File size: 7,683 Bytes
c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 c4e848c c7b6445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import re
import requests
import gradio as gr
from bs4 import BeautifulSoup
import torch
# Hugging Face Transformers
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
Trainer,
TrainingArguments,
pipeline
)
from datasets import Dataset
# -----------------------------
# 1) SCRAPING (OPTIONAL)
# -----------------------------
BASE_URL = "https://www.cia.gov"
ARCHIVE_URL = "https://www.cia.gov/resources/csi/studies-in-intelligence/archives/operations-subject-index/"
def get_article_links():
"""
Fetch the archive page and extract article links pointing to the CIA Studies in Intelligence.
"""
response = requests.get(ARCHIVE_URL)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
links = []
for a_tag in soup.find_all('a', href=True):
href = a_tag['href']
if "resources/csi/studies-in-intelligence" in href.lower():
# Convert relative links to absolute
if href.startswith("/"):
href = BASE_URL + href
links.append(href)
return list(set(links)) # remove duplicates
def scrape_article_text(url):
"""
Fetch the article text from the URL if it's HTML.
(Skipping PDFs for demo.)
"""
response = requests.get(url)
response.raise_for_status()
content_type = response.headers.get('Content-Type', '')
if 'application/pdf' in content_type.lower():
# Skip PDFs in this simple demo.
return None
soup = BeautifulSoup(response.text, 'html.parser')
paragraphs = soup.find_all('p')
article_text = "\n".join(p.get_text(strip=True) for p in paragraphs)
return article_text
def scrape_all_articles(article_links):
"""
Iterate through all links and gather text into a dict {url: text}.
"""
corpus_data = {}
for link in article_links:
text = scrape_article_text(link)
if text:
corpus_data[link] = text
return corpus_data
# -----------------------------
# 2) DATA CLEANING
# -----------------------------
import re
def clean_text(text):
# Simple cleaning: remove extra whitespace
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
def prepare_dataset(corpus_data):
cleaned_texts = []
for url, text in corpus_data.items():
cleaned_texts.append(clean_text(text))
return cleaned_texts
# -----------------------------
# 3) FINE-TUNING (OPTIONAL)
# -----------------------------
def fine_tune_model(cleaned_texts, model_name="gpt2", output_dir="cia_agent_model"):
"""
Fine-tunes GPT-2 on your CIA corpus.
Warning: resource-intensive! The free Hugging Face Spaces might time out.
"""
ds = Dataset.from_dict({"text": cleaned_texts})
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token # GPT-2 doesn't have a pad token
def tokenize_function(examples):
return tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=128
)
tokenized_ds = ds.map(tokenize_function, batched=True)
model = AutoModelForCausalLM.from_pretrained(model_name)
training_args = TrainingArguments(
output_dir=output_dir,
overwrite_output_dir=True,
num_train_epochs=1, # demonstration only
per_device_train_batch_size=1,
save_steps=100,
save_total_limit=1,
logging_steps=10,
evaluation_strategy="no", # or 'steps'
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_ds,
)
trainer.train()
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
return model, tokenizer
# -----------------------------
# 4) CIAgent INFERENCE
# -----------------------------
class CIAgent:
def __init__(self, model_path="cia_agent_model"):
"""
Initialize a pipeline from a local fine-tuned model folder or fallback to GPT-2.
"""
if not os.path.exists(model_path):
model_path = "gpt2"
self.generator = pipeline(
"text-generation",
model=model_path,
tokenizer=model_path
)
self.max_length = 128
def query(self, prompt, max_length=128, temperature=0.7, top_p=0.9):
"""
Generate text from the model.
"""
outputs = self.generator(
prompt,
max_length=max_length,
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)
return outputs[0]["generated_text"]
# -----------------------------
# 5) GRADIO CHAT INTERFACE
# -----------------------------
# Create (or load) your CIAgent. In a real workflow, you might have already
# fine-tuned locally and just upload the "cia_agent_model" folder to your Space.
agent = CIAgent(model_path="cia_agent_model") # or "gpt2" if you haven't trained
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p
):
"""
This function is called by Gradio's ChatInterface. It receives:
- message: current user message
- history: list of (user_text, assistant_text) pairs
- system_message: the "system" instruction to guide the model
- max_tokens, temperature, top_p: generation parameters
We build a 'prompt' from all conversation turns + system message.
Then we query the CIAgent to get one text output.
Since CIAgent doesn't stream tokens by default, we yield once at the end.
"""
# Build the conversation prompt
# For demonstration, we simply concatenate everything in a naive format.
# You could style it in a more advanced way for better context handling.
prompt = f"System: {system_message}\n\n"
for user_text, assistant_text in history:
if user_text:
prompt += f"User: {user_text}\n"
if assistant_text:
prompt += f"Assistant: {assistant_text}\n"
# Add the new user message
prompt += f"User: {message}\nAssistant: "
# Query the local CIAgent
response_text = agent.query(
prompt,
max_length=max_tokens,
temperature=temperature,
top_p=top_p
)
# We can yield partial tokens if we want streaming, but the pipeline
# returns the entire text at once. Let's yield a single chunk:
yield response_text
# Create the ChatInterface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot that knows about CIA Studies in Intelligence.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
# WARNING: Running scraping & fine-tuning on a free HF Space
# might exceed time/memory limits. If you do want to train, uncomment:
#
# article_links = get_article_links()
# corpus_data = scrape_all_articles(article_links)
# cleaned_texts = prepare_dataset(corpus_data)
# model, tokenizer = fine_tune_model(cleaned_texts)
#
# Then re-initialize agent = CIAgent("cia_agent_model")
#
# For now, just launch the Gradio chat using the existing or fallback GPT-2 model.
demo.launch()
|