Scrap / main.py
rkihacker's picture
Update main.py
b58dc7b verified
raw
history blame
41.8 kB
import os
import asyncio
import json
import logging
import random
import re
import time
from typing import AsyncGenerator, Optional, Tuple, List, Dict
from urllib.parse import quote_plus, urlparse, unquote
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from collections import defaultdict
# --- Configuration ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
logging.info("LLM API Key loaded successfully.")
# --- Constants & Headers ---
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
MAX_SOURCES_TO_PROCESS = 20 # Increased for more research
MAX_CONCURRENT_REQUESTS = 2
SEARCH_TIMEOUT = 300 # 5 minutes for longer research
# Allow substantially longer overall time to enable large, multi-section outputs
TOTAL_TIMEOUT = 1800
REQUEST_DELAY = 3.0
RETRY_ATTEMPTS = 5
RETRY_DELAY = 5.0
USER_AGENT_ROTATION = True
# Context management
CONTEXT_WINDOW_SIZE = 10_000_000
MAX_CONTEXT_SIZE = 2_000_000
## Robots.txt behavior (user requested scraping even if disallowed)
RESPECT_ROBOTS_TXT = False
# Initialize fake user agent generator
try:
ua = UserAgent()
except:
class SimpleUA:
def random(self):
return random.choice([
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
])
ua = SimpleUA()
LLM_HEADERS = {
"Authorization": f"Bearer {LLM_API_KEY}",
"Content-Type": "application/json",
"Accept": "application/json"
}
class DeepResearchRequest(BaseModel):
query: str
search_time: int = 300 # Default to 5 minutes
class SearchRequest(BaseModel):
query: str
search_time: int = 60 # Default: 1 minute for search-only
max_results: int = 20 # Number of results to return
app = FastAPI(
title="AI Deep Research API",
description="Provides comprehensive research reports from real web searches within 5 minutes.",
version="3.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
def extract_json_from_llm_response(text: str) -> Optional[list]:
"""Extract JSON array from LLM response text."""
match = re.search(r'\[.*\]', text, re.DOTALL)
if match:
try:
return json.loads(match.group(0))
except json.JSONDecodeError:
return None
return None
async def get_real_user_agent() -> str:
"""Get a realistic user agent string."""
try:
if isinstance(ua, UserAgent):
return ua.random
return ua.random()
except:
return "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
def clean_url(url: str) -> str:
"""Clean up and normalize URLs."""
if not url:
return ""
# Handle DuckDuckGo redirect links like //duckduckgo.com/l/?uddg=... or /l/?uddg=...
if url.startswith('//duckduckgo.com/l/') or url.startswith('/l/?'):
if url.startswith('//'):
url = f"https:{url}"
elif url.startswith('/'):
url = f"https://duckduckgo.com{url}"
try:
parsed = urlparse(url)
query_params = parsed.query
if 'uddg=' in query_params:
match = re.search(r'uddg=([^&]+)', query_params)
if match:
return unquote(match.group(1))
except Exception:
pass
if url.startswith('//'):
url = 'https:' + url
elif not url.startswith(('http://', 'https://')):
url = 'https://' + url
return url
async def check_robots_txt(url: str) -> bool:
"""Check if scraping is allowed by robots.txt."""
# If configured to ignore robots.txt, always allow
if not RESPECT_ROBOTS_TXT:
return True
try:
domain_match = re.search(r'https?://([^/]+)', url)
if not domain_match:
return False
domain = domain_match.group(1)
robots_url = f"https://{domain}/robots.txt"
async with aiohttp.ClientSession() as session:
headers = {'User-Agent': await get_real_user_agent()}
async with session.get(robots_url, headers=headers, timeout=5) as response:
if response.status == 200:
robots = await response.text()
if "Disallow: /" in robots:
return False
path = re.sub(r'https?://[^/]+', '', url)
if any(f"Disallow: {p}" in robots for p in [path, path.rstrip('/') + '/']):
return False
return True
except Exception as e:
logging.warning(f"Could not check robots.txt for {url}: {e}")
# Default to allow on failure to check
return True
async def fetch_search_results(query: str, max_results: int = 5) -> List[dict]:
"""Perform a real search using DuckDuckGo (Lite/HTML) with multi-endpoint fallback to reduce 202 issues."""
