File size: 41,783 Bytes
0d0aa07 4b17916 2a0098d 6142af3 46a015f 132c134 6c6c904 ad8dd04 6c6c904 6142af3 ffce11c 6142af3 2a0098d 4b17916 2a0098d 6c6c904 4d61bdb 4b17916 6c6c904 2a0098d 6c6c904 2a0098d 0e14740 6ac9507 2a0098d 46a015f 4c88f38 31e12c0 0d0aa07 c830710 0d0aa07 c830710 9942a54 46a015f 6c6c904 0d0aa07 6c6c904 4b17916 6c6c904 1e679fd 6142af3 0d0aa07 6142af3 b58dc7b ffce11c 0d0aa07 6c6c904 0d0aa07 ffce11c 132c134 0d0aa07 cffab53 132c134 6c6c904 132c134 6c6c904 0d0aa07 6c6c904 4d61bdb 0d0aa07 4d61bdb 0d0aa07 25c899c 4d61bdb 0d0aa07 25c899c 4d61bdb 0d0aa07 4d61bdb 0d0aa07 4d61bdb 0d0aa07 9942a54 0d0aa07 9942a54 0d0aa07 25c899c 0d0aa07 58de22e 25c899c 58de22e 0d0aa07 25c899c 0d0aa07 25c899c 0d0aa07 25c899c 0d0aa07 58de22e 0d0aa07 25c899c 58de22e 6c6c904 0d0aa07 6c6c904 0d0aa07 6c6c904 4906187 0d0aa07 4906187 0d0aa07 6c6c904 0d0aa07 6c6c904 0d0aa07 6c6c904 0d0aa07 4906187 0d0aa07 6c6c904 0d0aa07 6c6c904 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 6c6c904 0d0aa07 6c6c904 0d0aa07 6c6c904 0d0aa07 4d61bdb 0d0aa07 6c6c904 0d0aa07 6142af3 0d0aa07 6c6c904 0d0aa07 4d61bdb 0d0aa07 6c6c904 0d0aa07 6c6c904 0d0aa07 b5390ee cffab53 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 0d0aa07 c830710 cffab53 c830710 cffab53 c830710 0d0aa07 c830710 0d0aa07 c830710 25c899c 0d0aa07 cffab53 0d0aa07 cffab53 0d0aa07 cffab53 0d0aa07 cffab53 0d0aa07 ad8dd04 cffab53 b58dc7b cffab53 0d0aa07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
import os
import asyncio
import json
import logging
import random
import re
import time
from typing import AsyncGenerator, Optional, Tuple, List, Dict
from urllib.parse import quote_plus, urlparse, unquote
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from collections import defaultdict
# --- Configuration ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
logging.info("LLM API Key loaded successfully.")
# --- Constants & Headers ---
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
MAX_SOURCES_TO_PROCESS = 20 # Increased for more research
MAX_CONCURRENT_REQUESTS = 2
SEARCH_TIMEOUT = 300 # 5 minutes for longer research
# Allow substantially longer overall time to enable large, multi-section outputs
TOTAL_TIMEOUT = 1800
REQUEST_DELAY = 3.0
RETRY_ATTEMPTS = 5
RETRY_DELAY = 5.0
USER_AGENT_ROTATION = True
# Context management
CONTEXT_WINDOW_SIZE = 10_000_000
MAX_CONTEXT_SIZE = 2_000_000
## Robots.txt behavior (user requested scraping even if disallowed)
RESPECT_ROBOTS_TXT = False
# Initialize fake user agent generator
try:
ua = UserAgent()
except:
class SimpleUA:
def random(self):
return random.choice([
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
])
ua = SimpleUA()
LLM_HEADERS = {
"Authorization": f"Bearer {LLM_API_KEY}",
"Content-Type": "application/json",
"Accept": "application/json"
}
class DeepResearchRequest(BaseModel):
query: str
search_time: int = 300 # Default to 5 minutes
class SearchRequest(BaseModel):
query: str
search_time: int = 60 # Default: 1 minute for search-only
max_results: int = 20 # Number of results to return
app = FastAPI(
title="AI Deep Research API",
description="Provides comprehensive research reports from real web searches within 5 minutes.",
version="3.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
def extract_json_from_llm_response(text: str) -> Optional[list]:
"""Extract JSON array from LLM response text."""
match = re.search(r'\[.*\]', text, re.DOTALL)
if match:
try:
return json.loads(match.group(0))
except json.JSONDecodeError:
return None
return None
async def get_real_user_agent() -> str:
"""Get a realistic user agent string."""
