Spaces:
Running
Running
优化情感得分计算逻辑,增加长文本处理功能,改进模型得分组合方式,添加 nltk 依赖
Browse files- blkeras.py +2 -4
- preprocess.py +103 -54
- requirements.txt +2 -1
blkeras.py
CHANGED
|
@@ -96,7 +96,7 @@ def ensure_fixed_shape(data, shape, variable_name=""):
|
|
| 96 |
|
| 97 |
def predict(text: str, stock_codes: list):
|
| 98 |
from tensorflow.keras.preprocessing.sequence import pad_sequences # type: ignore
|
| 99 |
-
from preprocess import get_document_vector, get_stock_info,
|
| 100 |
|
| 101 |
try:
|
| 102 |
|
|
@@ -110,10 +110,8 @@ def predict(text: str, stock_codes: list):
|
|
| 110 |
#print(f"predict() Input text: {input_text}")
|
| 111 |
|
| 112 |
# 使用预处理函数处理文本
|
| 113 |
-
processed_entry = processing_entry(input_text)
|
| 114 |
-
|
| 115 |
# 解包 processed_entry 中的各个值
|
| 116 |
-
lemmatized_entry, pos_tag, ner, _ , sentiment_score =
|
| 117 |
|
| 118 |
# 分别打印每个变量,便于调试
|
| 119 |
#print("Lemmatized Entry:", lemmatized_entry)
|
|
|
|
| 96 |
|
| 97 |
def predict(text: str, stock_codes: list):
|
| 98 |
from tensorflow.keras.preprocessing.sequence import pad_sequences # type: ignore
|
| 99 |
+
from preprocess import get_document_vector, get_stock_info, process_entities, process_pos_tags, processing_entry
|
| 100 |
|
| 101 |
try:
|
| 102 |
|
|
|
|
| 110 |
#print(f"predict() Input text: {input_text}")
|
| 111 |
|
| 112 |
# 使用预处理函数处理文本
|
|
|
|
|
|
|
| 113 |
# 解包 processed_entry 中的各个值
|
| 114 |
+
lemmatized_entry, pos_tag, ner, _ , sentiment_score = processing_entry(input_text)
|
| 115 |
|
| 116 |
# 分别打印每个变量,便于调试
|
| 117 |
#print("Lemmatized Entry:", lemmatized_entry)
|
preprocess.py
CHANGED
|
@@ -223,72 +223,121 @@ def get_document_vector(words, model = word2vec_model):
|
|
| 223 |
|
| 224 |
|
| 225 |
# 函数:获取情感得分
|
| 226 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
try:
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
# result_one = sentiment_analyzer_one(text, truncation=True, max_length=512)[0]
|
| 232 |
-
# 获取模型输出
|
| 233 |
-
with torch.no_grad():
|
| 234 |
-
outputs_one = sa_model_one(**tokenizer_one(text, return_tensors="pt", truncation=False))
|
| 235 |
-
predictions_one = torch.nn.functional.softmax(outputs_one.logits, dim=-1)
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
outputs_two = sa_model_two(**tokenizer_two(text, return_tensors="pt", truncation=False))
|
| 239 |
-
predictions_two = torch.nn.functional.softmax(outputs_two.logits, dim=-1)
|
| 240 |
-
|
| 241 |
-
# 获取所有标签的概率
|
| 242 |
-
scores_one = predictions_one[0].tolist()
|
| 243 |
-
scores_two = predictions_two[0].tolist()
|
| 244 |
-
|
| 245 |
-
# 获取标签映射
|
| 246 |
-
# labels_one = sa_model_one.config.id2label
|
| 247 |
-
# labels_two = sa_model_two.config.id2label
|
| 248 |
-
|
| 249 |
-
# 打印所有标签的概率
|
| 250 |
-
score_one_positive = scores_one[0]
|
| 251 |
-
score_one_negative = scores_one[1]
|
| 252 |
-
score_one_neutral = scores_one[2]