ua_hdr = await get_real_user_agent()
common_headers = {
"User-Agent": ua_hdr,
"Accept-Language": "en-US,en;q=0.9",
"DNT": "1",
"Cache-Control": "no-cache",
"Pragma": "no-cache",
"Referer": "https://duckduckgo.com/",
}
# Try Lite first (very lightweight HTML), then HTML mirrors
endpoints = [
{"name": "lite-get", "method": "GET", "url": lambda q: f"https://lite.duckduckgo.com/lite/?q={quote_plus(q)}&kl=us-en&bing_market=us-en"},
# Per provided openapi.json: POST /lite/ with query params
{"name": "lite-post", "method": "POST", "url": lambda q: f"https://lite.duckduckgo.com/lite/?q={quote_plus(q)}&kl=us-en&bing_market=us-en"},
{"name": "html-mirror", "method": "GET", "url": lambda q: f"https://html.duckduckgo.com/html/?q={quote_plus(q)}"},
{"name": "html", "method": "GET", "url": lambda q: f"https://duckduckgo.com/html/?q={quote_plus(q)}"},
]
def parse_results_from_html(html: str) -> List[dict]:
soup = BeautifulSoup(html, 'html.parser')
results: List[dict] = []
# Primary selectors (full HTML interface)
candidates = soup.select('.result__body')
if not candidates:
candidates = soup.select('.result')
for result in candidates:
try:
title_elem = result.select_one('.result__title .result__a') or result.select_one('.result__a')
if not title_elem:
# Lite fallback: find first anchor in this block
title_elem = result.find('a')
if not title_elem:
continue
link = title_elem.get('href')
if not link:
continue
snippet_elem = result.select_one('.result__snippet') or result.find('p')
clean_link = clean_url(link)
if not clean_link or clean_link.startswith('javascript:'):
continue
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
title_text = title_elem.get_text(strip=True)
results.append({'title': title_text, 'link': clean_link, 'snippet': snippet})
except Exception as e:
logging.warning(f"Error parsing search result: {e}")
continue
# DuckDuckGo Lite often uses simple anchors; target likely link patterns first
if not results:
lite_links = soup.select('a[href*="/l/?uddg="]')
for a in lite_links:
try:
href = a.get('href')
title_text = a.get_text(strip=True)
if not href or not title_text:
continue
clean_link = clean_url(href)
if not clean_link or clean_link.startswith('javascript:'):
continue
results.append({'title': title_text, 'link': clean_link, 'snippet': ''})
if len(results) >= max_results:
break
except Exception:
continue
# If still empty, do a very generic anchor scrape (fallback)
if not results:
anchors = soup.find_all('a', href=True)
for a in anchors:
text = a.get_text(strip=True)
href = a['href']
if not text or not href:
continue
if '/l/?' in href or href.startswith('http') or href.startswith('//'):
clean_link = clean_url(href)
if clean_link and not clean_link.startswith('javascript:'):
results.append({'title': text, 'link': clean_link, 'snippet': ''})
if len(results) >= max_results * 2:
break
return results[:max_results]
for attempt in range(RETRY_ATTEMPTS):
try:
async with aiohttp.ClientSession() as session:
for ep in endpoints:
url = ep['url'](query)
headers = {**common_headers, "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"}
try:
if ep['method'] == 'GET':
resp = await session.get(url, headers=headers, timeout=12)
else:
# POST with querystring parameters as specified; no body required
resp = await session.post(url, headers=headers, timeout=12)
async with resp as response:
if response.status == 200:
html = await response.text()
results = parse_results_from_html(html)
if results:
logging.info(f"Found {len(results)} real search results for '{query}' via {ep['name']}")
return results
# If empty, try next endpoint
logging.warning(f"No results parsed from {ep['name']} for '{query}', trying next endpoint...")
