R2OAI / main.py
rkihacker's picture
Update main.py
0f99721 verified
raw
history blame
14.5 kB
import os
import httpx
import json
import time
import asyncio
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
# FastAPI Init
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="9.2.2 (Spacing Fixed)")
# --- Pydantic Models ---
class ModelCard(BaseModel):
id: str; object: str = "model"; created: int = Field(default_factory=lambda: int(time.time())); owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"; data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]]; name: Optional[str] = None; tool_calls: Optional[List[Any]] = None
class FunctionDefinition(BaseModel):
name: str; description: Optional[str] = None; parameters: Optional[Dict[str, Any]] = None
class ToolDefinition(BaseModel):
type: Literal["function"]; function: FunctionDefinition
class FunctionCall(BaseModel):
name: str; arguments: str
class ToolCall(BaseModel):
id: str; type: Literal["function"] = "function"; function: FunctionCall
class ChatCompletionRequest(BaseModel):
model: str; messages: List[ChatMessage]; temperature: Optional[float] = 0.7; top_p: Optional[float] = 1.0
max_tokens: Optional[int] = None; stream: Optional[bool] = False; stop: Optional[Union[str, List[str]]] = None
tools: Optional[List[ToolDefinition]] = None; tool_choice: Optional[Union[str, Dict[str, Any]]] = None
functions: Optional[List[FunctionDefinition]] = None; function_call: Optional[Union[str, Dict[str, str]]] = None
class Choice(BaseModel):
index: int; message: ChatMessage; finish_reason: Optional[str] = None
class Usage(BaseModel):
prompt_tokens: int; completion_tokens: int; total_tokens: int; inference_time: Optional[float] = None
class ChatCompletion(BaseModel):
id: str; object: str = "chat.completion"; created: int; model: str; choices: List[Choice]; usage: Usage
class DeltaMessage(BaseModel):
role: Optional[str] = None; content: Optional[str] = None; tool_calls: Optional[List[ToolCall]] = None
class ChoiceDelta(BaseModel):
index: int; delta: DeltaMessage; finish_reason: Optional[str] = None
class ChatCompletionChunk(BaseModel):
id: str; object: str = "chat.completion.chunk"; created: int; model: str; choices: List[ChoiceDelta]; usage: Optional[Usage] = None
# --- Supported Models ---
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-3-haiku-20240307": "anthropic/claude-3-haiku-20240307", # Example of another common model
"claude-3-sonnet-20240229": "anthropic/claude-3-sonnet-20240229",
"llava-13b": "yorickvp/llava-13b:e272157381e2a3bf12df3a8edd1f38d1dbd736bbb7437277c8b34175f8fce358"
}
# --- Core Logic ---
def format_messages_for_replicate(messages: List[ChatMessage], functions: Optional[List[FunctionDefinition]] = None) -> Dict[str, Any]:
prompt_parts = []
system_prompt = None
image_input = None
if functions:
functions_text = "You have access to the following tools. Use them if required to answer the user's question.\n\n"
for func in functions:
functions_text += f"- Function: {func.name}\n"
if func.description: functions_text += f" Description: {func.description}\n"
if func.parameters: functions_text += f" Parameters: {json.dumps(func.parameters)}\n"
prompt_parts.append(functions_text)
for msg in messages:
if msg.role == "system":
system_prompt = str(msg.content)
elif msg.role == "assistant":
if msg.tool_calls:
tool_calls_text = "\nTool calls:\n"
for tool_call in msg.tool_calls:
tool_calls_text += f"- {tool_call.function.name}({tool_call.function.arguments})\n"
prompt_parts.append(f"Assistant: {tool_calls_text}")
else:
prompt_parts.append(f"Assistant: {msg.content}")
elif msg.role == "tool":
prompt_parts.append(f"Tool Response: {msg.content}")
elif msg.role == "user":
user_text_content = ""
if isinstance(msg.content, list):
for item in msg.content:
if item.get("type") == "text":
user_text_content += item.get("text", "")
elif item.get("type") == "image_url":
image_url_data = item.get("image_url", {})
image_input = image_url_data.get("url")
else:
user_text_content = str(msg.content)
prompt_parts.append(f"User: {user_text_content}")
prompt_parts.append("Assistant:") # Let the model generate the space after this
return {
"prompt": "\n\n".join(prompt_parts),
"system_prompt": system_prompt,
"image": image_input
}
def parse_function_call(content: str) -> Optional[Dict[str, Any]]:
try:
if "function_call" in content or ("name" in content and "arguments" in content):
start = content.find("{")
end = content.rfind("}") + 1
if start != -1 and end > start:
json_str = content[start:end]
parsed = json.loads(json_str)
if "name" in parsed and "arguments" in parsed:
return parsed
except (json.JSONDecodeError, Exception):
pass
return None
async def stream_replicate_response(replicate_model_id: str, input_payload: dict, request_id: str):
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
start_time = time.time()
prompt_tokens = len(input_payload.get("prompt", "")) // 4
completion_tokens = 0
async with httpx.AsyncClient(timeout=300.0) as client:
try:
response = await client.post(url, headers=headers, json={"input": input_payload, "stream": True})
response.raise_for_status()
prediction = response.json()
stream_url = prediction.get("urls", {}).get("stream")
if not stream_url:
yield f"data: {json.dumps({'error': {'message': 'Model did not return a stream URL.'}})}\n\n"
return
except httpx.HTTPStatusError as e:
error_details = e.response.text
try: error_details = e.response.json().get("detail", error_details)
except json.JSONDecodeError: pass
yield f"data: {json.dumps({'error': {'message': f'Upstream Error: {error_details}', 'type': 'replicate_error'}})}\n\n"
return
try:
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}, timeout=None) as sse:
current_event = None
accumulated_content = ""
first_token = True
async for line in sse.aiter_lines():
if not line: continue
if line.startswith("event:"):
current_event = line[len("event:"):].strip()
elif line.startswith("data:") and current_event == "output":
raw_data = line[5:].strip()
if not raw_data: continue
try:
content_token = json.loads(raw_data)
except (json.JSONDecodeError, TypeError):
