Update main.py
Browse files
main.py
CHANGED
|
@@ -2,7 +2,6 @@ import os
|
|
| 2 |
import httpx
|
| 3 |
import json
|
| 4 |
import time
|
| 5 |
-
import asyncio
|
| 6 |
from fastapi import FastAPI, HTTPException
|
| 7 |
from fastapi.responses import JSONResponse
|
| 8 |
from pydantic import BaseModel, Field
|
|
@@ -21,101 +20,86 @@ if not REPLICATE_API_TOKEN:
|
|
| 21 |
# --- FastAPI App Initialization ---
|
| 22 |
app = FastAPI(
|
| 23 |
title="Replicate to OpenAI Compatibility Layer",
|
| 24 |
-
version="2.
|
| 25 |
)
|
| 26 |
|
| 27 |
-
# --- Pydantic Models
|
| 28 |
-
|
| 29 |
class ModelCard(BaseModel):
|
| 30 |
-
id: str
|
| 31 |
-
object: str = "model"
|
| 32 |
-
created: int = Field(default_factory=lambda: int(time.time()))
|
| 33 |
-
owned_by: str = "replicate"
|
| 34 |
|
| 35 |
class ModelList(BaseModel):
|
| 36 |
-
object: str = "list"
|
| 37 |
-
data: List[ModelCard] = []
|
| 38 |
|
| 39 |
class ChatMessage(BaseModel):
|
| 40 |
-
role: Literal["system", "user", "assistant", "tool"]
|
| 41 |
-
content: Union[str, List[Dict[str, Any]]]
|
| 42 |
-
|
| 43 |
-
class ToolFunction(BaseModel):
|
| 44 |
-
name: str
|
| 45 |
-
description: str
|
| 46 |
-
parameters: Dict[str, Any]
|
| 47 |
-
|
| 48 |
-
class Tool(BaseModel):
|
| 49 |
-
type: Literal["function"]
|
| 50 |
-
function: ToolFunction
|
| 51 |
|
| 52 |
class OpenAIChatCompletionRequest(BaseModel):
|
| 53 |
-
model: str
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
top_p: Optional[float] = 1.0
|
| 57 |
-
max_tokens: Optional[int] = None
|
| 58 |
-
stream: Optional[bool] = False
|
| 59 |
-
tools: Optional[List[Tool]] = None
|
| 60 |
-
tool_choice: Optional[Union[str, Dict]] = None
|
| 61 |
-
|
| 62 |
-
# --- Replicate Model Mapping ---
|
| 63 |
SUPPORTED_MODELS = {
|
| 64 |
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
|
| 65 |
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
|
| 66 |
}
|
| 67 |
|
| 68 |
-
|
| 69 |
# --- Helper Functions ---
|
| 70 |
|
| 71 |
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
| 72 |
"""
|
| 73 |
-
Prepares the input payload for Replicate
|
| 74 |
-
This now correctly passes the messages array for context.
|
| 75 |
"""
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
# Add
|
| 84 |
if request.max_tokens is not None:
|
| 85 |
payload["max_new_tokens"] = request.max_tokens
|
| 86 |
if request.temperature is not None:
|
| 87 |
payload["temperature"] = request.temperature
|
| 88 |
if request.top_p is not None:
|
| 89 |
payload["top_p"] = request.top_p
|
| 90 |
-
|
| 91 |
-
# Vision support: Find image URL in the last user message if present
|
| 92 |
-
last_user_message = next((m for m in reversed(request.messages) if m.role == 'user'), None)
|
| 93 |
-
if last_user_message and isinstance(last_user_message.content, list):
|
| 94 |
-
for item in last_user_message.content:
|
| 95 |
-
if item.get("type") == "image_url":
|
| 96 |
-
payload["image"] = item.get("image_url", {}).get("url")
|
| 97 |
-
# Reformat messages to be a simple prompt string for vision models if needed,
|
| 98 |
-
# as some might not support the `messages` format with images.
|
| 99 |
-
# For Claude Haiku, a prompt string is more reliable with images.
|
| 100 |
-
if "claude" in request.model:
|
| 101 |
-
text_prompts = [item.get('text', '') for item in last_user_message.content if item.get('type') == 'text']
|
| 102 |
-
payload["prompt"] = " ".join(text_prompts)
|
| 103 |
-
del payload["messages"]
|
| 104 |
-
break
|
| 105 |
|
| 106 |
return payload
|
| 107 |
|
| 108 |
async def stream_replicate_native_sse(model_id: str, payload: dict):
|
| 109 |
-
"""
|
| 110 |
-
Connects to Replicate's native SSE stream for true token-by-token streaming.
