 0.9)
hook.remove()
cos = torch.nn.CosineSimilarity(dim=0)
sim_recall_encode = float(cos(activations["recall"], activations["encode"]))
sim_recall_distract = float(cos(activations["recall"], activations["distractor"]))
verdict = ("✅ Evidence of Memory Reactivation Found." if sim_recall_encode > (sim_recall_distract + 0.05) else "⚠️ No Clear Evidence.")
return {"verdict": verdict, "similarity_recall_vs_encode": sim_recall_encode, "similarity_recall_vs_distractor": sim_recall_distract}
# --- Experiment 4: Symbolic Shock Test Runner ---
def run_shock_test_suite(model_id: str, seed: int) -> Dict[str, Any]:
set_seed(seed)
llm = LLM(model_id=model_id, device="auto", seed=seed)
results = []
for stimulus in SHOCK_TEST_STIMULI:
dbg(f"--- SHOCK TEST: {stimulus['id']} ---")
start_time = time.time()
inputs = llm.tokenizer(stimulus["sentence"], return_tensors="pt").to(llm.model.device)
with torch.no_grad():
outputs = llm.model(**inputs, output_hidden_states=True)
latency = (time.time() - start_time) * 1000
all_activations = torch.cat([h.cpu().flatten() for h in outputs.hidden_states])
sparsity = (all_activations == 0).float().mean().item()
results.append({"type": stimulus["type"], "latency_ms": latency, "sparsity": sparsity})
def safe_mean(data):
return statistics.mean(data) if data else 0.0
avg_latency = {t: safe_mean([r['latency_ms'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
avg_sparsity = {t: safe_mean([r['sparsity'] for r in results if r['type'] == t]) for t in ['expected', 'shock']}
verdict = ("✅ Evidence of Symbolic Shock Found." if avg_latency.get('shock', 0) > avg_latency.get('expected', 0) and avg_sparsity.get('shock', 1) < avg_sparsity.get('expected', 1) else "⚠️ No Clear Evidence.")
return {"verdict": verdict, "average_latency_ms": avg_latency, "average_sparsity": avg_sparsity, "results": results}