Spaces:
Runtime error
Runtime error
Srinivasulu kethanaboina
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,19 @@
|
|
| 1 |
from dotenv import load_dotenv
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
-
import csv
|
| 5 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 6 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 8 |
-
from
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
# Load environment variables
|
| 11 |
load_dotenv()
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
# Configure the Llama index settings
|
| 14 |
Settings.llm = HuggingFaceInferenceAPI(
|
| 15 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
@@ -24,28 +28,24 @@ Settings.embed_model = HuggingFaceEmbedding(
|
|
| 24 |
)
|
| 25 |
|
| 26 |
# Define the directory for persistent storage and data
|
| 27 |
-
PERSIST_DIR = "
|
| 28 |
-
|
| 29 |
|
| 30 |
# Ensure directories exist
|
|
|
|
| 31 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 32 |
|
| 33 |
# Variable to store current chat conversation
|
| 34 |
-
current_chat_history =
|
| 35 |
-
|
| 36 |
|
| 37 |
def data_ingestion_from_directory():
|
| 38 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
| 39 |
-
PDF_DIRECTORY = 'data' # Replace with the directory containing your PDFs
|
| 40 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
| 41 |
storage_context = StorageContext.from_defaults()
|
| 42 |
index = VectorStoreIndex.from_documents(documents)
|
| 43 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 44 |
|
| 45 |
-
|
| 46 |
def handle_query(query):
|
| 47 |
-
global current_chat_history
|
| 48 |
-
|
| 49 |
chat_text_qa_msgs = [
|
| 50 |
(
|
| 51 |
"user",
|
|
@@ -67,7 +67,7 @@ def handle_query(query):
|
|
| 67 |
|
| 68 |
# Use chat history to enhance response
|
| 69 |
context_str = ""
|
| 70 |
-
for past_query, response in reversed(current_chat_history
|
| 71 |
if past_query.strip():
|
| 72 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
| 73 |
|
|
@@ -82,40 +82,55 @@ def handle_query(query):
|
|
| 82 |
response = "Sorry, I couldn't find an answer."
|
| 83 |
|
| 84 |
# Update current chat history
|
| 85 |
-
current_chat_history
|
| 86 |
-
|
| 87 |
-
# Save chat history to CSV
|
| 88 |
-
with open(CSV_FILE, 'a', newline='', encoding='utf-8') as file:
|
| 89 |
-
csv_writer = csv.writer(file)
|
| 90 |
-
csv_writer.writerow([query, response])
|
| 91 |
|
| 92 |
return response
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
def predict(message, history):
|
| 96 |
-
# Your logo HTML code
|
| 97 |
logo_html = '''
|
| 98 |
<div class="circle-logo">
|
| 99 |
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
| 100 |
</div>
|
| 101 |
'''
|
| 102 |
-
|
| 103 |
-
# Assuming handle_query function handles the message and returns a response
|
| 104 |
response = handle_query(message)
|
| 105 |
-
|
| 106 |
-
# Prepare the response with logo HTML
|
| 107 |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
| 108 |
-
|
| 109 |
-
# Convert history to a string (if it's a list)
|
| 110 |
-
if isinstance(history, list):
|
| 111 |
-
history = ' '.join(map(str, history))
|
| 112 |
-
|
| 113 |
-
# Save history to kk.txt
|
| 114 |
-
with open('kk.txt', 'a') as file:
|
| 115 |
-
file.write(history + '\n')
|
| 116 |
-
|
| 117 |
return response_with_logo
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Custom CSS for styling
|
| 121 |
css = '''
|
|
@@ -128,13 +143,11 @@ css = '''
|
|
| 128 |
margin-right: 10px;
|
| 129 |
vertical-align: middle;
|
| 130 |
}
|
| 131 |
-
|
| 132 |
.circle-logo img {
|
| 133 |
width: 100%;
|
| 134 |
height: 100%;
|
| 135 |
object-fit: cover;
|
| 136 |
}
|
| 137 |
-
|
| 138 |
.response-with-logo {
|
| 139 |
display: flex;
|
| 140 |
align-items: center;
|
|
@@ -146,11 +159,9 @@ footer {
|
|
| 146 |
}
|
| 147 |
label.svelte-1b6s6s {display: none}
|
| 148 |
'''
|
| 149 |
-
|
| 150 |
-
# Launch Gradio interface
|
| 151 |
gr.ChatInterface(predict,
|
| 152 |
css=css,
|
| 153 |
description="FernAI",
|
| 154 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
| 155 |
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
|
| 156 |
-
).launch(
|
|
|
|
| 1 |
from dotenv import load_dotenv
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
|
|
|
| 4 |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
| 5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
| 6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
import firebase_admin
|
| 9 |
+
