Scrap / main.py
rkihacker's picture
Update main.py
4d61bdb verified
raw
history blame
31.2 kB
import os
import asyncio
import json
import logging
import random
import re
import time
from typing import AsyncGenerator, Optional, Tuple, List, Dict
from urllib.parse import quote_plus, urlparse
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from collections import defaultdict
# --- Configuration ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
logging.info("LLM API Key loaded successfully.")
# --- Constants & Headers ---
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
MAX_SOURCES_TO_PROCESS = 10 # Increased to get more comprehensive results
MAX_CONCURRENT_REQUESTS = 5 # Increased for faster processing
SEARCH_TIMEOUT = 120 # 2 minutes for searching (adjustable)
TOTAL_TIMEOUT = 180 # 3 minutes total
REQUEST_DELAY = 1.0 # Shorter delay between requests
USER_AGENT_ROTATION = True
# Initialize fake user agent generator
try:
ua = UserAgent()
except:
class SimpleUA:
def random(self):
return random.choice([
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
])
ua = SimpleUA()
LLM_HEADERS = {
"Authorization": f"Bearer {LLM_API_KEY}",
"Content-Type": "application/json",
"Accept": "application/json"
}
class DeepResearchRequest(BaseModel):
query: str
search_time: int = 120 # Default to 2 minutes
app = FastAPI(
title="AI Deep Research API",
description="Provides comprehensive research reports from real web searches within 1-2 minutes.",
version="3.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
def extract_json_from_llm_response(text: str) -> Optional[list]:
"""Extract JSON array from LLM response text."""
match = re.search(r'\[.*\]', text, re.DOTALL)
if match:
try:
return json.loads(match.group(0))
except json.JSONDecodeError:
return None
return None
async def get_real_user_agent() -> str:
"""Get a realistic user agent string."""
try:
if isinstance(ua, UserAgent):
return ua.random()
return ua.random() # For our fallback class
except:
return "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
def clean_url(url: str) -> str:
"""Clean up and normalize URLs."""
if not url:
return ""
# Handle DuckDuckGo redirect URLs
if url.startswith('//duckduckgo.com/l/'):
url = f"https:{url}" # Make it a proper URL
try:
# Extract the real URL from DuckDuckGo's redirect
parsed = urlparse(url)
query_params = parsed.query
if 'uddg=' in query_params:
# Extract the actual URL from the parameter
match = re.search(r'uddg=([^&]+)', query_params)
if match:
encoded_url = match.group(1)
try:
url = quote_plus(encoded_url) # This might need better decoding
# For simplicity, we'll just return the decoded URL
# In production, you'd want to properly URL-decode this
return encoded_url
except:
pass
except:
pass
# Ensure URL has proper scheme
if url.startswith('//'):
url = 'https:' + url
elif not url.startswith(('http://', 'https://')):
url = 'https://' + url
return url
async def check_robots_txt(url: str) -> bool:
"""Check if scraping is allowed by robots.txt."""
try:
domain_match = re.search(r'https?://([^/]+)', url)
if not domain_match:
return False
domain = domain_match.group(1)
robots_url = f"https://{domain}/robots.txt"
async with aiohttp.ClientSession() as session:
headers = {'User-Agent': await get_real_user_agent()}
async with session.get(robots_url, headers=headers, timeout=5) as response:
if response.status == 200:
robots = await response.text()
if "Disallow: /" in robots:
return False
# Check for specific path disallows
path = re.sub(r'https?://[^/]+', '', url)
if any(f"Disallow: {p}" in robots for p in [path, path.rstrip('/') + '/']):
return False
return True
except Exception as e:
logging.warning(f"Could not check robots.txt for {url}: {e}")
return False
async def fetch_search_results(query: str, max_results: int = 5) -> List[dict]:
"""
Perform a real search using DuckDuckGo's HTML interface with improved URL handling.