continue
elif response.status == 202:
logging.warning(f"Search attempt {attempt + 1} got 202 at {ep['name']} for '{query}', trying next endpoint")
continue
else:
logging.warning(f"Search failed with status {response.status} at {ep['name']} for '{query}'")
continue
except asyncio.TimeoutError:
logging.warning(f"Timeout contacting {ep['name']} for '{query}'")
continue
except Exception as e:
logging.warning(f"Error contacting {ep['name']} for '{query}': {e}")
continue
except Exception as e:
logging.error(f"Search attempt {attempt + 1} failed for '{query}': {e}")
# Backoff before next multi-endpoint attempt
if attempt < RETRY_ATTEMPTS - 1:
await asyncio.sleep(RETRY_DELAY)
logging.error(f"All {RETRY_ATTEMPTS} search attempts failed across endpoints for '{query}'")
return []
async def process_web_source(session: aiohttp.ClientSession, source: dict, timeout: int = 15) -> Tuple[str, dict]:
"""Process a real web source with improved content extraction and error handling."""
headers = {'User-Agent': await get_real_user_agent()}
source_info = source.copy()
source_info['link'] = clean_url(source['link'])
if not source_info['link'] or not source_info['link'].startswith(('http://', 'https://')):
logging.warning(f"Invalid URL: {source_info['link']}")
return source.get('snippet', ''), source_info
if not await check_robots_txt(source_info['link']):
logging.info(f"Scraping disallowed by robots.txt for {source_info['link']}")
return source.get('snippet', ''), source_info
try:
logging.info(f"Processing source: {source_info['link']}")
start_time = time.time()
if any(source_info['link'].lower().endswith(ext) for ext in ['.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx']):
logging.info(f"Skipping non-HTML content at {source_info['link']}")
return source.get('snippet', ''), source_info
await asyncio.sleep(REQUEST_DELAY)
async with session.get(source_info['link'], headers=headers, timeout=timeout, ssl=False) as response:
if response.status != 200:
logging.warning(f"HTTP {response.status} for {source_info['link']}")
return source.get('snippet', ''), source_info
content_type = response.headers.get('Content-Type', '').lower()
if 'text/html' not in content_type:
logging.info(f"Non-HTML content at {source_info['link']} (type: {content_type})")
return source.get('snippet', ''), source_info
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside', 'iframe', 'noscript', 'form']):
tag.decompose()
selectors_to_try = [
'main',
'article',
'[role="main"]',
'.main-content',
'.content',
'.article-body',
'.post-content',
'.entry-content',
'#content',
'#main',
'.main',
'.article'
]
main_content = None
for selector in selectors_to_try:
main_content = soup.select_one(selector)
if main_content:
break
if not main_content:
all_elements = soup.find_all()
candidates = [el for el in all_elements if el.name not in ['script', 'style', 'nav', 'footer', 'header']]
if candidates:
candidates.sort(key=lambda x: len(x.get_text()), reverse=True)
main_content = candidates[0] if candidates else soup
if not main_content:
main_content = soup.find('body') or soup
content = " ".join(main_content.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) < 50 and len(html) > 10000:
paras = soup.find_all('p')
content = " ".join([p.get_text() for p in paras if p.get_text().strip()])
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) < 50:
content = " ".join(soup.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) < 30:
for tag in ['div', 'section', 'article']:
for element in soup.find_all(tag):
if len(element.get_text().split()) > 200:
content = " ".join(element.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) >= 30:
break
if len(content.split()) >= 30:
break
if len(content.split()) < 30:
logging.warning(f"Very little content extracted from {source_info['link']}")
return source.get('snippet', ''), source_info
source_info['word_count'] = len(content.split())
source_info['processing_time'] = time.time() - start_time
return content, source_info
except asyncio.TimeoutError:
logging.warning(f"Timeout while processing {source_info['link']}")
return source.get('snippet', ''), source_info
except Exception as e:
logging.warning(f"Error processing {source_info['link']}: {str(e)[:200]}")
return source.get('snippet', ''), source_info
async def generate_research_plan(query: str, session: aiohttp.ClientSession) -> List[str]:
"""Generate a comprehensive research plan with sub-questions."""
try:
plan_prompt = {
"model": LLM_MODEL,
"messages": [{
"role": "user",
"content": f"""Generate 4-8 comprehensive sub-questions for in-depth research on '{query}'.