try:
if isinstance(ua, UserAgent):
return ua.random
return ua.random()
except:
return "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
def clean_url(url: str) -> str:
"""Clean up and normalize URLs."""
if not url:
return ""
# Handle DuckDuckGo redirect links like //duckduckgo.com/l/?uddg=... or /l/?uddg=...
if url.startswith('//duckduckgo.com/l/') or url.startswith('/l/?'):
if url.startswith('//'):
url = f"https:{url}"
elif url.startswith('/'):
url = f"https://duckduckgo.com{url}"
try:
parsed = urlparse(url)
query_params = parsed.query
if 'uddg=' in query_params:
match = re.search(r'uddg=([^&]+)', query_params)
if match:
return unquote(match.group(1))
except Exception:
pass
if url.startswith('//'):
url = 'https:' + url
elif not url.startswith(('http://', 'https://')):
url = 'https://' + url
return url
async def check_robots_txt(url: str) -> bool:
"""Check if scraping is allowed by robots.txt."""
# If configured to ignore robots.txt, always allow
if not RESPECT_ROBOTS_TXT:
return True
try:
domain_match = re.search(r'https?://([^/]+)', url)
if not domain_match:
return False
domain = domain_match.group(1)
robots_url = f"https://{domain}/robots.txt"
async with aiohttp.ClientSession() as session:
headers = {'User-Agent': await get_real_user_agent()}
async with session.get(robots_url, headers=headers, timeout=5) as response:
if response.status == 200:
robots = await response.text()
if "Disallow: /" in robots:
return False
path = re.sub(r'https?://[^/]+', '', url)
if any(f"Disallow: {p}" in robots for p in [path, path.rstrip('/') + '/']):
return False
return True
except Exception as e:
logging.warning(f"Could not check robots.txt for {url}: {e}")
# Default to allow on failure to check
return True
async def fetch_search_results(query: str, max_results: int = 5) -> List[dict]:
"""Perform a real search using DuckDuckGo (Lite/HTML) with multi-endpoint fallback to reduce 202 issues."""
ua_hdr = await get_real_user_agent()
common_headers = {
"User-Agent": ua_hdr,
"Accept-Language": "en-US,en;q=0.9",
"DNT": "1",
"Cache-Control": "no-cache",
"Pragma": "no-cache",
"Referer": "https://duckduckgo.com/",
}
# Try Lite first (very lightweight HTML), then HTML mirrors
endpoints = [
{"name": "lite-get", "method": "GET", "url": lambda q: f"https://lite.duckduckgo.com/lite/?q={quote_plus(q)}&kl=us-en&bing_market=us-en"},
# Per provided openapi.json: POST /lite/ with query params
{"name": "lite-post", "method": "POST", "url": lambda q: f"https://lite.duckduckgo.com/lite/?q={quote_plus(q)}&kl=us-en&bing_market=us-en"},
{"name": "html-mirror", "method": "GET", "url": lambda q: f"https://html.duckduckgo.com/html/?q={quote_plus(q)}"},
{"name": "html", "method": "GET", "url": lambda q: f"https://duckduckgo.com/html/?q={quote_plus(q)}"},
]
def parse_results_from_html(html: str) -> List[dict]:
soup = BeautifulSoup(html, 'html.parser')
results: List[dict] = []
# Primary selectors (full HTML interface)
candidates = soup.select('.result__body')
if not candidates:
candidates = soup.select('.result')
for result in candidates:
try:
title_elem = result.select_one('.result__title .result__a') or result.select_one('.result__a')
if not title_elem:
# Lite fallback: find first anchor in this block
title_elem = result.find('a')
if not title_elem:
continue
link = title_elem.get('href')
if not link:
continue
snippet_elem = result.select_one('.result__snippet') or result.find('p')
clean_link = clean_url(link)
if not clean_link or clean_link.startswith('javascript:'):
continue
snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
title_text = title_elem.get_text(strip=True)
results.append({'title': title_text, 'link': clean_link, 'snippet': snippet})
except Exception as e:
logging.warning(f"Error parsing search result: {e}")
continue
# DuckDuckGo Lite often uses simple anchors; target likely link patterns first
if not results:
lite_links = soup.select('a[href*="/l/?uddg="]')
for a in lite_links:
try:
href = a.get('href')
title_text = a.get_text(strip=True)
if not href or not title_text:
continue
clean_link = clean_url(href)
if not clean_link or clean_link.startswith('javascript:'):
continue
results.append({'title': title_text, 'link': clean_link, 'snippet': ''})
if len(results) >= max_results:
break
except Exception:
continue
# If still empty, do a very generic anchor scrape (fallback)
if not results:
anchors = soup.find_all('a', href=True)
for a in anchors:
text = a.get_text(strip=True)
href = a['href']
if not text or not href:
continue
if '/l/?' in href or href.startswith('http') or href.startswith('//'):
clean_link = clean_url(href)
if clean_link and not clean_link.startswith('javascript:'):
results.append({'title': text, 'link': clean_link, 'snippet': ''})
if len(results) >= max_results * 2:
break
return results[:max_results]
for attempt in range(RETRY_ATTEMPTS):
try:
async with aiohttp.ClientSession() as session:
for ep in endpoints:
url = ep['url'](query)
headers = {**common_headers, "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"}
try:
if ep['method'] == 'GET':
resp = await session.get(url, headers=headers, timeout=12)
else:
# POST with querystring parameters as specified; no body required
resp = await session.post(url, headers=headers, timeout=12)
async with resp as response:
if response.status == 200:
html = await response.text()
results = parse_results_from_html(html)
if results:
logging.info(f"Found {len(results)} real search results for '{query}' via {ep['name']}")
return results
# If empty, try next endpoint
logging.warning(f"No results parsed from {ep['name']} for '{query}', trying next endpoint...")