from firebase_admin import db, credentials
|
| 10 |
+
import datetime
|
| 11 |
+
import uuid
|
| 12 |
# Load environment variables
|
| 13 |
load_dotenv()
|
| 14 |
+
# authenticate to firebase
|
| 15 |
+
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json")
|
| 16 |
+
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"})
|
| 17 |
# Configure the Llama index settings
|
| 18 |
Settings.llm = HuggingFaceInferenceAPI(
|
| 19 |
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
# Define the directory for persistent storage and data
|
| 31 |
+
PERSIST_DIR = "db"
|
| 32 |
+
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
|
| 33 |
|
| 34 |
# Ensure directories exist
|
| 35 |
+
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
| 36 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
| 37 |
|
| 38 |
# Variable to store current chat conversation
|
| 39 |
+
current_chat_history = []
|
|
|
|
| 40 |
|
| 41 |
def data_ingestion_from_directory():
|
| 42 |
# Use SimpleDirectoryReader on the directory containing the PDF files
|
|
|
|
| 43 |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
| 44 |
storage_context = StorageContext.from_defaults()
|
| 45 |
index = VectorStoreIndex.from_documents(documents)
|
| 46 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 47 |
|
|
|
|
| 48 |
def handle_query(query):
|
|
|
|
|
|
|
| 49 |
chat_text_qa_msgs = [
|
| 50 |
(
|
| 51 |
"user",
|
|
|
|
| 67 |
|
| 68 |
# Use chat history to enhance response
|
| 69 |
context_str = ""
|
| 70 |
+
for past_query, response in reversed(current_chat_history):
|
| 71 |
if past_query.strip():
|
| 72 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
| 73 |
|
|
|
|
| 82 |
response = "Sorry, I couldn't find an answer."
|
| 83 |
|
| 84 |
# Update current chat history
|
| 85 |
+
current_chat_history.append((query, response))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
return response
|
| 88 |
|
| 89 |
+
# Example usage: Process PDF ingestion from directory
|
| 90 |
+
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
| 91 |
+
data_ingestion_from_directory()
|
| 92 |
|
| 93 |
+
# Define the function to handle predictions
|
| 94 |
+
"""def predict(message,history):
|
| 95 |
+
response = handle_query(message)
|
| 96 |
+
return response"""
|
| 97 |
def predict(message, history):
|
|
|
|
| 98 |
logo_html = '''
|
| 99 |
<div class="circle-logo">
|
| 100 |
<img src="https://rb.gy/8r06eg" alt="FernAi">
|
| 101 |
</div>
|
| 102 |
'''
|
|
|
|
|
|
|
| 103 |
response = handle_query(message)
|
|
|
|
|
|
|
| 104 |
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
return response_with_logo
|
| 106 |
+
def save_chat_message(session_id, message_data):
|
| 107 |
+
ref = db.reference(f'/chat_history/{session_id}') # Use the session ID to save chat data
|
| 108 |
+
ref.push().set(message_data)
|
| 109 |
+
|
| 110 |
+
# Define your Gradio chat interface function (replace with your actual logic)
|
| 111 |
+
def chat_interface(message, history):
|
| 112 |
+
try:
|
| 113 |
+
# Generate a unique session ID for this chat session
|
| 114 |
+
session_id = str(uuid.uuid4())
|
| 115 |
+
|
| 116 |
+
# Process the user message and generate a response (your chatbot logic)
|
| 117 |
+
response = handle_query(message)
|
| 118 |
+
|
| 119 |
+
# Capture the message data
|
| 120 |
+
message_data = {
|
| 121 |
+
"sender": "user",
|
| 122 |
+
"message": message,
|
| 123 |
+
"response": response,
|
| 124 |
+
"timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
# Call the save function to store in Firebase with the generated session ID
|
| 128 |
+
save_chat_message(session_id, message_data)
|
| 129 |
+
|
| 130 |
+
# Return the bot response
|
| 131 |
+
return response
|
| 132 |
+
except Exception as e:
|
| 133 |
+
return str(e)
|
| 134 |
|
| 135 |
# Custom CSS for styling
|
| 136 |
css = '''
|
|
|
|
| 143 |
margin-right: 10px;
|
| 144 |
vertical-align: middle;
|
| 145 |
}
|
|
|
|
| 146 |
.circle-logo img {
|
| 147 |
width: 100%;
|
| 148 |
height: 100%;
|
| 149 |
object-fit: cover;
|
| 150 |
}
|
|
|
|
| 151 |
.response-with-logo {
|
| 152 |
display: flex;
|
| 153 |
align-items: center;
|
|
|
|
| 159 |
}
|
| 160 |
label.svelte-1b6s6s {display: none}
|
| 161 |
'''
|
|
|
|
|
|
|
| 162 |
gr.ChatInterface(predict,
|
| 163 |
css=css,
|
| 164 |
description="FernAI",
|
| 165 |
clear_btn=None, undo_btn=None, retry_btn=None,
|
| 166 |
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
|
| 167 |
+
).launch()
|