|
| 111 |
-
"""
|
| 112 |
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
|
| 113 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 114 |
|
| 115 |
async with httpx.AsyncClient(timeout=300) as client:
|
| 116 |
-
# 1. Create the prediction to get the stream URL
|
| 117 |
try:
|
| 118 |
-
# Add stream=True to the outer payload for Replicate
|
| 119 |
response = await client.post(url, headers=headers, json={"input": payload, "stream": True})
|
| 120 |
response.raise_for_status()
|
| 121 |
prediction = response.json()
|
|
@@ -126,10 +110,13 @@ async def stream_replicate_native_sse(model_id: str, payload: dict):
|
|
| 126 |
yield json.dumps({"error": {"message": error_detail}})
|
| 127 |
return
|
| 128 |
except httpx.HTTPStatusError as e:
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
return
|
| 131 |
|
| 132 |
-
# 2. Connect to the SSE stream and yield OpenAI-compatible chunks
|
| 133 |
try:
|
| 134 |
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}) as sse:
|
| 135 |
sse.raise_for_status()
|
|
@@ -146,11 +133,10 @@ async def stream_replicate_native_sse(model_id: str, payload: dict):
|
|
| 146 |
}
|
| 147 |
yield json.dumps(chunk)
|
| 148 |
elif current_event == "done":
|
| 149 |
-
break
|
| 150 |
except Exception as e:
|
| 151 |
yield json.dumps({"error": {"message": f"Streaming error: {str(e)}"}})
|
| 152 |
|
| 153 |
-
# 3. Send the final DONE chunk
|
| 154 |
done_chunk = {
|
| 155 |
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 156 |
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
|
|
@@ -158,9 +144,7 @@ async def stream_replicate_native_sse(model_id: str, payload: dict):
|
|
| 158 |
yield json.dumps(done_chunk)
|
| 159 |
yield "[DONE]"
|
| 160 |
|
| 161 |
-
|
| 162 |
# --- API Endpoints ---
|
| 163 |
-
|
| 164 |
@app.get("/v1/models", response_model=ModelList)
|
| 165 |
async def list_models():
|
| 166 |
return ModelList(data=[ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()])
|
|
@@ -186,14 +170,11 @@ async def create_chat_completion(request: OpenAIChatCompletionRequest):
|
|
| 186 |
response = await client.post(url, headers=headers, json={"input": replicate_input})
|
| 187 |
response.raise_for_status()
|
| 188 |
prediction = response.json()
|
| 189 |
-
|
| 190 |
output = "".join(prediction.get("output", []))
|
| 191 |
-
|
| 192 |
return JSONResponse(content={
|
| 193 |
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
|
| 194 |
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
|
| 195 |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
| 196 |
})
|
| 197 |
-
|
| 198 |
except httpx.HTTPStatusError as e:
|
| 199 |
raise HTTPException(status_code=e.response.status_code, detail=e.response.text)
|
|
|
|
| 2 |
import httpx
|
| 3 |
import json
|
| 4 |
import time
|
|
|
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
from pydantic import BaseModel, Field
|
|
|
|
| 20 |
# --- FastAPI App Initialization ---
|
| 21 |
app = FastAPI(
|
| 22 |
title="Replicate to OpenAI Compatibility Layer",
|
| 23 |
+
version="2.1.0 (Model Input Fixed)",
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# --- Pydantic Models ---
|
|
|
|
| 27 |
class ModelCard(BaseModel):
|
| 28 |
+
id: str; object: str = "model"; created: int = Field(default_factory=lambda: int(time.time())); owned_by: str = "replicate"
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
class ModelList(BaseModel):
|
| 31 |
+
object: str = "list"; data: List[ModelCard] = []
|
|
|
|
| 32 |
|
| 33 |
class ChatMessage(BaseModel):
|
| 34 |
+
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
class OpenAIChatCompletionRequest(BaseModel):
|
| 37 |
+
model: str; messages: List[ChatMessage]; temperature: Optional[float] = 0.7; top_p: Optional[float] = 1.0; max_tokens: Optional[int] = None; stream: Optional[bool] = False
|
| 38 |
+
|
| 39 |
+
# --- Model Mapping ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
SUPPORTED_MODELS = {
|
| 41 |
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
|
| 42 |
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
|
| 43 |
}
|
| 44 |
|
|
|
|
| 45 |
# --- Helper Functions ---
|
| 46 |
|
| 47 |
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
|
| 48 |
"""
|
| 49 |
+
Prepares the input payload for Replicate, handling model-specific formats.
