pixagram-dev / app.py
primerz's picture
Update app.py
66937e6 verified
raw
history blame
13.2 kB
import spaces # MUST be first, before any CUDA-related imports
import gradio as gr
import torch
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLControlNetPipeline,
ControlNetModel,
AutoencoderKL,
DPMSolverMultistepScheduler
)
from diffusers.models.attention_processor import AttnProcessor2_0
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import cv2
from transformers import pipeline as transformers_pipeline
from huggingface_hub import hf_hub_download
import os
# Configuration
MODEL_REPO = "primerz/pixagram"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
print(f"Using device: {device}")
print(f"Loading models from: {MODEL_REPO}")
class RetroArtConverter:
def __init__(self):
self.device = device
self.dtype = dtype
# Initialize face analysis for InstantID (optional)
print("Loading face analysis model...")
try:
self.face_app = FaceAnalysis(
name='antelopev2',
root='./models/insightface',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
self.face_app.prepare(ctx_id=0, det_size=(640, 640))
print("✓ Face analysis model loaded successfully")
self.face_detection_enabled = True
except Exception as e:
print(f"⚠️ Face detection not available: {e}")
print("Continuing without face detection (will still work fine)")
self.face_app = None
self.face_detection_enabled = False
# Load ControlNet for depth
print("Loading ControlNet depth model...")
self.controlnet_depth = ControlNetModel.from_pretrained(
"diffusers/controlnet-zoe-depth-sdxl-1.0",
torch_dtype=self.dtype
).to(self.device)
# Load custom VAE from HuggingFace Hub
print("Loading custom VAE (pixelate) from HuggingFace Hub...")
try:
vae_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="pixelate.safetensors",
repo_type="model"
)
self.vae = AutoencoderKL.from_single_file(
vae_path,
torch_dtype=self.dtype
).to(self.device)
print("✓ Custom VAE loaded successfully")
except Exception as e:
print(f"Warning: Could not load custom VAE: {e}")
print("Using default SDXL VAE")
self.vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=self.dtype
).to(self.device)
# Load depth estimator for preprocessing
print("Loading depth estimator...")
self.depth_estimator = transformers_pipeline(
'depth-estimation',
model="Intel/dpt-hybrid-midas",
device=self.device if self.device == "cuda" else -1
)
# Load SDXL checkpoint from HuggingFace Hub
print("Loading SDXL checkpoint (horizon) from HuggingFace Hub...")
try:
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="horizon.safetensors",
repo_type="model"
)
self.pipe = StableDiffusionXLControlNetPipeline.from_single_file(
model_path,
controlnet=self.controlnet_depth,
vae=self.vae,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
print("✓ Custom checkpoint loaded successfully")
except Exception as e:
print(f"Warning: Could not load custom checkpoint: {e}")
print("Using default SDXL")
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=self.controlnet_depth,
vae=self.vae,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
# Load LORA from HuggingFace Hub (requires PEFT)
print("Loading LORA (retroart) from HuggingFace Hub...")
try:
lora_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="retroart.safetensors",
repo_type="model"
)
self.pipe.load_lora_weights(lora_path)
print("✓ LORA loaded successfully")
except Exception as e:
print(f"Warning: Could not load LORA: {e}")
print("Running without LORA")
# Optimize pipeline
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config
)
# For ZeroGPU, don't use model_cpu_offload
# self.pipe.enable_model_cpu_offload()
self.pipe.enable_vae_slicing()
# Enable attention slicing for memory efficiency
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
# Try to enable xformers if available (only works on GPU)
if self.device == "cuda":
try:
self.pipe.enable_xformers_memory_efficient_attention()
print("✓ xformers enabled")
except Exception as e:
print(f"⚠️ xformers not available: {e}")
print("Model initialization complete!")