Focus on key aspects that would provide a complete understanding of the topic.
Your response MUST be ONLY the raw JSON array with no additional text.
Example: [\"What is the historical background of X?\", \"What are the current trends in X?\"]"""
}],
"temperature": 0.7
}
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=30) as response:
response.raise_for_status()
result = await response.json()
if isinstance(result, list):
return result
elif isinstance(result, dict) and 'choices' in result:
content = result['choices'][0]['message']['content']
sub_questions = extract_json_from_llm_response(content)
if sub_questions and isinstance(sub_questions, list):
cleaned = []
for q in sub_questions:
if isinstance(q, str) and q.strip():
cleaned_q = re.sub(r'^[^a-zA-Z0-9]*|[^a-zA-Z0-9]*$', '', q)
if cleaned_q:
cleaned.append(cleaned_q)
return cleaned[:6]
return [
f"What is {query} and its key features?",
f"How does {query} compare to alternatives?",
f"What are the current developments in {query}?",
f"What are the main challenges with {query}?",
f"What does the future hold for {query}?"
]
except Exception as e:
logging.error(f"Failed to generate research plan: {e}")
return [
f"What is {query}?",
f"What are the key aspects of {query}?",
f"What are current trends in {query}?",
f"What are the challenges with {query}?"
]
async def continuous_search(query: str, search_time: int = 300) -> AsyncGenerator[Dict[str, any], None]:
"""Perform continuous searching with retries and diverse queries, yielding updates for each new result."""
start_time = time.time()
all_results = []
seen_urls = set()
fallback_results = []
query_variations = [
query,
f"{query} comparison",
f"{query} review",
f"{query} latest developments",
f"{query} features and benefits",
f"{query} challenges and limitations"
]
async with aiohttp.ClientSession() as session:
iteration = 0
result_count = 0
while time.time() - start_time < search_time:
iteration += 1
random.shuffle(query_variations)
for q in query_variations:
if time.time() - start_time >= search_time:
logger.info(f"Search timed out after {search_time} seconds. Found {len(all_results)} results.")
break
logger.info(f"Iteration {iteration}: Searching for query variation: {q}")
yield {"event": "status", "data": f"Searching for '{q}'..."}
try:
results = await fetch_search_results(q, max_results=5)
logger.info(f"Retrieved {len(results)} results for query '{q}'")
for result in results:
clean_link = clean_url(result['link'])
if clean_link and clean_link not in seen_urls:
seen_urls.add(clean_link)
result['link'] = clean_link
all_results.append(result)
fallback_results.append(result)
result_count += 1
logger.info(f"Added new result: {result['title']} ({result['link']})")
yield {"event": "found_result", "data": f"Found result {result_count}: {result['title']} ({result['link']})"}
await asyncio.sleep(REQUEST_DELAY)
if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5:
logger.info(f"Reached sufficient results: {len(all_results)}")
break
except Exception as e:
logger.error(f"Error during search for '{q}': {e}")
yield {"event": "warning", "data": f"Search error for '{q}': {str(e)[:100]}"}
await asyncio.sleep(RETRY_DELAY)
if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5:
break
logger.info(f"Completed continuous search. Total results: {len(all_results)}")
if len(all_results) < MAX_SOURCES_TO_PROCESS:
logger.warning(f"Insufficient results ({len(all_results)}), using fallback results")
yield {"event": "warning", "data": f"Insufficient results, using fallback results to reach minimum."}
all_results.extend(fallback_results[:MAX_SOURCES_TO_PROCESS - len(all_results)])
if all_results:
def score_result(result):
query_terms = set(query.lower().split())
title = result['title'].lower()
snippet = result['snippet'].lower()
matches = sum(1 for term in query_terms if term in title or term in snippet)
snippet_length = len(result['snippet'].split())
return matches * 10 + snippet_length
all_results.sort(key=score_result, reverse=True)
yield {"event": "final_search_results", "data": all_results[:MAX_SOURCES_TO_PROCESS * 2]}
async def filter_and_select_sources(results: List[dict]) -> List[dict]:
"""Filter and select the best sources from search results."""
