Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding: utf-8 | |
| # Copyright 2021, IBM Corporation. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Python lib to recommend prompts. | |
| """ | |
| __author__ = "Vagner Santana, Melina Alberio, Cassia Sanctos and Tiago Machado" | |
| __copyright__ = "IBM Corporation 2024" | |
| __credits__ = ["Vagner Santana, Melina Alberio, Cassia Sanctos, Tiago Machado"] | |
| __license__ = "Apache 2.0" | |
| __version__ = "0.0.1" | |
| import requests | |
| import json | |
| import math | |
| import re | |
| import pandas as pd | |
| import numpy as np | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import os | |
| #os.environ['TRANSFORMERS_CACHE'] ="./models/allmini/cache" | |
| import os.path | |
| from sentence_transformers import SentenceTransformer | |
| import pickle | |
| def populate_json(json_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json', | |
| existing_json_populated_file_path = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json'): | |
| """ | |
| Function that receives a default json file with | |
| empty embeddings and checks whether there is a | |
| partially populated json file. | |
| Args: | |
| json_file_path: Path to json default file with | |
| empty embeddings. | |
| existing_json_populated_file_path: Path to partially | |
| populated json file. | |
| Returns: | |
| A json. | |
| Raises: | |
| Exception when json file can't be loaded. | |
| """ | |
| json_file = json_file_path | |
| if(os.path.isfile(existing_json_populated_file_path)): | |
| json_file = existing_json_populated_file_path | |
| prompt_json = json.load(open(json_file)) | |
| return prompt_json | |
| def get_embedding_func(inference = 'huggingface', **kwargs): | |
| if inference == 'local': | |
| if 'model_id' not in kwargs: | |
| raise TypeError("Missing required argument: model_id") | |
| model = SentenceTransformer(kwargs['model_id']) | |
| def embedding_fn(texts): | |
| return model.encode(texts).tolist() | |
| elif inference == 'huggingface': | |
| if 'api_url' not in kwargs: | |
| raise TypeError("Missing required argument: api_url") | |
| if 'headers' not in kwargs: | |
| raise TypeError("Missing required argument: headers") | |
| def embedding_fn(texts): | |
| response = requests.post(kwargs['api_url'], headers=kwargs['headers'], json={"inputs": texts, "options":{"wait_for_model":True}}) | |
| return response.json() | |
| else: | |
| raise ValueError(f"Inference type {inference} is not supported. Please choose one of ['local', 'huggingface'].") | |
| return embedding_fn | |
| def split_into_sentences(prompt): | |
| """ | |
| Function that splits the input text into sentences based | |
| on punctuation (.!?). The regular expression pattern | |
| '(?<=[.!?]) +' ensures that we split after a sentence-ending | |
| punctuation followed by one or more spaces. | |
| Args: | |
| prompt: The entered prompt text. | |
| Returns: | |
| A list of extracted sentences. | |
| Raises: | |
| Nothing. | |
| """ | |
| sentences = re.split(r'(?<=[.!?]) +', prompt) | |
| return sentences | |
| def get_distance(embedding1, embedding2): | |
| """ | |
| Function that returns euclidean distance between | |
| two embeddings. | |
| Args: | |
| embedding1: first embedding. | |
| embedding2: second embedding. | |
| Returns: | |
| The euclidean distance value. | |
| Raises: | |
| Nothing. | |
| """ | |
| total = 0 | |
| if(len(embedding1) != len(embedding2)): | |
| return math.inf | |
| for i, obj in enumerate(embedding1): | |
| total += math.pow(embedding2[0][i] - embedding1[0][i], 2) | |
| return(math.sqrt(total)) | |
| def sort_by_similarity(e): | |
| """ | |
| Function that sorts by similarity. | |
| Args: | |
| e: | |
| Returns: | |
| The sorted similarity value. | |
| Raises: | |
| Nothing. | |
| """ | |
| return e['similarity'] | |
| def recommend_prompt( | |
| prompt, | |
| prompt_json, | |
| embedding_fn = None, | |
| add_lower_threshold = 0.3, | |
| add_upper_threshold = 0.5, | |
| remove_lower_threshold = 0.1, | |
| remove_upper_threshold = 0.5, | |
| umap_model = None | |
| ): | |
| """ | |
| Function that recommends prompts additions or removals. | |
| Args: | |
| prompt: The entered prompt text. | |
| prompt_json: Json file populated with embeddings. | |