"""
try:
search_url = f"https://html.duckduckgo.com/html/?q={quote_plus(query)}"
headers = {
"User-Agent": await get_real_user_agent(),
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Referer": "https://duckduckgo.com/",
"DNT": "1"
}
async with aiohttp.ClientSession() as session:
async with session.get(search_url, headers=headers, timeout=10) as response:
if response.status != 200:
logging.warning(f"Search failed with status {response.status}")
return []
html = await response.text()
soup = BeautifulSoup(html, 'html.parser')
results = []
# Try multiple selectors as DuckDuckGo may change their HTML structure
for selector in ['.result__body', '.result__a', '.result']:
if len(results) >= max_results:
break
for result in soup.select(selector)[:max_results]:
try:
title_elem = result.select_one('.result__title .result__a') or result.select_one('.result__a')
if not title_elem:
continue
link = title_elem['href']
snippet_elem = result.select_one('.result__snippet')
# Clean the URL
clean_link = clean_url(link)
# Skip if we couldn't get a clean URL
if not clean_link or clean_link.startswith('javascript:'):
continue
# Get snippet if available
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
results.append({
'title': title_elem.get_text(strip=True),
'link': clean_link,
'snippet': snippet
})
except Exception as e:
logging.warning(f"Error parsing search result: {e}")
continue
logging.info(f"Found {len(results)} real search results for '{query}'")
return results[:max_results]
except Exception as e:
logging.error(f"Real search failed: {e}")
return []
async def process_web_source(session: aiohttp.ClientSession, source: dict, timeout: int = 15) -> Tuple[str, dict]:
"""
Process a real web source with improved content extraction and error handling.
"""
headers = {'User-Agent': await get_real_user_agent()}
source_info = source.copy()
source_info['link'] = clean_url(source['link']) # Ensure URL is clean
# Skip if URL is invalid
if not source_info['link'] or not source_info['link'].startswith(('http://', 'https://')):
return source.get('snippet', ''), source_info
# Check robots.txt first
if not await check_robots_txt(source_info['link']):
logging.info(f"Scraping disallowed by robots.txt for {source_info['link']}")
return source.get('snippet', ''), source_info
try:
logging.info(f"Processing source: {source_info['link']}")
start_time = time.time()
# Skip non-HTML content
if any(source_info['link'].lower().endswith(ext) for ext in ['.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx']):
logging.info(f"Skipping non-HTML content at {source_info['link']}")
return source.get('snippet', ''), source_info
# Add delay between requests to be polite
await asyncio.sleep(REQUEST_DELAY)
async with session.get(source_info['link'], headers=headers, timeout=timeout, ssl=False) as response:
if response.status != 200:
logging.warning(f"HTTP {response.status} for {source_info['link']}")
return source.get('snippet', ''), source_info
content_type = response.headers.get('Content-Type', '').lower()
if 'text/html' not in content_type:
logging.info(f"Non-HTML content at {source_info['link']} (type: {content_type})")
return source.get('snippet', ''), source_info
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
# Remove unwanted elements
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside', 'iframe', 'noscript', 'form']):
tag.decompose()
# Try to find main content by common patterns
selectors_to_try = [
'main',
'article',
'[role="main"]',
'.main-content',
'.content',
'.article-body',
'.post-content',
'.entry-content',
'#content',
'#main',
'.main',
'.article'
]
main_content = None
for selector in selectors_to_try:
main_content = soup.select_one(selector)
if main_content:
break
if not main_content:
# If no main content found, try to find the largest text block
all_elements = soup.find_all()
candidates = [el for el in all_elements if el.name not in ['script', 'style', 'nav', 'footer', 'header']]
if candidates:
candidates.sort(key=lambda x: len(x.get_text()), reverse=True)
main_content = candidates[0] if candidates else soup
if not main_content:
main_content = soup.find('body') or soup
# Clean up the content
content = " ".join(main_content.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
# If content is too short, try alternative extraction methods
if len(content.split()) < 50 and len(html) > 10000:
# Try extracting all paragraphs
paras = soup.find_all('p')
content = " ".join([p.get_text() for p in paras if p.get_text().strip()])
content = re.sub(r'\s+', ' ', content).strip()
# If still too short, try getting all text nodes
if len(content.split()) < 50:
content = " ".join(soup.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
# If content is still too short, try to extract from specific tags
if len(content.split()) < 30:
# Try to get content from divs with certain classes
for tag in ['div', 'section', 'article']:
for element in soup.find_all(tag):
if len(element.get_text().split()) > 200: # If this element has substantial content
content = " ".join(element.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) >= 30: # If we got enough content
break
if len(content.split()) >= 30:
break
if len(content.split()) < 30:
logging.warning(f"Very little content extracted from {source_info['link']}")
return source.get('snippet', ''), source_info
source_info['word_count'] = len(content.split())
source_info['processing_time'] = time.time() - start_time
return content, source_info
except asyncio.TimeoutError:
logging.warning(f"Timeout while processing {source_info['link']}")
return source.get('snippet', ''), source_info
except Exception as e:
logging.warning(f"Error processing {source_info['link']}: {str(e)[:200]}")
return source.get('snippet', ''), source_info
async def generate_research_plan(query: str, session: aiohttp.ClientSession) -> List[str]:
"""Generate a comprehensive research plan with sub-questions."""