if not results:
logger.warning("No search results to filter.")
return []
logger.info(f"Filtering {len(results)} search results...")
domain_counts = defaultdict(int)
domain_results = defaultdict(list)
for result in results:
domain = urlparse(result['link']).netloc
domain_counts[domain] += 1
domain_results[domain].append(result)
selected = []
for domain, domain_res in domain_results.items():
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
if domain_res:
selected.append(domain_res[0])
logger.info(f"Selected top result from domain {domain}: {domain_res[0]['link']}")
if len(selected) < MAX_SOURCES_TO_PROCESS:
domain_quality = {}
for domain, domain_res in domain_results.items():
avg_length = sum(len(r['snippet'].split()) for r in domain_res) / len(domain_res)
domain_quality[domain] = avg_length
sorted_domains = sorted(domain_quality.items(), key=lambda x: x[1], reverse=True)
for domain, _ in sorted_domains:
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
for res in domain_results[domain]:
if res not in selected:
selected.append(res)
logger.info(f"Added additional result from high-quality domain {domain}: {res['link']}")
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
if len(selected) < MAX_SOURCES_TO_PROCESS:
all_results_sorted = sorted(results, key=lambda x: len(x['snippet'].split()), reverse=True)
for res in all_results_sorted:
if res not in selected:
selected.append(res)
logger.info(f"Added fallback high-snippet result: {res['link']}")
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
logger.info(f"Selected {len(selected)} sources after filtering.")
return selected[:MAX_SOURCES_TO_PROCESS]
async def run_deep_research_stream(query: str, search_time: int = 300) -> AsyncGenerator[str, None]:
def format_sse(data: dict) -> str:
return f"data: {json.dumps(data)}\n\n"
start_time = time.time()
processed_sources = 0
successful_sources = 0
total_tokens = 0
try:
yield format_sse({
"event": "status",
"data": f"Starting deep research on '{query}'. Search time limit: {search_time} seconds."
})
async with aiohttp.ClientSession() as session:
yield format_sse({"event": "status", "data": "Generating comprehensive research plan..."})
try:
sub_questions = await generate_research_plan(query, session)
yield format_sse({"event": "plan", "data": sub_questions})
except Exception as e:
yield format_sse({
"event": "error",
"data": f"Failed to generate research plan: {str(e)[:200]}"
})
sub_questions = [
f"What is {query}?",
f"What are the key aspects of {query}?",
f"What are current trends in {query}?",
f"What are the challenges with {query}?"
]
yield format_sse({"event": "plan", "data": sub_questions})
yield format_sse({
"event": "status",
"data": f"Performing continuous search for up to {search_time} seconds..."
})
search_results = []
async for update in continuous_search(query, search_time):
if update["event"] == "final_search_results":
search_results = update["data"]
else:
yield format_sse(update)
yield format_sse({
"event": "status",
"data": f"Found {len(search_results)} potential sources. Selecting the best ones..."
})
yield format_sse({
"event": "found_sources",
"data": search_results
})
if not search_results:
yield format_sse({
"event": "error",
"data": "No search results found. Check your query and try again."
})
return
selected_sources = await filter_and_select_sources(search_results)
yield format_sse({
"event": "status",
"data": f"Selected {len(selected_sources)} high-quality sources to process."
})
yield format_sse({
"event": "selected_sources",
"data": selected_sources
})
if not selected_sources:
yield format_sse({
"event": "error",
"data": "No valid sources found after filtering."
})
return
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
consolidated_context = ""
all_sources_used = []
processing_errors = 0
async def process_with_semaphore(source):
async with semaphore:
return await process_web_source(session, source, timeout=20)
processing_tasks = []
for i, source in enumerate(selected_sources):
elapsed = time.time() - start_time
if elapsed > TOTAL_TIMEOUT * 0.8:
yield format_sse({
"event": "status",
"data": f"Approaching time limit, stopping source processing at {i}/{len(selected_sources)}"
})
break
if i > 0:
await asyncio.sleep(REQUEST_DELAY * 0.5)
task = asyncio.create_task(process_with_semaphore(source))
processing_tasks.append(task)
if (i + 1) % 2 == 0 or (i + 1) == len(selected_sources):
yield format_sse({
"event": "status",
"data": f"Processed {min(i+1, len(selected_sources))}/{len(selected_sources)} sources..."