content_token = raw_data
# ### MAJOR FIX HERE ###
# This logic robustly handles the leading space by only stripping
# the very first non-empty token of the entire stream.
if first_token:
content_token = content_token.lstrip()
# Only flip the flag if we've actually processed a token with content.
if content_token:
first_token = False
accumulated_content += content_token
completion_tokens += 1
function_call = parse_function_call(accumulated_content)
if function_call:
tool_call = ToolCall(id=f"call_{int(time.time())}", function=FunctionCall(name=function_call["name"], arguments=function_call["arguments"]))
chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(tool_calls=[tool_call]), finish_reason=None)])
yield f"data: {chunk.json()}\n\n"
else:
# Only yield a chunk if there is content to send.
if content_token:
chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(content=content_token), finish_reason=None)])
yield f"data: {chunk.json()}\n\n"
elif current_event == "done":
end_time = time.time()
usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, inference_time=round(end_time - start_time, 3))
usage_chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(), finish_reason="stop")], usage=usage)
yield f"data: {usage_chunk.json()}\n\n"
break
except httpx.ReadTimeout:
yield f"data: {json.dumps({'error': {'message': 'Stream timed out.', 'type': 'timeout_error'}})}\n\n"
return
yield "data: [DONE]\n\n"
# --- Endpoints ---
@app.get("/v1/models")
async def list_models():
return ModelList(data=[ModelCard(id=k) for k in SUPPORTED_MODELS.keys()])
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
if request.model not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Available models: {list(SUPPORTED_MODELS.keys())}")
replicate_model_id = SUPPORTED_MODELS[request.model]
formatted = format_messages_for_replicate(request.messages, request.functions)
replicate_input = {
"prompt": formatted["prompt"],
"max_new_tokens": request.max_tokens or 512,
"temperature": request.temperature or 0.7,
"top_p": request.top_p or 1.0
}
if formatted["system_prompt"]: replicate_input["system_prompt"] = formatted["system_prompt"]
if formatted["image"]: replicate_input["image"] = formatted["image"]
request_id = f"chatcmpl-{int(time.time())}"
if request.stream:
return StreamingResponse(
stream_replicate_response(replicate_model_id, replicate_input, request_id),
media_type="text/event-stream"
)
# Non-streaming response
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
start_time = time.time()
async with httpx.AsyncClient() as client:
try:
resp = await client.post(url, headers=headers, json={"input": replicate_input}, timeout=300.0)
resp.raise_for_status()
pred = resp.json()
output = "".join(pred.get("output", []))
output = output.strip() # Clean up any leading/trailing whitespace
end_time = time.time()
prompt_tokens = len(replicate_input.get("prompt", "")) // 4
completion_tokens = len(output) // 4
tool_calls = None
finish_reason = "stop"
message_content = output
function_call = parse_function_call(output)
if function_call:
tool_calls = [ToolCall(id=f"call_{int(time.time())}", function=FunctionCall(name=function_call["name"], arguments=function_call["arguments"]))]
finish_reason = "tool_calls"
message_content = None # OpenAI standard: content is null when tool_calls are present
return ChatCompletion(
id=request_id,
created=int(time.time()),
model=request.model,
choices=[Choice(
index=0,
message=ChatMessage(role="assistant", content=message_content, tool_calls=tool_calls),
finish_reason=finish_reason
)],
usage=Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
inference_time=round(end_time - start_time, 3)
)
)
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=f"Error from Replicate API: {e.response.text}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/")
async def root():
return {"message": "Replicate to OpenAI Compatibility Layer API", "version": "9.2.2"}
@app.middleware("http")
async def add_performance_headers(request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(round(process_time, 3))
response.headers["X-API-Version"] = "9.2.2"
return response