continue
elif response.status == 202:
logging.warning(f"Search attempt {attempt + 1} got 202 at {ep['name']} for '{query}', trying next endpoint")
continue
else:
logging.warning(f"Search failed with status {response.status} at {ep['name']} for '{query}'")
continue
except asyncio.TimeoutError:
logging.warning(f"Timeout contacting {ep['name']} for '{query}'")
continue
except Exception as e:
logging.warning(f"Error contacting {ep['name']} for '{query}': {e}")
continue
except Exception as e:
logging.error(f"Search attempt {attempt + 1} failed for '{query}': {e}")
# Backoff before next multi-endpoint attempt
if attempt < RETRY_ATTEMPTS - 1:
await asyncio.sleep(RETRY_DELAY)
logging.error(f"All {RETRY_ATTEMPTS} search attempts failed across endpoints for '{query}'")
return []
async def process_web_source(session: aiohttp.ClientSession, source: dict, timeout: int = 15) -> Tuple[str, dict]:
"""Process a real web source with improved content extraction and error handling."""
headers = {'User-Agent': await get_real_user_agent()}
source_info = source.copy()
source_info['link'] = clean_url(source['link'])
if not source_info['link'] or not source_info['link'].startswith(('http://', 'https://')):
logging.warning(f"Invalid URL: {source_info['link']}")
return source.get('snippet', ''), source_info
if not await check_robots_txt(source_info['link']):
logging.info(f"Scraping disallowed by robots.txt for {source_info['link']}")
return source.get('snippet', ''), source_info
try:
logging.info(f"Processing source: {source_info['link']}")
start_time = time.time()
if any(source_info['link'].lower().endswith(ext) for ext in ['.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx']):
logging.info(f"Skipping non-HTML content at {source_info['link']}")
return source.get('snippet', ''), source_info
await asyncio.sleep(REQUEST_DELAY)
async with session.get(source_info['link'], headers=headers, timeout=timeout, ssl=False) as response:
if response.status != 200:
logging.warning(f"HTTP {response.status} for {source_info['link']}")
return source.get('snippet', ''), source_info
content_type = response.headers.get('Content-Type', '').lower()
if 'text/html' not in content_type:
logging.info(f"Non-HTML content at {source_info['link']} (type: {content_type})")
return source.get('snippet', ''), source_info
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside', 'iframe', 'noscript', 'form']):
tag.decompose()
selectors_to_try = [
'main',
'article',
'[role="main"]',
'.main-content',
'.content',
'.article-body',
'.post-content',
'.entry-content',
'#content',
'#main',
'.main',
'.article'
]
main_content = None
for selector in selectors_to_try:
main_content = soup.select_one(selector)
if main_content:
break
if not main_content:
all_elements = soup.find_all()
candidates = [el for el in all_elements if el.name not in ['script', 'style', 'nav', 'footer', 'header']]
if candidates:
candidates.sort(key=lambda x: len(x.get_text()), reverse=True)
main_content = candidates[0] if candidates else soup
if not main_content:
main_content = soup.find('body') or soup
content = " ".join(main_content.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) < 50 and len(html) > 10000:
paras = soup.find_all('p')
content = " ".join([p.get_text() for p in paras if p.get_text().strip()])
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) < 50:
content = " ".join(soup.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) < 30:
for tag in ['div', 'section', 'article']:
for element in soup.find_all(tag):
if len(element.get_text().split()) > 200:
content = " ".join(element.stripped_strings)
content = re.sub(r'\s+', ' ', content).strip()
if len(content.split()) >= 30:
break
if len(content.split()) >= 30:
break
if len(content.split()) < 30:
logging.warning(f"Very little content extracted from {source_info['link']}")
return source.get('snippet', ''), source_info
source_info['word_count'] = len(content.split())
source_info['processing_time'] = time.time() - start_time
return content, source_info
except asyncio.TimeoutError:
logging.warning(f"Timeout while processing {source_info['link']}")
return source.get('snippet', ''), source_info
except Exception as e:
logging.warning(f"Error processing {source_info['link']}: {str(e)[:200]}")
return source.get('snippet', ''), source_info
async def generate_research_plan(query: str, session: aiohttp.ClientSession) -> List[str]:
"""Generate a comprehensive research plan with sub-questions."""
