File size: 9,026 Bytes
4b17916
2a0098d
6142af3
 
 
 
2a0098d
6142af3
 
2a0098d
4b17916
2a0098d
4b17916
 
e1111e0
 
 
2a0098d
 
 
 
 
 
6142af3
2a0098d
 
4b17916
 
6142af3
 
 
 
 
 
 
 
 
2a0098d
4b17916
6142af3
 
 
4b17916
 
6142af3
2a0098d
 
4b17916
2a0098d
4b17916
2a0098d
 
 
6142af3
 
2a0098d
 
6142af3
4b17916
e1111e0
6142af3
2a0098d
 
 
 
 
 
6142af3
 
2a0098d
6142af3
 
 
 
 
2a0098d
6142af3
 
4b17916
6142af3
 
 
 
 
2a0098d
6142af3
2a0098d
6142af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0098d
 
6142af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0098d
6142af3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import asyncio
import json
import logging
from typing import AsyncGenerator

from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup

# --- Configuration ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")

if not LLM_API_KEY:
    raise RuntimeError("LLM_API_KEY must be set in a .env file.")

# API URLs and Models
SNAPZION_API_URL = "https://search.snapzion.com/get-snippets"
LLM_API_URL = "https://api.inference.net/v1/chat/completions"
LLM_MODEL = "meta-llama/llama-3.1-8b-instruct/fp-8"

# Headers for external services
SNAPZION_HEADERS = { 'Content-Type': 'application/json', 'User-Agent': 'AI-Deep-Research-Agent/1.0' }
SCRAPING_HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/140.0.0.0 Safari/537.36' }
LLM_HEADERS = { "Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json" }

# --- Pydantic Models for Request Body ---
class DeepResearchRequest(BaseModel):
    query: str

# --- FastAPI App Initialization ---
app = FastAPI(
    title="AI Deep Research API",
    description="Provides single-shot AI search and streaming deep research completions.",
    version="2.0.0"
)

# --- Core Service Functions (Reused and New) ---

async def call_snapzion_search(session: aiohttp.ClientSession, query: str) -> list:
    try:
        async with session.post(SNAPZION_API_URL, headers=SNAPZION_HEADERS, json={"query": query}, timeout=15) as response:
            response.raise_for_status()
            data = await response.json()
            return data.get("organic_results", [])
    except Exception as e:
        logger.error(f"Snapzion search failed for query '{query}': {e}")
        return [] # Return empty list on failure instead of crashing

async def scrape_url(session: aiohttp.ClientSession, url: str) -> str:
    if url.lower().endswith('.pdf'): return "Error: PDF content cannot be scraped."
    try:
        async with session.get(url, headers=SCRAPING_HEADERS, timeout=10, ssl=False) as response:
            if response.status != 200: return f"Error: HTTP status {response.status}"
            html = await response.text()
            soup = BeautifulSoup(html, "html.parser")
            for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
                tag.decompose()
            return " ".join(soup.stripped_strings)
    except Exception as e:
        logger.warning(f"Scraping failed for {url}: {e}")
        return f"Error: {e}"

async def search_and_scrape(session: aiohttp.ClientSession, query: str) -> tuple[str, list]:
    """Performs the search and scrape pipeline for a given query."""
    search_results = await call_snapzion_search(session, query)
    sources = search_results[:4] # Use top 4 sources per sub-query
    if not sources: return "", []

    scrape_tasks = [scrape_url(session, source["link"]) for source in sources]
    scraped_contents = await asyncio.gather(*scrape_tasks)

    context = "\n\n".join(
        f"Source [{i+1}] (from {sources[i]['link']}):\n{content}"
        for i, content in enumerate(scraped_contents) if not content.startswith("Error:")
    )
    return context, sources

# --- Streaming Deep Research Logic ---

async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
    """The main async generator for the deep research process."""
    