| embedding_fn: Embedding function to convert prompt sentences into embeddings. | |
| If None, uses all-MiniLM-L6-v2 run locally. | |
| add_lower_threshold: Lower threshold for sentence addition, | |
| the default value is 0.3. | |
| add_upper_threshold: Upper threshold for sentence addition, | |
| the default value is 0.5. | |
| remove_lower_threshold: Lower threshold for sentence removal, | |
| the default value is 0.3. | |
| remove_upper_threshold: Upper threshold for sentence removal, | |
| the default value is 0.5. | |
| umap_model: Umap model used for visualization. | |
| If None, the projected embeddings of input sentences will not be returned. | |
| Returns: | |
| Prompt values to add or remove. | |
| Raises: | |
| Nothing. | |
| """ | |
| if(model_id == 'baai/bge-large-en-v1.5' ): | |
| json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json' | |
| umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl' | |
| elif(model_id == 'intfloat/multilingual-e5-large'): | |
| json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json' | |
| umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl' | |
| else: # fall back to all-minilm as default | |
| json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json' | |
| umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl' | |
| with open(umap_model_file, 'rb') as f: | |
| umap_model = pickle.load(f) | |
| prompt_json = json.load( open( json_file ) ) | |
| # Output initialization | |
| out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} | |
| input_items, items_to_add, items_to_remove = [], [], [] | |
| # Spliting prompt into sentences | |
| input_sentences = split_into_sentences(prompt) | |
| # TODO: Request embeddings for input an d store in a input_embeddingS | |
| # Recommendation of values to add to the current prompt | |
| # Using only the last sentence for the add recommendation | |
| input_embedding = embedding_fn(input_sentences[-1]) | |
| input_embedding = np.array(input_embedding) | |
| sentence_embeddings = np.array( | |
| [v['centroid'] for v in prompt_json['positive_values']] | |
| ) | |
| similarities_positive_sent = cosine_similarity(np.expand_dims(input_embedding, axis=0), sentence_embeddings)[0, :] | |
| for value_idx, v in enumerate(prompt_json['positive_values']): | |
| # Dealing with values without prompts and makinig sure they have the same dimensions | |
| if(len(v['centroid']) != len(input_embedding)): | |
| continue | |
| if(similarities_positive_sent[value_idx] < add_lower_threshold): | |
| continue | |
| value_sents_similarity = cosine_similarity( | |
| np.expand_dims(input_embedding, axis=0), | |
| np.array([p['embedding'] for p in v['prompts']]) | |
| )[0, :] | |
| closer_prompt_idxs = np.nonzero((add_lower_threshold < value_sents_similarity) & (value_sents_similarity < add_upper_threshold))[0] | |
| for idx in closer_prompt_idxs: | |
| items_to_add.append({ | |
| 'value': v['label'], | |
| 'prompt': v['prompts'][idx]['text'], | |
| 'similarity': value_sents_similarity[idx], | |
| 'x': v['prompts'][idx]['x'], | |
| 'y': v['prompts'][idx]['y'] | |
| }) | |
| out['add'] = items_to_add | |
| inp_sentence_embeddings = np.array([embedding_fn(sent) for sent in input_sentences]) | |
| pairwise_similarities = cosine_similarity( | |
| inp_sentence_embeddings, | |
| np.array([v['centroid'] for v in prompt_json['negative_values']]) | |
| ) | |
| # Recommendation of values to remove from the current prompt | |
| for sentence in input_sentences: | |
| input_embedding = query(sentence, api_url, headers) # remote | |
| # Obtaining XY coords for input sentences from a UMAP model | |
| if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): | |
| embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0)) | |
| input_items.append({ | |
| 'sentence': sentence, | |
| 'x': str(embeddings_umap[0][0]), | |
| 'y': str(embeddings_umap[0][1]) | |
| }) | |
| for value_idx, v in enumerate(prompt_json['negative_values']): | |
| # Dealing with values without prompts and making sure they have the same dimensions | |
| if(len(v['centroid']) != len(input_embedding)): | |
| continue | |
| if(pairwise_similarities[sent_idx][value_idx] < remove_lower_threshold): | |
| continue | |
