Spaces:
Runtime error
Runtime error
File size: 13,239 Bytes
66937e6 ff176e8 8967a30 ff176e8 8967a30 66937e6 ff176e8 66937e6 ff176e8 66937e6 ff176e8 ee0b470 ff176e8 ee0b470 ff176e8 8967a30 ff176e8 8967a30 ff176e8 38897a0 ff176e8 8967a30 ff176e8 8967a30 ff176e8 38897a0 8967a30 ff176e8 8967a30 ff176e8 38897a0 66937e6 38897a0 ff176e8 38897a0 ff176e8 38897a0 ff176e8 38897a0 ff176e8 66937e6 ff176e8 ee0b470 ff176e8 38897a0 ff176e8 ee0b470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import spaces # MUST be first, before any CUDA-related imports
import gradio as gr
import torch
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLControlNetPipeline,
ControlNetModel,
AutoencoderKL,
DPMSolverMultistepScheduler
)
from diffusers.models.attention_processor import AttnProcessor2_0
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import cv2
from transformers import pipeline as transformers_pipeline
from huggingface_hub import hf_hub_download
import os
# Configuration
MODEL_REPO = "primerz/pixagram"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
print(f"Using device: {device}")
print(f"Loading models from: {MODEL_REPO}")
class RetroArtConverter:
def __init__(self):
self.device = device
self.dtype = dtype
# Initialize face analysis for InstantID (optional)
print("Loading face analysis model...")
try:
self.face_app = FaceAnalysis(
name='antelopev2',
root='./models/insightface',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
self.face_app.prepare(ctx_id=0, det_size=(640, 640))
print("✓ Face analysis model loaded successfully")
self.face_detection_enabled = True
except Exception as e:
print(f"⚠️ Face detection not available: {e}")
print("Continuing without face detection (will still work fine)")
self.face_app = None
self.face_detection_enabled = False
# Load ControlNet for depth
print("Loading ControlNet depth model...")
self.controlnet_depth = ControlNetModel.from_pretrained(
"diffusers/controlnet-zoe-depth-sdxl-1.0",
torch_dtype=self.dtype
).to(self.device)
# Load custom VAE from HuggingFace Hub
print("Loading custom VAE (pixelate) from HuggingFace Hub...")
try:
vae_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="pixelate.safetensors",
repo_type="model"
)
self.vae = AutoencoderKL.from_single_file(
vae_path,
torch_dtype=self.dtype
).to(self.device)
print("✓ Custom VAE loaded successfully")
except Exception as e:
print(f"Warning: Could not load custom VAE: {e}")
print("Using default SDXL VAE")
self.vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=self.dtype
).to(self.device)
# Load depth estimator for preprocessing
print("Loading depth estimator...")
self.depth_estimator = transformers_pipeline(
'depth-estimation',
model="Intel/dpt-hybrid-midas",
device=self.device if self.device == "cuda" else -1
)
# Load SDXL checkpoint from HuggingFace Hub
print("Loading SDXL checkpoint (horizon) from HuggingFace Hub...")
try:
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="horizon.safetensors",
repo_type="model"
)
self.pipe = StableDiffusionXLControlNetPipeline.from_single_file(
model_path,
controlnet=self.controlnet_depth,
vae=self.vae,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
print("✓ Custom checkpoint loaded successfully")
except Exception as e:
print(f"Warning: Could not load custom checkpoint: {e}")
print("Using default SDXL")
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=self.controlnet_depth,
vae=self.vae,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
# Load LORA from HuggingFace Hub (requires PEFT)
print("Loading LORA (retroart) from HuggingFace Hub...")
try:
lora_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="retroart.safetensors",
repo_type="model"
)
self.pipe.load_lora_weights(lora_path)
print("✓ LORA loaded successfully")
except Exception as e:
print(f"Warning: Could not load LORA: {e}")
print("Running without LORA")
# Optimize pipeline
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config
)
# For ZeroGPU, don't use model_cpu_offload
# self.pipe.enable_model_cpu_offload()
self.pipe.enable_vae_slicing()
# Enable attention slicing for memory efficiency
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
# Try to enable xformers if available (only works on GPU)
if self.device == "cuda":
try:
self.pipe.enable_xformers_memory_efficient_attention()
print("✓ xformers enabled")
except Exception as e:
print(f"⚠️ xformers not available: {e}")
print("Model initialization complete!")