    def format_sse(data: dict) -> str:
        """Formats a dictionary as a Server-Sent Event string."""
        return f"data: {json.dumps(data)}\n\n"

    try:
        async with aiohttp.ClientSession() as session:
            # Step 1: Generate Sub-Questions
            yield format_sse({"event": "status", "data": "Generating research plan..."})
            sub_question_prompt = {
                "model": LLM_MODEL,
                "messages": [{
                    "role": "user",
                    "content": f"You are a research planner. Based on the user's query '{query}', generate a list of 3 to 4 crucial sub-questions that would form the basis of a comprehensive research report. Respond with ONLY a JSON array of strings. Example: [\"Question 1?\", \"Question 2?\"]"
                }]
            }
            async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=sub_question_prompt) as response:
                response.raise_for_status()
                result = await response.json()
                try:
                    sub_questions = json.loads(result['choices'][0]['message']['content'])
                except (json.JSONDecodeError, IndexError):
                    yield format_sse({"event": "error", "data": "Failed to parse sub-questions from LLM."})
                    return
            
            yield format_sse({"event": "plan", "data": sub_questions})

            # Step 2: Concurrently research all sub-questions
            research_tasks = [search_and_scrape(session, sq) for sq in sub_questions]
            all_research_results = []
            
            for i, task in enumerate(asyncio.as_completed(research_tasks)):
                yield format_sse({"event": "status", "data": f"Researching: \"{sub_questions[i]}\""})
                result = await task
                all_research_results.append(result)

            # Step 3: Consolidate all context and sources
            yield format_sse({"event": "status", "data": "Consolidating research..."})
            full_context = "\n\n---\n\n".join(res[0] for res in all_research_results if res[0])
            all_sources = [source for res in all_research_results for source in res[1]]
            unique_sources = list({s['link']: s for s in all_sources}.values()) # Deduplicate sources
            
            if not full_context.strip():
                yield format_sse({"event": "error", "data": "Failed to gather any research context."})
                return

            # Step 4: Generate the final report with streaming
            yield format_sse({"event": "status", "data": "Generating final report..."})
            
            final_report_prompt = f"""
You are a research analyst. Your task is to synthesize the provided context into a comprehensive, well-structured report on the topic: "{query}".
Use the context below exclusively. Do not use outside knowledge. Structure the report with markdown headings.

## Research Context ##
{full_context}
"""
            
            final_report_payload = {
                "model": LLM_MODEL,
                "messages": [{"role": "user", "content": final_report_prompt}],
                "stream": True # Enable streaming from the LLM
            }

            async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=final_report_payload) as response:
                response.raise_for_status()
                async for line in response.content:
                    if line.strip():
                        # The inference API might wrap its stream chunks in a 'data: ' prefix
                        line_str = line.decode('utf-8').strip()
                        if line_str.startswith('data:'):
                            line_str = line_str[5:].strip()
                        if line_str == "[DONE]":
                            break
                        try:
                            chunk = json.loads(line_str)
                            content = chunk.get("choices", [{}])[0].get("delta", {}).get("content")
                            if content:
                                yield format_sse({"event": "chunk", "data": content})
                        except json.JSONDecodeError:
                            continue # Ignore empty or malformed lines

            yield format_sse({"event": "sources", "data": unique_sources})
            
    except Exception as e:
        logger.error(f"An error occurred during deep research: {e}")
        yield format_sse({"event": "error", "data": str(e)})
    finally:
        yield format_sse({"event": "done", "data": "Deep research complete."})


# --- API Endpoints ---

@app.get("/", include_in_schema=False)
def root():
    return {"message": "AI Deep Research API is active. See /docs for details."}

@app.post("/v1/deepresearch/completions")
async def deep_research_endpoint(request: DeepResearchRequest):
    """
    Performs a multi-step, streaming deep research task.

    **Events Streamed:**
    - `status`: Provides updates on the current stage of the process.
    - `plan`: The list of sub-questions that will be researched.
    - `chunk`: A piece of the final generated report.
    - `sources`: The list of web sources used for the report.
    - `error`: Indicates a fatal error occurred.
    - `done`: Signals the end of the stream.
    """
    return StreamingResponse(
        run_deep_research_stream(request.query),
        media_type="text/event-stream"
    )