try:
plan_prompt = {
"model": LLM_MODEL,
"messages": [{
"role": "user",
"content": f"""Generate 4-6 comprehensive sub-questions for in-depth research on '{query}'.
Focus on key aspects that would provide a complete understanding of the topic.
Your response MUST be ONLY the raw JSON array with no additional text.
Example: ["What is the historical background of X?", "What are the current trends in X?"]"""
}],
"temperature": 0.7,
"max_tokens": 300
}
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=30) as response:
response.raise_for_status()
result = await response.json()
if isinstance(result, list):
return result
elif isinstance(result, dict) and 'choices' in result:
content = result['choices'][0]['message']['content']
sub_questions = extract_json_from_llm_response(content)
if sub_questions and isinstance(sub_questions, list):
cleaned = []
for q in sub_questions:
if isinstance(q, str) and q.strip():
cleaned_q = re.sub(r'^[^a-zA-Z0-9]*|[^a-zA-Z0-9]*$', '', q)
if cleaned_q:
cleaned.append(cleaned_q)
return cleaned[:6] # Limit to 6 questions max
# Fallback if we couldn't get good questions from LLM
return [
f"What is {query} and its key features?",
f"How does {query} compare to alternatives?",
f"What are the current developments in {query}?",
f"What are the main challenges with {query}?",
f"What does the future hold for {query}?"
]
except Exception as e:
logging.error(f"Failed to generate research plan: {e}")
return [
f"What is {query}?",
f"What are the key aspects of {query}?",
f"What are current trends in {query}?",
f"What are the challenges with {query}?"
]
async def continuous_search(query: str, search_time: int = 120) -> List[dict]:
"""
Perform continuous searching for better results within time constraints.
"""
start_time = time.time()
all_results = []
seen_urls = set()
# Generate multiple variations of the query
query_variations = [
query,
f"{query} comparison",
f"{query} analysis",
f"{query} review",
f"{query} features",
f"{query} vs alternatives"
]
async with aiohttp.ClientSession() as session:
while time.time() - start_time < search_time:
# Shuffle the query variations to get diverse results
random.shuffle(query_variations)
for q in query_variations[:3]: # Only use first 3 variations in each iteration
if time.time() - start_time >= search_time:
break
try:
results = await fetch_search_results(q, max_results=5)
for result in results:
clean_link = clean_url(result['link'])
if clean_link and clean_link not in seen_urls:
seen_urls.add(clean_link)
result['link'] = clean_link
all_results.append(result)
logging.info(f"Found new result: {result['title']}")
# Small delay between searches
await asyncio.sleep(1.0)
# If we have enough unique results, we can stop early
if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5: # Get more than we need for selection
break
except Exception as e:
logging.error(f"Error during continuous search: {e}")
await asyncio.sleep(2.0) # Wait a bit before trying again
# Filter and sort results by relevance
if all_results:
# Simple relevance scoring (could be enhanced with more sophisticated methods)
def score_result(result):
# Score based on how many query terms appear in title/snippet
query_terms = set(query.lower().split())
title = result['title'].lower()
snippet = result['snippet'].lower()
matches = 0
for term in query_terms:
if term in title or term in snippet:
matches += 1
# Also consider length of snippet as a proxy for content richness
snippet_length = len(result['snippet'].split())
return matches * 10 + snippet_length
# Sort by score, descending
all_results.sort(key=lambda x: score_result(x), reverse=True)
return all_results[:MAX_SOURCES_TO_PROCESS * 2] # Return more than we need for selection
async def filter_and_select_sources(results: List[dict]) -> List[dict]:
"""
Filter and select the best sources from search results.