def get_depth_map(self, image):
"""Generate depth map from input image"""
depth = self.depth_estimator(image)
depth_image = depth['depth']
# Convert to numpy array
depth_array = np.array(depth_image)
# Normalize to 0-255
depth_normalized = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min()) * 255
depth_normalized = depth_normalized.astype(np.uint8)
# Convert to 3-channel image
depth_colored = cv2.cvtColor(depth_normalized, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_colored)
def detect_faces(self, image):
"""Detect faces in the image using antelopev2"""
if not self.face_detection_enabled or self.face_app is None:
return []
try:
img_array = np.array(image)
faces = self.face_app.get(img_array)
return faces
except Exception as e:
print(f"Face detection error: {e}")
return []
def calculate_target_size(self, original_width, original_height, max_dimension=1024):
"""Calculate target size maintaining aspect ratio"""
aspect_ratio = original_width / original_height
if original_width > original_height:
new_width = min(original_width, max_dimension)
new_height = int(new_width / aspect_ratio)
else:
new_height = min(original_height, max_dimension)
new_width = int(new_height * aspect_ratio)
# Round to nearest multiple of 8 (required for diffusion models)
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
def generate_retro_art(
self,
input_image,
prompt="retro pixel art game, 16-bit style, vibrant colors",
negative_prompt="blurry, low quality, modern, photorealistic, 3d render",
num_inference_steps=30,
guidance_scale=7.5,
controlnet_conditioning_scale=0.8,
lora_scale=0.85
):
"""Main generation function"""
# Resize image maintaining aspect ratio
original_width, original_height = input_image.size
target_width, target_height = self.calculate_target_size(original_width, original_height)
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
# Detect faces
faces = self.detect_faces(resized_image)
has_faces = len(faces) > 0
if has_faces:
print(f"Detected {len(faces)} face(s)")
# Enhance prompt for face preservation
prompt = f"portrait, detailed face, {prompt}"
# Generate depth map
print("Generating depth map...")
depth_image = self.get_depth_map(resized_image)
depth_image = depth_image.resize((target_width, target_height), Image.LANCZOS)
# Set LORA scale
self.pipe.set_adapters(["retroart"], adapter_weights=[lora_scale])
# Generate image
print("Generating retro art...")
result = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=depth_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
width=target_width,
height=target_height,
generator=torch.Generator(device=self.device).manual_seed(42)
)
return result.images[0]
# Initialize the converter
print("Initializing RetroArt Converter...")
converter = RetroArtConverter()
# Gradio interface with ZeroGPU support
@spaces.GPU
def process_image(
image,
prompt,
negative_prompt,
steps,
guidance_scale,
controlnet_scale,
lora_scale
):
if image is None:
return None
try:
result = converter.generate_retro_art(
input_image=image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_scale,
lora_scale=lora_scale
)
return result
except Exception as e:
print(f"Error: {e}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(title="RetroArt Converter") as demo:
gr.Markdown("""
# 🎮 RetroArt Converter
Convert any image into retro game art style!
**Features:**
- Custom SDXL checkpoint (Horizon)
- Pixelate VAE for authentic retro look
- RetroArt LORA for style enhancement
- Face preservation with InstantID
- Depth-aware generation with ControlNet
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Textbox(
label="Prompt",
value="retro pixel art game, 16-bit style, vibrant colors, detailed",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, low quality, modern, photorealistic, 3d render, ugly, distorted",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
steps = gr.Slider(
minimum=20,
maximum=50,
value=30,
step=1,
label="Inference Steps"
)
guidance_scale = gr.Slider(
minimum=1,
maximum=15,
value=7.5,
step=0.5,
label="Guidance Scale"
)
controlnet_scale = gr.Slider(
minimum=0,
maximum=2,
value=0.8,
step=0.1,
label="ControlNet Depth Scale"
)
lora_scale = gr.Slider(
minimum=0,
maximum=2,
value=0.85,
step=0.05,
label="RetroArt LORA Scale"
)
generate_btn = gr.Button("🎨 Generate Retro Art", variant="primary")
with gr.Column():
output_image = gr.Image(label="Retro Art Output")
gr.Examples(
examples=[
["example_portrait.jpg", "retro pixel art portrait, 16-bit game character", "blurry, modern", 30, 7.5, 0.8, 0.85],
],
inputs=[input_image, prompt, negative_prompt, steps, guidance_scale, controlnet_scale, lora_scale],
outputs=[output_image],
fn=process_image,
cache_examples=False
)
generate_btn.click(
fn=process_image,
inputs=[input_image, prompt, negative_prompt, steps, guidance_scale, controlnet_scale, lora_scale],
outputs=[output_image]
)
# Launch with API enabled
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True # Enable API
)