| # A more restrict threshold is used here to prevent false positives | |
| # The sentence_threshold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts | |
| # So, yes, we want to recommend the removal of something adversarial we've found | |
| value_sents_similarity = cosine_similarity( | |
| np.expand_dims(input_embedding, axis=0), | |
| np.array([p['embedding'] for p in v['prompts']]) | |
| )[0, :] | |
| closer_prompt_idxs = np.nonzero(value_sents_similarity > remove_upper_threshold)[0] | |
| for idx in closer_prompt_idxs: | |
| items_to_remove.append({ | |
| 'value': v['label'], | |
| 'sentence': sentence, | |
| 'sentence_index': sent_idx, | |
| 'closest_harmful_sentence': v['prompts'][idx]['text'], | |
| 'similarity': value_sents_similarity[idx], | |
| 'x': v['prompts'][idx]['x'], | |
| 'y': v['prompts'][idx]['y'] | |
| }) | |
| out['remove'] = items_to_remove | |
| out['input'] = input_items | |
| out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) | |
| values_map = {} | |
| for item in out['add'][:]: | |
| if(item['value'] in values_map): | |
| out['add'].remove(item) | |
| else: | |
| values_map[item['value']] = item['similarity'] | |
| out['add'] = out['add'][0:5] | |
| out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) | |
| values_map = {} | |
| for item in out['remove'][:]: | |
| if(item['value'] in values_map): | |
| out['remove'].remove(item) | |
| else: | |
| values_map[item['value']] = item['similarity'] | |
| out['remove'] = out['remove'][0:5] | |
| return out | |
| def get_thresholds( | |
| prompts, | |
| prompt_json, | |
| embedding_fn = None, | |
| ): | |
| """ | |
| Function that recommends thresholds given an array of prompts. | |
| Args: | |
| prompts: The array with samples of prompts to be used in the system. | |
| prompt_json: Sentences to be forwarded to the recommendation endpoint. | |
| embedding_fn: Embedding function to convert prompt sentences into embeddings. | |
| If None, uses all-MiniLM-L6-v2 run locally. | |
| Returns: | |
| A map with thresholds for the sample prompts and the informed model. | |
| Raises: | |
| Nothing. | |
| """ | |
| if embedding_fn is None: | |
| embedding_fn = get_embedding_func('local', model_id='sentence-transformers/all-MiniLM-L6-v2') | |
| add_similarities = [] | |
| remove_similarities = [] | |
| for p_id, p in enumerate(prompts): | |
| out = recommend_prompt(p, prompt_json, embedding_fn, 0, 1, 0, 0, None) # Wider possible range | |
| for r in out['add']: | |
| add_similarities.append(r['similarity']) | |
| for r in out['remove']: | |
| remove_similarities.append(r['similarity']) | |
| add_similarities_df = pd.DataFrame({'similarity': add_similarities}) | |
| remove_similarities_df = pd.DataFrame({'similarity': remove_similarities}) | |
| thresholds = {} | |
| thresholds['add_lower_threshold'] = round(add_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) | |
| thresholds['add_higher_threshold'] = round(add_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) | |
| thresholds['remove_lower_threshold'] = round(remove_similarities_df.describe([.1]).loc['10%', 'similarity'], 1) | |
| thresholds['remove_higher_threshold'] = round(remove_similarities_df.describe([.9]).loc['90%', 'similarity'], 1) | |
| return thresholds | |
| def recommend_local(prompt, prompt_json, model_id, model_path = './models/all-MiniLM-L6-v2/', add_lower_threshold = 0.3, | |
| add_upper_threshold = 0.5, remove_lower_threshold = 0.1, | |
| remove_upper_threshold = 0.5): | |
| """ | |
| Function that recommends prompts additions or removals | |
| using a local model. | |
| Args: | |
| prompt: The entered prompt text. | |
| prompt_json: Json file populated with embeddings. | |
| model_id: Id of the local model. | |
| model_path: Path to the local model. | |
| Returns: | |
| Prompt values to add or remove. | |
| Raises: | |
| Nothing. | |
| """ | |
| if(model_id == 'baai/bge-large-en-v1.5' ): | |
| json_file = './prompt-sentences-main/prompt_sentences-bge-large-en-v1.5.json' | |
| umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl' | |
| elif(model_id == 'intfloat/multilingual-e5-large'): | |
| json_file = './prompt-sentences-main/prompt_sentences-multilingual-e5-large.json' | |
| umap_model_file = './models/umap/intfloat/multilingual-e5-large/umap.pkl' | |