def get_depth_map(self, image):
"""Generate depth map from input image"""
depth = self.depth_estimator(image)
depth_image = depth['depth']
# Convert to numpy array
depth_array = np.array(depth_image)
# Normalize to 0-255
depth_normalized = (depth_array - depth_array.min()) / (depth_array.max() - depth_array.min()) * 255
depth_normalized = depth_normalized.astype(np.uint8)
# Convert to 3-channel image
depth_colored = cv2.cvtColor(depth_normalized, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_colored)
def detect_faces(self, image):
"""Detect faces in the image using antelopev2"""
if not self.face_detection_enabled or self.face_app is None:
return []
try:
img_array = np.array(image)
faces = self.face_app.get(img_array)
return faces
except Exception as e:
print(f"Face detection error: {e}")
return []
def calculate_target_size(self, original_width, original_height, max_dimension=1024):
"""Calculate target size maintaining aspect ratio"""
aspect_ratio = original_width / original_height
if original_width > original_height:
new_width = min(original_width, max_dimension)
new_height = int(new_width / aspect_ratio)
else:
new_height = min(original_height, max_dimension)
new_width = int(new_height * aspect_ratio)
# Round to nearest multiple of 8 (required for diffusion models)
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
def generate_retro_art(
self,
input_image,
prompt="retro pixel art game, 16-bit style, vibrant colors",
negative_prompt="blurry, low quality, modern, photorealistic, 3d render",
num_inference_steps=30,
guidance_scale=7.5,
controlnet_conditioning_scale=0.8,
lora_scale=0.85
):
"""Main generation function"""
# Resize image maintaining aspect ratio
original_width, original_height = input_image.size
target_width, target_height = self.calculate_target_size(original_width, original_height)
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
# Detect faces
faces = self.detect_faces(resized_image)
has_faces = len(faces) > 0
if has_faces:
print(f"Detected {len(faces)} face(s)")
# Enhance prompt for face preservation
prompt = f"portrait, detailed face, {prompt}"
# Generate depth map
print("Generating depth map...")
depth_image = self.get_depth_map(resized_image)
depth_image = depth_image.resize((target_width, target_height), Image.LANCZOS)
# Set LORA scale
self.pipe.set_adapters(["retroart"], adapter_weights=[lora_scale])
# Generate image
print("Generating retro art...")
result = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=depth_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
width=target_width,
height=target_height,
generator=torch.Generator(device=self.device).manual_seed(42)
)
return result.images[0]
# Initialize the converter
print("Initializing RetroArt Converter...")
converter = RetroArtConverter()
# Gradio interface with ZeroGPU support
@spaces.GPU
def process_image(
image,
prompt,
negative_prompt,
steps,
guidance_scale,
controlnet_scale,
lora_scale
):
if image is None:
return None
try:
result = converter.generate_retro_art(
input_image=image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_scale,
lora_scale=lora_scale
)
return result
except Exception as e:
print(f"Error: {e}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(title="RetroArt Converter") as demo:
gr.Markdown("""
# 🎮 RetroArt Converter
Convert any image into retro game art style!
**Features:**
- Custom SDXL checkpoint (Horizon)
- Pixelate VAE for authentic retro look
- RetroArt LORA for style enhancement
- Face preservation with InstantID
- Depth-aware generation with ControlNet
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Textbox(
label="Prompt",
value="retro pixel art game, 16-bit style, vibrant colors, detailed",
lines=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, low quality, modern, photorealistic, 3d render, ugly, distorted",
lines=2
)
with gr.Accordion("Advanced Settings", open=False):
steps = gr.Slider(
minimum=20,
maximum=50,
value=30,
step=1,
label="Inference Steps"
)
guidance_scale = gr.Slider(
minimum=1,
maximum=15,
value=7.5,
step=0.5,
label="Guidance Scale"
)
controlnet_scale = gr.Slider(
minimum=0,
maximum=2,
value=0.8,
step=0.1,
label="ControlNet Depth Scale"
)
lora_scale = gr.Slider(
minimum=0,
maximum=2,
value=0.85,
step=0.05,
label="RetroArt LORA Scale"
)
generate_btn = gr.Button("🎨 Generate Retro Art", variant="primary")
with gr.Column():
output_image = gr.Image(label="Retro Art Output")
gr.Examples(
examples=[
["example_portrait.jpg", "retro pixel art portrait, 16-bit game character", "blurry, modern", 30, 7.5, 0.8, 0.85],
],
inputs=[input_image, prompt, negative_prompt, steps, guidance_scale, controlnet_scale, lora_scale],
outputs=[output_image],
fn=process_image,
cache_examples=False
)
generate_btn.click(
fn=process_image,
inputs=[input_image, prompt, negative_prompt, steps, guidance_scale, controlnet_scale, lora_scale],
outputs=[output_image]
)
# Launch with API enabled
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True # Enable API
) |