Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,12 +15,11 @@ logger = logging.getLogger(__name__)
|
|
| 15 |
# Initialize model components
|
| 16 |
model = None
|
| 17 |
scaler = None
|
| 18 |
-
metadata = {}
|
| 19 |
feature_names = []
|
| 20 |
model_loaded = False
|
| 21 |
|
| 22 |
def load_model():
|
| 23 |
-
global model, scaler,
|
| 24 |
|
| 25 |
try:
|
| 26 |
# Verify all required files exist
|
|
@@ -44,7 +43,7 @@ def load_model():
|
|
| 44 |
logger.info("Loading metadata...")
|
| 45 |
with open('metadata.json', 'r') as f:
|
| 46 |
metadata = json.load(f)
|
| 47 |
-
feature_names = metadata.get('feature_names', [])
|
| 48 |
|
| 49 |
model_loaded = True
|
| 50 |
logger.info("✅ Model loaded successfully!")
|
|
@@ -52,6 +51,7 @@ def load_model():
|
|
| 52 |
|
| 53 |
except Exception as e:
|
| 54 |
logger.error(f"❌ Model loading failed: {str(e)}")
|
|
|
|
| 55 |
model_loaded = False
|
| 56 |
|
| 57 |
# Load model at startup
|
|
@@ -84,15 +84,11 @@ def predict(*args):
|
|
| 84 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 85 |
confidence = abs(probability - 0.5) * 2
|
| 86 |
|
| 87 |
-
return {
|
| 88 |
-
"Prediction": prediction,
|
| 89 |
-
"Probability": f"{probability:.4f}",
|
| 90 |
-
"Confidence": f"{confidence:.4f}"
|
| 91 |
-
}
|
| 92 |
|
| 93 |
except Exception as e:
|
| 94 |
logger.error(f"Prediction error: {str(e)}")
|
| 95 |
-
return
|
| 96 |
|
| 97 |
# Create Gradio interface
|
| 98 |
with gr.Blocks(title="Student Eligibility Predictor") as demo:
|
|
@@ -101,34 +97,36 @@ with gr.Blocks(title="Student Eligibility Predictor") as demo:
|
|
| 101 |
|
| 102 |
with gr.Row():
|
| 103 |
with gr.Column():
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
predict_btn = gr.Button("Predict", variant="primary")
|
|
|
|
| 106 |
with gr.Column():
|
| 107 |
prediction_output = gr.Textbox(label="Prediction")
|
| 108 |
probability_output = gr.Textbox(label="Probability")
|
| 109 |
confidence_output = gr.Textbox(label="Confidence")
|
| 110 |
|
| 111 |
-
#
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
fn=predict,
|
| 126 |
-
cache_examples=False
|
| 127 |
-
)
|
| 128 |
|
| 129 |
predict_btn.click(
|
| 130 |
fn=predict,
|
| 131 |
-
inputs=
|
| 132 |
outputs=[prediction_output, probability_output, confidence_output]
|
| 133 |
)
|
| 134 |
|
|
|
|
| 15 |
# Initialize model components
|
| 16 |
model = None
|
| 17 |
scaler = None
|
|
|
|
| 18 |
feature_names = []
|
| 19 |
model_loaded = False
|
| 20 |
|
| 21 |
def load_model():
|
| 22 |
+
global model, scaler, feature_names, model_loaded
|
| 23 |
|
| 24 |
try:
|
| 25 |
# Verify all required files exist
|
|
|
|
| 43 |
logger.info("Loading metadata...")
|
| 44 |
with open('metadata.json', 'r') as f:
|
| 45 |
metadata = json.load(f)
|
| 46 |
+
feature_names = metadata.get('feature_names', ['Score 1', 'Score 2']) # Default names
|
| 47 |
|
| 48 |
model_loaded = True
|
| 49 |
logger.info("✅ Model loaded successfully!")
|
|
|
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
logger.error(f"❌ Model loading failed: {str(e)}")
|
| 54 |
+
feature_names = ['Score 1', 'Score 2'] # Default names if loading fails
|
| 55 |
model_loaded = False
|
| 56 |
|
| 57 |
# Load model at startup
|
|
|
|
| 84 |
prediction = "Eligible" if probability > 0.5 else "Not Eligible"
|
| 85 |
confidence = abs(probability - 0.5) * 2
|
| 86 |
|
| 87 |
+
return prediction, f"{probability:.4f}", f"{confidence:.4f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
except Exception as e:
|
| 90 |
logger.error(f"Prediction error: {str(e)}")
|
| 91 |
+
return f"Error: {str(e)}", "N/A", "N/A"
|
| 92 |
|
| 93 |
# Create Gradio interface
|
| 94 |
with gr.Blocks(title="Student Eligibility Predictor") as demo:
|
|
|
|
| 97 |
|
| 98 |
with gr.Row():
|
| 99 |
with gr.Column():
|
| 100 |
+
# Create input components based on actual features
|
| 101 |
+
inputs = []
|
| 102 |
+
for feature in feature_names:
|
| 103 |
+
inputs.append(gr.Number(label=feature, value=75))
|
| 104 |
+
|
| 105 |
predict_btn = gr.Button("Predict", variant="primary")
|
| 106 |
+
|
| 107 |
with gr.Column():
|
| 108 |
prediction_output = gr.Textbox(label="Prediction")
|
| 109 |
probability_output = gr.Textbox(label="Probability")
|
| 110 |
confidence_output = gr.Textbox(label="Confidence")
|
| 111 |
|
| 112 |
+
# Setup examples
|
| 113 |
+
examples = []
|
| 114 |
+
if len(feature_names) >= 2:
|
| 115 |
+
examples = [[75, 80]] # Basic example with two features
|
| 116 |
+
else:
|
| 117 |
+
examples = [[75]] # Fallback example
|
| 118 |
+
|
| 119 |
+
gr.Examples(
|
| 120 |
+
examples=examples,
|
| 121 |
+
inputs=inputs,
|
| 122 |
+
outputs=[prediction_output, probability_output, confidence_output],
|
| 123 |
+
fn=predict,
|
| 124 |
+
cache_examples=False
|
| 125 |
+
)
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
predict_btn.click(
|
| 128 |
fn=predict,
|
| 129 |
+
inputs=inputs,
|
| 130 |
outputs=[prediction_output, probability_output, confidence_output]
|
| 131 |
)
|
| 132 |
|