|
|
|
|
| 50 |
"""
|
| 51 |
+
payload = {}
|
| 52 |
+
|
| 53 |
+
# *** THIS IS THE CRITICAL FIX ***
|
| 54 |
+
# Claude models on Replicate require a single 'prompt' string.
|
| 55 |
+
# We must convert the 'messages' array into a formatted string.
|
| 56 |
+
if "claude" in request.model:
|
| 57 |
+
prompt_parts = []
|
| 58 |
+
system_prompt = None
|
| 59 |
+
image_url = None
|
| 60 |
+
|
| 61 |
+
for msg in request.messages:
|
| 62 |
+
if msg.role == "system":
|
| 63 |
+
system_prompt = str(msg.content)
|
| 64 |
+
elif msg.role == "user":
|
| 65 |
+
if isinstance(msg.content, list): # Vision case
|
| 66 |
+
for item in msg.content:
|
| 67 |
+
if item.get("type") == "text":
|
| 68 |
+
prompt_parts.append(f"User: {item.get('text', '')}")
|
| 69 |
+
elif item.get("type") == "image_url":
|
| 70 |
+
image_url = item.get("image_url", {}).get("url")
|
| 71 |
+
else: # Text-only case
|
| 72 |
+
prompt_parts.append(f"User: {msg.content}")
|
| 73 |
+
elif msg.role == "assistant":
|
| 74 |
+
prompt_parts.append(f"Assistant: {msg.content}")
|
| 75 |
+
|
| 76 |
+
payload["prompt"] = "\n".join(prompt_parts)
|
| 77 |
+
if system_prompt:
|
| 78 |
+
payload["system_prompt"] = system_prompt
|
| 79 |
+
if image_url:
|
| 80 |
+
payload["image"] = image_url
|
| 81 |
+
|
| 82 |
+
# Other models like Llama-3 accept the 'messages' array directly.
|
| 83 |
+
else:
|
| 84 |
+
payload["messages"] = [msg.dict() for msg in request.messages]
|
| 85 |
|
| 86 |
+
# Add common parameters
|
| 87 |
if request.max_tokens is not None:
|
| 88 |
payload["max_new_tokens"] = request.max_tokens
|
| 89 |
if request.temperature is not None:
|
| 90 |
payload["temperature"] = request.temperature
|
| 91 |
if request.top_p is not None:
|
| 92 |
payload["top_p"] = request.top_p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
return payload
|
| 95 |
|
| 96 |
async def stream_replicate_native_sse(model_id: str, payload: dict):
|
| 97 |
+
"""Connects to Replicate's native SSE stream for token-by-token streaming."""
|
|
|
|
|
|
|
| 98 |
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
|
| 99 |
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
|
| 100 |
|
| 101 |
async with httpx.AsyncClient(timeout=300) as client:
|
|
|
|
| 102 |
try:
|
|
|
|
| 103 |
response = await client.post(url, headers=headers, json={"input": payload, "stream": True})
|
| 104 |
response.raise_for_status()
|
| 105 |
prediction = response.json()
|
|
|
|
| 110 |
yield json.dumps({"error": {"message": error_detail}})
|
| 111 |
return
|
| 112 |
except httpx.HTTPStatusError as e:
|
| 113 |
+
try:
|
| 114 |
+
error_body = e.response.json()
|
| 115 |
+
yield json.dumps({"error": {"message": json.dumps(error_body)}})
|
| 116 |
+
except json.JSONDecodeError:
|
| 117 |
+
yield json.dumps({"error": {"message": e.response.text}})
|
| 118 |
return
|
| 119 |
|
|
|
|
| 120 |
try:
|
| 121 |
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}) as sse:
|
| 122 |
sse.raise_for_status()
|
|
|
|
| 133 |
}
|
| 134 |
yield json.dumps(chunk)
|
| 135 |
elif current_event == "done":
|
| 136 |
+
break
|
| 137 |
except Exception as e:
|
| 138 |
yield json.dumps({"error": {"message": f"Streaming error: {str(e)}"}})
|
| 139 |
|
|
|
|
| 140 |
done_chunk = {
|
| 141 |
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
|
| 142 |
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
|
|
|
|
| 144 |
yield json.dumps(done_chunk)
|
| 145 |
yield "[DONE]"
|
| 146 |
|
|
|
|
| 147 |
# --- API Endpoints ---
|
|
|
|
| 148 |
@app.get("/v1/models", response_model=ModelList)
|
| 149 |
async def list_models():
|
| 150 |
return ModelList(data=[ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()])
|
|
|
|
| 170 |
response = await client.post(url, headers=headers, json={"input": replicate_input})
|
| 171 |
response.raise_for_status()
|
| 172 |
prediction = response.json()
|
|
|
|
| 173 |
output = "".join(prediction.get("output", []))
|
|
|
|
| 174 |
return JSONResponse(content={
|
| 175 |
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
|
| 176 |
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
|
| 177 |
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
| 178 |
})
|
|
|
|
| 179 |
except httpx.HTTPStatusError as e:
|
| 180 |
raise HTTPException(status_code=e.response.status_code, detail=e.response.text)
|