Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| import pickle | |
| import json | |
| import tensorflow as tf | |
| from tensorflow.keras.models import model_from_json | |
| import plotly.graph_objects as go | |
| from plotly.subplots import make_subplots | |
| import os | |
| # Set environment variable to avoid oneDNN warnings | |
| os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
| # Load model artifacts | |
| def load_model_artifacts(): | |
| try: | |
| # Load from the same directory where training code saved artifacts | |
| with open('model_architecture.json', 'r') as json_file: | |
| model_json = json_file.read() | |
| model = model_from_json(model_json) | |
| model.load_weights('final_model.h5') | |
| with open('scaler.pkl', 'rb') as f: | |
| scaler = pickle.load(f) | |
| with open('metadata.json', 'r') as f: | |
| metadata = json.load(f) | |
| return model, scaler, metadata | |
| except Exception as e: | |
| raise Exception(f"Error loading model artifacts: {str(e)}") | |
| # Initialize model components | |
| try: | |
| model, scaler, metadata = load_model_artifacts() | |
| feature_names = metadata['feature_names'] # Get feature names from metadata | |
| print(f"β Model loaded successfully with features: {feature_names}") | |
| except Exception as e: | |
| print(f"β Error loading model: {e}") | |
| model, scaler, metadata = None, None, {} | |
| feature_names = ['Feature_1', 'Feature_2'] # Fallback if metadata not available | |
| def predict_student_eligibility(*args): | |
| try: | |
| if model is None or scaler is None: | |
| return "Model not loaded", "N/A", "N/A", create_error_plot() | |
| # Create input dictionary with correct feature names | |
| input_data = {feature_names[i]: args[i] for i in range(len(feature_names))} | |
| input_df = pd.DataFrame([input_data]) | |
| # Ensure columns are in correct order | |
| input_df = input_df[feature_names] | |
| # Scale and reshape input | |
| input_scaled = scaler.transform(input_df) | |
| input_reshaped = input_scaled.reshape(input_scaled.shape[0], input_scaled.shape[1], 1) | |
| probability = float(model.predict(input_reshaped)[0][0]) | |
| prediction = "Eligible" if probability > 0.5 else "Not Eligible" | |
| confidence = abs(probability - 0.5) * 2 | |
| fig = create_prediction_viz(probability, prediction, input_data) | |
| return prediction, f"{probability:.4f}", f"{confidence:.4f}", fig | |
| except Exception as e: | |
| return f"Error: {str(e)}", "N/A", "N/A", create_error_plot() | |
| def create_error_plot(): | |
| fig = go.Figure() | |
| fig.add_annotation( | |
| text="Model not available or error occurred", | |
| xref="paper", yref="paper", | |
| x=0.5, y=0.5, xanchor='center', yanchor='middle', | |
| showarrow=False, font=dict(size=20) | |
| ) | |
| fig.update_layout( | |
| xaxis={'visible': False}, | |
| yaxis={'visible': False}, | |
| height=400 | |
| ) | |
| return fig | |
| def create_prediction_viz(probability, prediction, input_data): | |
| try: | |
| fig = make_subplots( | |
| rows=2, cols=2, | |
| subplot_titles=('Prediction Probability', 'Confidence Meter', 'Input Features', 'Probability Distribution'), | |
| specs=[[{"type": "indicator"}, {"type": "indicator"}], | |
| [{"type": "bar"}, {"type": "scatter"}]] | |
| ) | |
| # Prediction probability gauge | |
| fig.add_trace( | |
| go.Indicator( | |
| mode="gauge+number", | |
| value=probability, | |
| title={'text': "Eligibility Probability"}, | |
| gauge={ | |
| 'axis': {'range': [None, 1]}, | |
| 'bar': {'color': "darkblue"}, | |
| 'steps': [ | |
| {'range': [0, 0.5], 'color': "lightcoral"}, | |
| {'range': [0.5, 1], 'color': "lightgreen"} | |
| ], | |
| 'threshold': { | |
| 'line': {'color': "red", 'width': 4}, | |
| 'thickness': 0.75, | |
| 'value': 0.5 | |
| } | |
| } | |
| ), row=1, col=1 | |
| ) | |
| # Confidence meter | |
| confidence = abs(probability - 0.5) * 2 | |
| fig.add_trace( | |
| go.Indicator( | |
| mode="gauge+number", | |
| value=confidence, | |
| title={'text': "Prediction Confidence"}, | |
| gauge={ | |
| 'axis': {'range': [None, 1]}, | |
| 'bar': {'color': "orange"}, | |
| 'steps': [ | |
| {'range': [0, 0.3], 'color': "lightcoral"}, | |
| {'range': [0.3, 0.7], 'color': "lightyellow"}, | |
| {'range': [0.7, 1], 'color': "lightgreen"} | |
| ] | |
| } | |
| ), row=1, col=2 | |
| ) | |
| # Input features bar chart | |
| features = list(input_data.keys()) | |
| values = list(input_data.values()) | |
| fig.add_trace( | |
