R2OAI / main.py
rkihacker's picture
Update main.py
ea53c08 verified
raw
history blame
8.1 kB
import os
import httpx
import json
import time
import asyncio
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
from sse_starlette.sse import EventSourceResponse
# Load environment variables from .env file
load_dotenv()
# --- Configuration ---
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
# --- FastAPI App Initialization ---
app = FastAPI(
title="Replicate to OpenAI Compatibility Layer",
version="2.0.0 (Native Streaming & Context Fixed)",
)
# --- Pydantic Models for OpenAI Compatibility ---
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]
content: Union[str, List[Dict[str, Any]]]
class ToolFunction(BaseModel):
name: str
description: str
parameters: Dict[str, Any]
class Tool(BaseModel):
type: Literal["function"]
function: ToolFunction
class OpenAIChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
max_tokens: Optional[int] = None
stream: Optional[bool] = False
tools: Optional[List[Tool]] = None
tool_choice: Optional[Union[str, Dict]] = None
# --- Replicate Model Mapping ---
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
}
# --- Helper Functions ---
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
"""
Prepares the input payload for Replicate's chat models.
This now correctly passes the messages array for context.
"""
# Convert Pydantic message objects to a list of dictionaries
messages_for_replicate = [msg.dict() for msg in request.messages]
payload = {
"messages": messages_for_replicate
}
# Add other compatible parameters
if request.max_tokens is not None:
payload["max_new_tokens"] = request.max_tokens
if request.temperature is not None:
payload["temperature"] = request.temperature
if request.top_p is not None:
payload["top_p"] = request.top_p
# Vision support: Find image URL in the last user message if present
last_user_message = next((m for m in reversed(request.messages) if m.role == 'user'), None)
if last_user_message and isinstance(last_user_message.content, list):
for item in last_user_message.content:
if item.get("type") == "image_url":
payload["image"] = item.get("image_url", {}).get("url")
# Reformat messages to be a simple prompt string for vision models if needed,
# as some might not support the `messages` format with images.
# For Claude Haiku, a prompt string is more reliable with images.
if "claude" in request.model:
text_prompts = [item.get('text', '') for item in last_user_message.content if item.get('type') == 'text']
payload["prompt"] = " ".join(text_prompts)
del payload["messages"]
break
return payload
async def stream_replicate_native_sse(model_id: str, payload: dict):
"""
Connects to Replicate's native SSE stream for true token-by-token streaming.
"""
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
async with httpx.AsyncClient(timeout=300) as client:
# 1. Create the prediction to get the stream URL
try:
# Add stream=True to the outer payload for Replicate
response = await client.post(url, headers=headers, json={"input": payload, "stream": True})
response.raise_for_status()
prediction = response.json()
stream_url = prediction.get("urls", {}).get("stream")
if not stream_url:
error_detail = prediction.get("detail", "Failed to get stream URL.")
yield json.dumps({"error": {"message": error_detail}})
return
except httpx.HTTPStatusError as e:
yield json.dumps({"error": {"message": e.response.text}})
return
# 2. Connect to the SSE stream and yield OpenAI-compatible chunks
try:
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}) as sse:
sse.raise_for_status()
current_event = ""
async for line in sse.aiter_lines():
if line.startswith("event:"):
current_event = line[len("event:"):].strip()
elif line.startswith("data:"):
data = line[len("data:"):].strip()
if current_event == "output":
chunk = {
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
"choices": [{"index": 0, "delta": {"content": json.loads(data)}, "finish_reason": None}]
}
yield json.dumps(chunk)
elif current_event == "done":
break # Exit loop when done event is received
except Exception as e:
yield json.dumps({"error": {"message": f"Streaming error: {str(e)}"}})
# 3. Send the final DONE chunk
done_chunk = {
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
}
yield json.dumps(done_chunk)
yield "[DONE]"
# --- API Endpoints ---
@app.get("/v1/models", response_model=ModelList)
async def list_models():
return ModelList(data=[ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()])
@app.post("/v1/chat/completions")
async def create_chat_completion(request: OpenAIChatCompletionRequest):
model_key = request.model
if model_key not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
replicate_model_id = SUPPORTED_MODELS[model_key]
replicate_input = prepare_replicate_input(request)
if request.stream:
return EventSourceResponse(stream_replicate_native_sse(replicate_model_id, replicate_input))
# Synchronous request
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}
async with httpx.AsyncClient(timeout=150) as client:
try:
response = await client.post(url, headers=headers, json={"input": replicate_input})
response.raise_for_status()
prediction = response.json()
output = "".join(prediction.get("output", []))
return JSONResponse(content={
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
})
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=e.response.text)