"""
if not results:
return []
# Group by domain to ensure diversity
domain_counts = defaultdict(int)
domain_results = defaultdict(list)
for result in results:
domain = urlparse(result['link']).netloc
domain_counts[domain] += 1
domain_results[domain].append(result)
selected = []
# First pass: take the top result from each domain
for domain, domain_res in domain_results.items():
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
# Take the best result from this domain (sorted by position in original results)
if domain_res:
selected.append(domain_res[0])
# Second pass: if we need more, take additional results from domains with good content
if len(selected) < MAX_SOURCES_TO_PROCESS:
# Calculate average snippet length as a proxy for content quality
domain_quality = {}
for domain, domain_res in domain_results.items():
avg_length = sum(len(r['snippet'].split()) for r in domain_res) / len(domain_res)
domain_quality[domain] = avg_length
# Sort domains by quality
sorted_domains = sorted(domain_quality.items(), key=lambda x: x[1], reverse=True)
# Add more results from high-quality domains
for domain, _ in sorted_domains:
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
for res in domain_results[domain]:
if res not in selected:
selected.append(res)
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
# Final pass: if still need more, add remaining high-snippet-length results
if len(selected) < MAX_SOURCES_TO_PROCESS:
all_results_sorted = sorted(results, key=lambda x: len(x['snippet'].split()), reverse=True)
for res in all_results_sorted:
if res not in selected:
selected.append(res)
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
return selected[:MAX_SOURCES_TO_PROCESS]
async def run_deep_research_stream(query: str, search_time: int = 120) -> AsyncGenerator[str, None]:
def format_sse(data: dict) -> str:
return f"data: {json.dumps(data)}\n\n"
start_time = time.time()
processed_sources = 0
successful_sources = 0
total_tokens = 0
try:
# Initialize the SSE stream with start message
yield format_sse({
"event": "status",
"data": f"Starting deep research on '{query}'. Search time limit: {search_time} seconds."
})
async with aiohttp.ClientSession() as session:
# Step 1: Generate research plan
yield format_sse({"event": "status", "data": "Generating comprehensive research plan..."})
sub_questions = await generate_research_plan(query, session)
yield format_sse({"event": "plan", "data": sub_questions})
# Step 2: Continuous search for better results
yield format_sse({
"event": "status",
"data": f"Performing continuous search for up to {search_time} seconds..."
})
search_results = await continuous_search(query, search_time)
yield format_sse({
"event": "status",
"data": f"Found {len(search_results)} potential sources. Selecting the best ones..."
})
if not search_results:
yield format_sse({
"event": "error",
"data": "No search results found. Check your query and try again."
})
return
# Select the best sources
selected_sources = await filter_and_select_sources(search_results)
yield format_sse({
"event": "status",
"data": f"Selected {len(selected_sources)} high-quality sources to process."
})
if not selected_sources:
yield format_sse({
"event": "error",
"data": "No valid sources found after filtering."
})
return
# Step 3: Process selected sources with concurrency control
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
consolidated_context = ""
all_sources_used = []
processing_errors = 0
async def process_with_semaphore(source):
async with semaphore:
return await process_web_source(session, source, timeout=20)
# Process sources with progress updates
processing_tasks = []
for i, source in enumerate(selected_sources):
# Check if we're running out of time
elapsed = time.time() - start_time
if elapsed > TOTAL_TIMEOUT * 0.8: # Leave 20% of time for synthesis
yield format_sse({
"event": "status",
"data": f"Approaching time limit, stopping source processing at {i}/{len(selected_sources)}"
})
break
# Add delay between processing each source to be polite
if i > 0:
await asyncio.sleep(REQUEST_DELAY * 0.5)
task = asyncio.create_task(process_with_semaphore(source))
processing_tasks.append(task)
if (i + 1) % 2 == 0 or (i + 1) == len(selected_sources):
yield format_sse({
"event": "status",
"data": f"Processed {min(i+1, len(selected_sources))}/{len(selected_sources)} sources..."