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
final_score_one = 0.0
|
| 256 |
-
final_score_one += score_one_positive
|
| 257 |
-
final_score_one -= score_one_negative
|
| 258 |
-
if score_one_positive > score_one_negative:
|
| 259 |
-
final_score_one += score_one_neutral
|
| 260 |
-
else:
|
| 261 |
-
final_score_one -= score_one_neutral
|
| 262 |
-
|
| 263 |
-
final_score_one = max(-1.0, min(1.0, final_score_one))
|
| 264 |
-
|
| 265 |
-
score_two_neutral = scores_two[0]
|
| 266 |
-
score_two_positive = scores_two[1]
|
| 267 |
-
score_two_negative = scores_two[2]
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
else:
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
|
|
|
| 280 |
|
| 281 |
-
#
|
| 282 |
-
|
|
|
|
| 283 |
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
except Exception as e:
|
| 287 |
print(f"Error in get_sentiment_score for text: {text[:50]}... Error: {str(e)}")
|
| 288 |
traceback.print_exc()
|
| 289 |
return 0.0
|
| 290 |
-
|
| 291 |
-
|
| 292 |
|
| 293 |
|
| 294 |
def get_stock_info(stock_code: str, history_days=30):
|
|
|
|
| 223 |
|
| 224 |
|
| 225 |
# 函数:获取情感得分
|
| 226 |
+
def process_long_text(text, tokenizer, max_length=512):
|
| 227 |
+
"""
|
| 228 |
+
将长文本分段并保持句子完整性
|
| 229 |
+
"""
|
| 230 |
+
import nltk
|
| 231 |
try:
|
| 232 |
+
nltk.data.find('tokenizers/punkt')
|
| 233 |
+
except LookupError:
|
| 234 |
+
nltk.download('punkt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
try:
|
| 237 |
+
nltk.data.find('tokenizers/punkt_tab')
|
| 238 |
+
except LookupError:
|
| 239 |
+
nltk.download('punkt_tab')
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
sentences = nltk.sent_tokenize(text)
|
| 243 |
+
segments = []
|
| 244 |
+
current_segment = ""
|
| 245 |
+
|
| 246 |
+
for sentence in sentences:
|
| 247 |
+
print(f"Processing sentence: {sentence}")
|
| 248 |
+
# 检查添加当前句子后是否会超过最大长度
|
| 249 |
+
test_segment = current_segment + " " + sentence if current_segment else sentence
|
| 250 |
+
if len(tokenizer.tokenize(test_segment)) > max_length:
|
| 251 |
+
if current_segment:
|
| 252 |
+
segments.append(current_segment.strip())
|
| 253 |
+
current_segment = sentence
|
| 254 |
else:
|
| 255 |
+
current_segment = test_segment
|
| 256 |
+
|
| 257 |
+
# 添加最后一个段落
|
| 258 |
+
if current_segment:
|
| 259 |
+
segments.append(current_segment.strip())
|
| 260 |
|
| 261 |
+
return segments
|
| 262 |
|
| 263 |
+
def get_sentiment_score(text):
|
| 264 |
+
try:
|
| 265 |
+
import torch
|
| 266 |
|
| 267 |
+
# 将长文本分段
|
| 268 |
+
segments_one = process_long_text(text, tokenizer_one)
|
| 269 |
+
segments_two = process_long_text(text, tokenizer_two)
|
| 270 |
|
| 271 |
+
final_scores_one = []
|
| 272 |
+
final_scores_two = []
|
| 273 |
+
weights_one = []
|
| 274 |
+
weights_two = []
|
| 275 |
+
|
| 276 |
+
# 处理每个段落 - 模型一
|
| 277 |
+
for segment in segments_one:
|
| 278 |
+
with torch.no_grad():
|
| 279 |