})
for future in asyncio.as_completed(processing_tasks):
processed_sources += 1
content, source_info = await future
if content and content.strip():
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
all_sources_used.append(source_info)
successful_sources += 1
total_tokens += len(content.split())
yield format_sse({
"event": "processed_source",
"data": source_info
})
else:
processing_errors += 1
yield format_sse({
"event": "warning",
"data": f"Failed to extract content from {source_info['link']}"
})
if not consolidated_context.strip():
yield format_sse({
"event": "error",
"data": f"Failed to extract content from any sources. {processing_errors} errors occurred."
})
return
# Prepare numbered citations list for the model and a references block we'll emit at the end
sources_catalog = []
for idx, s in enumerate(all_sources_used, start=1):
title = s.get('title') or s.get('link')
sources_catalog.append({
"id": idx,
"title": title,
"url": s.get('link')
})
# Section-by-section long-form synthesis (streamed)
yield format_sse({
"event": "status",
"data": f"Synthesizing a long multi-section report from {successful_sources} sources..."
})
sections = [
{"key": "introduction", "title": "1. Introduction and Background", "target_words": 800},
{"key": "features", "title": "2. Key Features and Capabilities", "target_words": 900},
{"key": "comparative", "title": "3. Comparative Analysis with Alternatives", "target_words": 900},
{"key": "trends", "title": "4. Current Developments and Trends", "target_words": 900},
{"key": "challenges", "title": "5. Challenges and Limitations", "target_words": 900},
{"key": "future", "title": "6. Future Outlook", "target_words": 900},
{"key": "conclusion", "title": "7. Conclusion and Recommendations", "target_words": 600},
]
# Common preface for all section prompts
preface = (
"You are a meticulous research assistant. Write the requested section in clear, structured markdown. "
"Use subheadings, bullet lists, and short paragraphs. Provide deep analysis, data points, and concrete examples. "
"When drawing from a listed source, include inline citations like [n] where n is the source number from the catalog. "
"Avoid repeating the section title at the top if already included. Do not include a references list inside the section."
)
catalog_md = "\n".join([f"[{s['id']}] {s['title']}{s['url']}" for s in sources_catalog])
# Stream each section individually to achieve very long total output
for sec in sections:
if time.time() - start_time > TOTAL_TIMEOUT:
yield format_sse({
"event": "warning",
"data": "Time limit reached before completing all sections."
})
break
yield format_sse({"event": "section_start", "data": {"key": sec["key"], "title": sec["title"]}})
section_prompt = f"""
{preface}
Write the section titled: "{sec['title']}" (aim for ~{sec['target_words']} words, it's okay to exceed if valuable).
Topic: "{query}"
Sub-questions to consider (optional):
{json.dumps(sub_questions, ensure_ascii=False)}
Source Catalog (use inline citations like [1], [2]):
{catalog_md}
Evidence and notes from crawled sources (trimmed):
{consolidated_context[:MAX_CONTEXT_SIZE]}
"""
payload = {
"model": LLM_MODEL,
"messages": [
{"role": "system", "content": "You are an expert web research analyst and technical writer."},
{"role": "user", "content": section_prompt}
],
"stream": True,
"temperature": 0.6
}
try:
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=payload) as response:
if response.status != 200:
yield format_sse({
"event": "warning",
"data": f"Section '{sec['title']}' failed to start (HTTP {response.status}). Skipping."
})
continue
buffer = ""
async for line in response.content:
if time.time() - start_time > TOTAL_TIMEOUT:
yield format_sse({
"event": "warning",
"data": "Time limit reached, halting section generation early."