try:
plan_prompt = {
"model": LLM_MODEL,
"messages": [{
"role": "user",
"content": f"""Generate 4-8 comprehensive sub-questions for in-depth research on '{query}'.
Focus on key aspects that would provide a complete understanding of the topic.
Your response MUST be ONLY the raw JSON array with no additional text.
Example: [\"What is the historical background of X?\", \"What are the current trends in X?\"]"""
}],
"temperature": 0.7
}
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=30) as response:
response.raise_for_status()
result = await response.json()
if isinstance(result, list):
return result
elif isinstance(result, dict) and 'choices' in result:
content = result['choices'][0]['message']['content']
sub_questions = extract_json_from_llm_response(content)
if sub_questions and isinstance(sub_questions, list):
cleaned = []
for q in sub_questions:
if isinstance(q, str) and q.strip():
cleaned_q = re.sub(r'^[^a-zA-Z0-9]*|[^a-zA-Z0-9]*$', '', q)
if cleaned_q:
cleaned.append(cleaned_q)
return cleaned[:6]
return [
f"What is {query} and its key features?",
f"How does {query} compare to alternatives?",
f"What are the current developments in {query}?",
f"What are the main challenges with {query}?",
f"What does the future hold for {query}?"
]
except Exception as e:
logging.error(f"Failed to generate research plan: {e}")
return [
f"What is {query}?",
f"What are the key aspects of {query}?",
f"What are current trends in {query}?",
f"What are the challenges with {query}?"
]
async def continuous_search(query: str, search_time: int = 300) -> AsyncGenerator[Dict[str, any], None]:
"""Perform continuous searching with retries and diverse queries, yielding updates for each new result."""
start_time = time.time()
all_results = []
seen_urls = set()
fallback_results = []
query_variations = [
query,
f"{query} comparison",
f"{query} review",
f"{query} latest developments",
f"{query} features and benefits",
f"{query} challenges and limitations"
]
async with aiohttp.ClientSession() as session:
iteration = 0
result_count = 0
while time.time() - start_time < search_time:
iteration += 1
random.shuffle(query_variations)
for q in query_variations:
if time.time() - start_time >= search_time:
logger.info(f"Search timed out after {search_time} seconds. Found {len(all_results)} results.")
break
logger.info(f"Iteration {iteration}: Searching for query variation: {q}")
yield {"event": "status", "data": f"Searching for '{q}'..."}
try:
results = await fetch_search_results(q, max_results=5)
logger.info(f"Retrieved {len(results)} results for query '{q}'")
for result in results:
clean_link = clean_url(result['link'])
if clean_link and clean_link not in seen_urls:
seen_urls.add(clean_link)
result['link'] = clean_link
all_results.append(result)
fallback_results.append(result)
result_count += 1
logger.info(f"Added new result: {result['title']} ({result['link']})")
yield {"event": "found_result", "data": f"Found result {result_count}: {result['title']} ({result['link']})"}
await asyncio.sleep(REQUEST_DELAY)
if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5:
logger.info(f"Reached sufficient results: {len(all_results)}")
break
except Exception as e:
logger.error(f"Error during search for '{q}': {e}")
yield {"event": "warning", "data": f"Search error for '{q}': {str(e)[:100]}"}
await asyncio.sleep(RETRY_DELAY)
if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5:
break
logger.info(f"Completed continuous search. Total results: {len(all_results)}")
if len(all_results) < MAX_SOURCES_TO_PROCESS:
logger.warning(f"Insufficient results ({len(all_results)}), using fallback results")
yield {"event": "warning", "data": f"Insufficient results, using fallback results to reach minimum."}
all_results.extend(fallback_results[:MAX_SOURCES_TO_PROCESS - len(all_results)])
if all_results:
def score_result(result):
query_terms = set(query.lower().split())
title = result['title'].lower()
snippet = result['snippet'].lower()
matches = sum(1 for term in query_terms if term in title or term in snippet)
snippet_length = len(result['snippet'].split())
return matches * 10 + snippet_length
all_results.sort(key=score_result, reverse=True)
yield {"event": "final_search_results", "data": all_results[:MAX_SOURCES_TO_PROCESS * 2]}
async def filter_and_select_sources(results: List[dict]) -> List[dict]:
"""Filter and select the best sources from search results."""