+
inputs = tokenizer_one(segment, return_tensors="pt", truncation=True, max_length=512)
|
| 280 |
+
outputs = sa_model_one(**inputs)
|
| 281 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 282 |
+
|
| 283 |
+
scores = predictions[0].tolist()
|
| 284 |
+
score_positive = scores[0]
|
| 285 |
+
score_negative = scores[1]
|
| 286 |
+
score_neutral = scores[2]
|
| 287 |
+
|
| 288 |
+
segment_score = 0.0
|
| 289 |
+
segment_score += score_positive
|
| 290 |
+
segment_score -= score_negative
|
| 291 |
+
if score_positive > score_negative:
|
| 292 |
+
segment_score += score_neutral
|
| 293 |
+
else:
|
| 294 |
+
segment_score -= score_neutral
|
| 295 |
+
|
| 296 |
+
final_scores_one.append(np.clip(segment_score, -1.0, 1.0))
|
| 297 |
+
weights_one.append(len(tokenizer_one.tokenize(segment)))
|
| 298 |
+
|
| 299 |
+
# 处理每个段落 - 模型二
|
| 300 |
+
for segment in segments_two:
|
| 301 |
+
with torch.no_grad():
|
| 302 |
+
inputs = tokenizer_two(segment, return_tensors="pt", truncation=True, max_length=512)
|
| 303 |
+
outputs = sa_model_two(**inputs)
|
| 304 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 305 |
+
|
| 306 |
+
scores = predictions[0].tolist()
|
| 307 |
+
score_neutral = scores[0]
|
| 308 |
+
score_positive = scores[1]
|
| 309 |
+
score_negative = scores[2]
|
| 310 |
+
|
| 311 |
+
segment_score = 0.0
|
| 312 |
+
segment_score += score_positive
|
| 313 |
+
segment_score -= score_negative
|
| 314 |
+
if score_positive > score_negative:
|
| 315 |
+
segment_score += score_neutral
|
| 316 |
+
else:
|
| 317 |
+
segment_score -= score_neutral
|
| 318 |
+
|
| 319 |
+
final_scores_two.append(np.clip(segment_score, -1.0, 1.0))
|
| 320 |
+
weights_two.append(len(tokenizer_two.tokenize(segment)))
|
| 321 |
+
|
| 322 |
+
# 加权平均
|
| 323 |
+
if final_scores_one:
|
| 324 |
+
final_score_one = np.average(final_scores_one, weights=weights_one)
|
| 325 |
+
else:
|
| 326 |
+
final_score_one = 0.0
|
| 327 |
+
|
| 328 |
+
if final_scores_two:
|
| 329 |
+
final_score_two = np.average(final_scores_two, weights=weights_two)
|
| 330 |
+
else:
|
| 331 |
+
final_score_two = 0.0
|
| 332 |
+
|
| 333 |
+
# 组合两个模型的结果
|
| 334 |
+
final_score = np.average([final_score_one, final_score_two], weights=[0.3, 0.7])
|
| 335 |
+
return np.clip(final_score, -1.0, 1.0)
|
| 336 |
|
| 337 |
except Exception as e:
|
| 338 |
print(f"Error in get_sentiment_score for text: {text[:50]}... Error: {str(e)}")
|
| 339 |
traceback.print_exc()
|
| 340 |
return 0.0
|
|
|
|
|
|
|
| 341 |
|
| 342 |
|
| 343 |
def get_stock_info(stock_code: str, history_days=30):
|
requirements.txt
CHANGED
|
@@ -16,4 +16,5 @@ yfinance==0.2.47
|
|
| 16 |
jsonpath==0.82.2
|
| 17 |
tensorflow==2.16.2
|
| 18 |
pydantic==2.9.2
|
| 19 |
-
pydantic_core==2.23.4
|
|
|
|
|
|
| 16 |
jsonpath==0.82.2
|
| 17 |
tensorflow==2.16.2
|
| 18 |
pydantic==2.9.2
|
| 19 |
+
pydantic_core==2.23.4
|
| 20 |
+
nltk
|