})
# Process completed tasks as they finish
for future in asyncio.as_completed(processing_tasks):
processed_sources += 1
content, source_info = await future
if content and content.strip():
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
all_sources_used.append(source_info)
successful_sources += 1
total_tokens += len(content.split()) # Rough token count
else:
processing_errors += 1
if not consolidated_context.strip():
yield format_sse({
"event": "error",
"data": f"Failed to extract content from any sources. {processing_errors} errors occurred."
})
return
# Step 4: Synthesize comprehensive report
time_remaining = max(0, TOTAL_TIMEOUT - (time.time() - start_time))
yield format_sse({
"event": "status",
"data": f"Synthesizing comprehensive report from {successful_sources} sources..."
})
max_output_tokens = min(2000, int(time_remaining * 6)) # More aggressive token count
report_prompt = f"""Compose an in-depth analysis report on "{query}".
Structure the report with these sections:
1. Introduction and Background
2. Key Features and Capabilities
3. Comparative Analysis with Alternatives
4. Current Developments and Trends
5. Challenges and Limitations
6. Future Outlook
7. Conclusion and Recommendations
For each section, provide detailed analysis based on the source material.
Include specific examples and data points from the sources when available.
Compare and contrast different viewpoints from various sources.
Use markdown formatting for headings, subheadings, lists, and emphasis.
Cite sources where appropriate using inline citations like [1][2].
Available information from {successful_sources} sources:
{consolidated_context[:20000]} # Increased context size
Generate a comprehensive report of approximately {max_output_tokens//4} words.
Focus on providing deep insights, analysis, and actionable information.
"""
report_payload = {
"model": LLM_MODEL,
"messages": [{"role": "user", "content": report_prompt}],
"stream": True,
"max_tokens": max_output_tokens
}
# Stream the report generation
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
response.raise_for_status()
async for line in response.content:
if time.time() - start_time > TOTAL_TIMEOUT:
yield format_sse({
"event": "warning",
"data": "Time limit reached, ending report generation early."
})
break
line_str = line.decode('utf-8').strip()
if line_str.startswith('data:'):
line_str = line_str[5:].strip()
if line_str == "[DONE]":
break
try:
chunk = json.loads(line_str)
choices = chunk.get("choices")
if choices and isinstance(choices, list) and len(choices) > 0:
content = choices[0].get("delta", {}).get("content")
if content:
yield format_sse({"event": "chunk", "data": content})
except Exception as e:
logging.warning(f"Error processing stream chunk: {e}")
continue
# Final status update
duration = time.time() - start_time
stats = {
"total_time_seconds": round(duration),
"sources_processed": processed_sources,
"sources_successful": successful_sources,
"estimated_tokens": total_tokens,
"sources_used": len(all_sources_used)
}
yield format_sse({
"event": "status",
"data": f"Research completed successfully in {duration:.1f} seconds."
})
yield format_sse({"event": "stats", "data": stats})
yield format_sse({"event": "sources", "data": all_sources_used})
except asyncio.TimeoutError:
yield format_sse({
"event": "error",
"data": f"Research process timed out after {TOTAL_TIMEOUT} seconds."
})
except Exception as e:
logging.error(f"Critical error in research process: {e}", exc_info=True)
yield format_sse({
"event": "error",
"data": f"An unexpected error occurred: {str(e)[:200]}"
})
finally:
duration = time.time() - start_time
yield format_sse({
"event": "complete",
"data": f"Research process finished after {duration:.1f} seconds."
})
@app.post("/deep-research", response_class=StreamingResponse)
async def deep_research_endpoint(request: DeepResearchRequest):
"""Endpoint for deep research that streams SSE responses."""
if not request.query or len(request.query.strip()) < 3:
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
search_time = min(max(request.search_time, 60), 180) # Clamp between 60 and 180 seconds
return StreamingResponse(
run_deep_research_stream(request.query.strip(), search_time),
media_type="text/event-stream"
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)