})
break
line_str = line.decode('utf-8', errors='ignore').strip()
if line_str.startswith('data:'):
line_str = line_str[5:].strip()
if not line_str:
continue
if line_str == "[DONE]":
if buffer:
# Back-compat: emit raw chunk
yield format_sse({"event": "chunk", "data": buffer})
# New: emit section-tagged chunk
yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
break
try:
chunk = json.loads(line_str)
choices = chunk.get("choices")
if choices and isinstance(choices, list):
delta = choices[0].get("delta", {})
content = delta.get("content")
if content:
buffer += content
if len(buffer) >= 400:
# Back-compat: emit raw chunk
yield format_sse({"event": "chunk", "data": buffer})
# New: emit section-tagged chunk
yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
buffer = ""
except json.JSONDecodeError:
# Some providers send keep-alives or non-JSON noise; ignore
continue
except Exception as e:
logging.warning(f"Error processing stream chunk: {e}")
continue
if buffer:
yield format_sse({"event": "chunk", "data": buffer})
yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
yield format_sse({"event": "section_end", "data": {"key": sec["key"], "title": sec["title"]}})
except Exception as e:
yield format_sse({
"event": "warning",
"data": f"Section '{sec['title']}' failed: {str(e)[:160]}"
})
# Emit references as a final chunk for convenience
if sources_catalog:
refs_md_lines = ["\n\n## References"] + [
f"[{s['id']}] {s['title']}{s['url']}" for s in sources_catalog
]
refs_md = "\n".join(refs_md_lines)
# Back-compat: plain chunk
yield format_sse({"event": "chunk", "data": refs_md})
# New: section-tagged chunk
yield format_sse({"event": "section_chunk", "data": {"text": refs_md, "section": "references"}})
duration = time.time() - start_time
stats = {
"total_time_seconds": round(duration),
"sources_processed": processed_sources,
"sources_successful": successful_sources,
"estimated_tokens": total_tokens,
"sources_used": len(all_sources_used)
}
yield format_sse({
"event": "status",
"data": f"Research completed successfully in {duration:.1f} seconds."
})
yield format_sse({"event": "stats", "data": stats})
yield format_sse({"event": "sources", "data": all_sources_used})
except asyncio.TimeoutError:
yield format_sse({
"event": "error",
"data": f"Research process timed out after {TOTAL_TIMEOUT} seconds."
})
except Exception as e:
logging.error(f"Critical error in research process: {e}", exc_info=True)
yield format_sse({
"event": "error",
"data": f"An unexpected error occurred: {str(e)[:200]}"
})
finally:
duration = time.time() - start_time
yield format_sse({
"event": "complete",
"data": f"Research process finished after {duration:.1f} seconds."
})
@app.post("/deep-research", response_class=StreamingResponse)
async def deep_research_endpoint(request: DeepResearchRequest):
"""Endpoint for deep research that streams SSE responses."""
if not request.query or len(request.query.strip()) < 3:
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
search_time = min(max(request.search_time, 60), 300) # Clamp to 5 minutes max
return StreamingResponse(
run_deep_research_stream(request.query.strip(), search_time),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"}
)
@app.post("/v1/search")
async def search_only_endpoint(request: SearchRequest):
"""Search-only endpoint that returns JSON (no streaming)."""
if not request.query or len(request.query.strip()) < 3:
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
# Clamp durations and limits
search_time = min(max(int(request.search_time), 5), 300)
max_results = min(max(int(request.max_results), 1), MAX_SOURCES_TO_PROCESS * 2)
aggregated: List[Dict[str, str]] = []
async for update in continuous_search(request.query.strip(), search_time):
# We ignore status/warning events; only keep final results
if update.get("event") == "final_search_results":
aggregated = update.get("data", [])
# Deduplicate by normalized link
dedup: List[Dict[str, str]] = []
seen: set = set()
for r in aggregated:
link = clean_url(r.get("link", ""))
title = r.get("title", "")
snippet = r.get("snippet", "")
if not link:
continue
if link in seen:
continue
seen.add(link)
dedup.append({"title": title, "link": link, "snippet": snippet})
if len(dedup) >= max_results:
break
return {
"query": request.query.strip(),
"count": len(dedup),
"results": dedup,
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)