| else: # fall back to all-minilm as default | |
| json_file = './prompt-sentences-main/prompt_sentences-all-minilm-l6-v2.json' | |
| umap_model_file = './models/umap/sentence-transformers/all-MiniLM-L6-v2/umap.pkl' | |
| with open(umap_model_file, 'rb') as f: | |
| umap_model = pickle.load(f) | |
| prompt_json = json.load( open( json_file ) ) | |
| # Output initialization | |
| out, out['input'], out['add'], out['remove'] = {}, {}, {}, {} | |
| input_items, items_to_add, items_to_remove = [], [], [] | |
| # Spliting prompt into sentences | |
| input_sentences = split_into_sentences(prompt) | |
| # Recommendation of values to add to the current prompt | |
| # Using only the last sentence for the add recommendation | |
| model = SentenceTransformer(model_path) | |
| input_embedding = model.encode(input_sentences[-1]) | |
| for v in prompt_json['positive_values']: | |
| # Dealing with values without prompts and makinig sure they have the same dimensions | |
| if(len(v['centroid']) == len(input_embedding)): | |
| if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > add_lower_threshold): | |
| closer_prompt = -1 | |
| for p in v['prompts']: | |
| d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding'])) | |
| # The sentence_threshold is being used as a ceiling meaning that for high similarities the sentence/value might already be presente in the prompt | |
| # So, we don't want to recommend adding something that is already there | |
| if(d_prompt > closer_prompt and d_prompt > add_lower_threshold and d_prompt < add_upper_threshold): | |
| closer_prompt = d_prompt | |
| items_to_add.append({ | |
| 'value': v['label'], | |
| 'prompt': p['text'], | |
| 'similarity': d_prompt, | |
| 'x': p['x'], | |
| 'y': p['y']}) | |
| out['add'] = items_to_add | |
| # Recommendation of values to remove from the current prompt | |
| i = 0 | |
| # Recommendation of values to remove from the current prompt | |
| for sentence in input_sentences: | |
| input_embedding = model.encode(sentence) # local | |
| # Obtaining XY coords for input sentences from a UMAP model | |
| if(len(prompt_json['negative_values'][0]['centroid']) == len(input_embedding) and sentence != ''): | |
| embeddings_umap = umap_model.transform(np.expand_dims(pd.DataFrame(input_embedding).squeeze(), axis=0)) | |
| input_items.append({ | |
| 'sentence': sentence, | |
| 'x': str(embeddings_umap[0][0]), | |
| 'y': str(embeddings_umap[0][1]) | |
| }) | |
| for v in prompt_json['negative_values']: | |
| # Dealing with values without prompts and makinig sure they have the same dimensions | |
| if(len(v['centroid']) == len(input_embedding)): | |
| if(get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(v['centroid'])) > remove_lower_threshold): | |
| closer_prompt = -1 | |
| for p in v['prompts']: | |
| d_prompt = get_similarity(pd.DataFrame(input_embedding), pd.DataFrame(p['embedding'])) | |
| # A more restrict threshold is used here to prevent false positives | |
| # The sentence_threhold is being used to indicate that there must be a sentence in the prompt that is similiar to one of our adversarial prompts | |
| # So, yes, we want to recommend the revolval of something adversarial we've found | |
| if(d_prompt > closer_prompt and d_prompt > remove_upper_threshold): | |
| closer_prompt = d_prompt | |
| items_to_remove.append({ | |
| 'value': v['label'], | |
| 'sentence': sentence, | |
| 'sentence_index': i, | |
| 'closest_harmful_sentence': p['text'], | |
| 'similarity': d_prompt, | |
| 'x': p['x'], | |
| 'y': p['y']}) | |
| out['remove'] = items_to_remove | |
| i += 1 | |
| out['input'] = input_items | |
| out['add'] = sorted(out['add'], key=sort_by_similarity, reverse=True) | |
| values_map = {} | |
| for item in out['add'][:]: | |
| if(item['value'] in values_map): | |
| out['add'].remove(item) | |
| else: | |
| values_map[item['value']] = item['similarity'] | |
| out['add'] = out['add'][0:5] | |
| out['remove'] = sorted(out['remove'], key=sort_by_similarity, reverse=True) | |
| values_map = {} | |
| for item in out['remove'][:]: | |
| if(item['value'] in values_map): | |
| out['remove'].remove(item) | |
| else: | |
| values_map[item['value']] = item['similarity'] | |
| out['remove'] = out['remove'][0:5] | |
| return out |