| go.Bar( | |
| x=features, | |
| y=values, | |
| name="Input Values", | |
| marker_color="skyblue", | |
| text=values, | |
| textposition='auto' | |
| ), | |
| row=2, col=1 | |
| ) | |
| # Probability distribution | |
| fig.add_trace( | |
| go.Scatter( | |
| x=[0, 1], | |
| y=[probability, probability], | |
| mode='lines+markers', | |
| name="Probability", | |
| line=dict(color="red", width=3), | |
| marker=dict(size=10) | |
| ), | |
| row=2, col=2 | |
| ) | |
| fig.update_layout( | |
| height=800, | |
| showlegend=False, | |
| title_text="Student Eligibility Prediction Dashboard", | |
| title_x=0.5, | |
| margin=dict(l=50, r=50, t=100, b=50) | |
| ) | |
| # Update x-axis for probability plot | |
| fig.update_xaxes(title_text="", row=2, col=2, range=[-0.1, 1.1]) | |
| fig.update_yaxes(title_text="Probability", row=2, col=2, range=[0, 1]) | |
| return fig | |
| except Exception as e: | |
| return create_error_plot() | |
| def batch_predict(file): | |
| try: | |
| if model is None or scaler is None: | |
| return "Model not loaded. Please check if all model files are uploaded.", None | |
| if file is None: | |
| return "Please upload a CSV file.", None | |
| df = pd.read_csv(file) | |
| # Check for required features | |
| missing_features = set(feature_names) - set(df.columns) | |
| if missing_features: | |
| return f"Missing features: {', '.join(missing_features)}", None | |
| # Ensure correct column order | |
| df_features = df[feature_names] | |
| df_scaled = scaler.transform(df_features) | |
| df_reshaped = df_scaled.reshape(df_scaled.shape[0], df_scaled.shape[1], 1) | |
| probabilities = model.predict(df_reshaped).flatten() | |
| predictions = ["Eligible" if p > 0.5 else "Not Eligible" for p in probabilities] | |
| results_df = df.copy() | |
| results_df['Probability'] = probabilities | |
| results_df['Prediction'] = predictions | |
| results_df['Confidence'] = np.abs(probabilities - 0.5) * 2 | |
| output_file = "batch_predictions.csv" | |
| results_df.to_csv(output_file, index=False) | |
| eligible_count = predictions.count('Eligible') | |
| not_eligible_count = predictions.count('Not Eligible') | |
| summary = f"""Batch Prediction Summary: | |
| βββββββββββββββββββββββββββββββββββββββββ | |
| π Total predictions: {len(results_df)} | |
| β Eligible: {eligible_count} ({eligible_count / len(predictions) * 100:.1f}%) | |
| β Not Eligible: {not_eligible_count} ({not_eligible_count / len(predictions) * 100:.1f}%) | |
| π Average Probability: {np.mean(probabilities):.4f} | |
| π― Average Confidence: {np.mean(np.abs(probabilities - 0.5) * 2):.4f} | |
| βββββββββββββββββββββββββββββββββββββββββ | |
| Results saved to: {output_file} | |
| """ | |
| return summary, output_file | |
| except Exception as e: | |
| return f"Error processing file: {str(e)}", None | |
| # Gradio UI | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# π Student Eligibility Prediction") | |
| gr.Markdown("This app predicts student eligibility based on academic performance metrics.") | |
| with gr.Tabs(): | |
| with gr.Tab("π Single Prediction"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| inputs = [gr.Number(label=feature, value=75) for feature in feature_names] | |
| predict_btn = gr.Button("Predict", variant="primary") | |
| with gr.Column(): | |
| prediction = gr.Textbox(label="Prediction") | |
| probability = gr.Textbox(label="Probability") | |
| confidence = gr.Textbox(label="Confidence") | |
| plot = gr.Plot() | |
| predict_btn.click( | |
| predict_student_eligibility, | |
| inputs=inputs, | |
| outputs=[prediction, probability, confidence, plot] | |
| ) | |
| with gr.Tab("π Batch Prediction"): | |
| gr.Markdown("Upload a CSV file with student data to get batch predictions.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| file_input = gr.File( | |
| label="Upload CSV", | |
| file_types=[".csv"], | |
| type="filepath" | |
| ) | |
| batch_btn = gr.Button("Process Batch", variant="primary") | |
| with gr.Column(): | |
| batch_output = gr.Textbox(label="Results", lines=10) | |
| download = gr.File(label="Download Predictions") | |
| batch_btn.click( | |
| batch_predict, | |
| inputs=file_input, | |
| outputs=[batch_output, download] | |
| ) | |
| # Footer | |
| gr.Markdown("---") | |
| gr.Markdown("> Note: This model was trained on student eligibility data. Ensure your input features match the training data format.") | |
| # Launch app | |
| if __name__ == "__main__": | |
| demo.launch() |