if not results:
logger.warning("No search results to filter.")
return []
logger.info(f"Filtering {len(results)} search results...")
domain_counts = defaultdict(int)
domain_results = defaultdict(list)
for result in results:
domain = urlparse(result['link']).netloc
domain_counts[domain] += 1
domain_results[domain].append(result)
selected = []
for domain, domain_res in domain_results.items():
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
if domain_res:
selected.append(domain_res[0])
logger.info(f"Selected top result from domain {domain}: {domain_res[0]['link']}")
if len(selected) < MAX_SOURCES_TO_PROCESS:
domain_quality = {}
for domain, domain_res in domain_results.items():
avg_length = sum(len(r['snippet'].split()) for r in domain_res) / len(domain_res)
domain_quality[domain] = avg_length
sorted_domains = sorted(domain_quality.items(), key=lambda x: x[1], reverse=True)
for domain, _ in sorted_domains:
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
for res in domain_results[domain]:
if res not in selected:
selected.append(res)
logger.info(f"Added additional result from high-quality domain {domain}: {res['link']}")
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
if len(selected) < MAX_SOURCES_TO_PROCESS:
all_results_sorted = sorted(results, key=lambda x: len(x['snippet'].split()), reverse=True)
for res in all_results_sorted:
if res not in selected:
selected.append(res)
logger.info(f"Added fallback high-snippet result: {res['link']}")
if len(selected) >= MAX_SOURCES_TO_PROCESS:
break
logger.info(f"Selected {len(selected)} sources after filtering.")
return selected[:MAX_SOURCES_TO_PROCESS]
async def run_deep_research_stream(query: str, search_time: int = 300) -> AsyncGenerator[str, None]:
def format_sse(data: dict) -> str:
return f"data: {json.dumps(data)}\n\n"
start_time = time.time()
processed_sources = 0
successful_sources = 0
total_tokens = 0
try:
yield format_sse({
"event": "status",
"data": f"Starting deep research on '{query}'. Search time limit: {search_time} seconds."
})
async with aiohttp.ClientSession() as session:
yield format_sse({"event": "status", "data": "Generating comprehensive research plan..."})
try:
sub_questions = await generate_research_plan(query, session)
yield format_sse({"event": "plan", "data": sub_questions})
except Exception as e:
yield format_sse({
"event": "error",
"data": f"Failed to generate research plan: {str(e)[:200]}"
})
sub_questions = [
f"What is {query}?",
f"What are the key aspects of {query}?",
f"What are current trends in {query}?",
f"What are the challenges with {query}?"
]
yield format_sse({"event": "plan", "data": sub_questions})
yield format_sse({
"event": "status",
"data": f"Performing continuous search for up to {search_time} seconds..."
})
search_results = []
async for update in continuous_search(query, search_time):
if update["event"] == "final_search_results":
search_results = update["data"]
else:
yield format_sse(update)
yield format_sse({
"event": "status",
"data": f"Found {len(search_results)} potential sources. Selecting the best ones..."
})
yield format_sse({
"event": "found_sources",
"data": search_results
})
if not search_results:
yield format_sse({
"event": "error",
"data": "No search results found. Check your query and try again."
})
return
selected_sources = await filter_and_select_sources(search_results)
yield format_sse({
"event": "status",
"data": f"Selected {len(selected_sources)} high-quality sources to process."
})
yield format_sse({
"event": "selected_sources",
"data": selected_sources
})
if not selected_sources:
yield format_sse({
"event": "error",
"data": "No valid sources found after filtering."
})
return
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
consolidated_context = ""
all_sources_used = []
processing_errors = 0
async def process_with_semaphore(source):
async with semaphore:
return await process_web_source(session, source, timeout=20)
processing_tasks = []
for i, source in enumerate(selected_sources):
elapsed = time.time() - start_time
if elapsed > TOTAL_TIMEOUT * 0.8:
yield format_sse({
"event": "status",
"data": f"Approaching time limit, stopping source processing at {i}/{len(selected_sources)}"
})
break
if i > 0:
await asyncio.sleep(REQUEST_DELAY * 0.5)
task = asyncio.create_task(process_with_semaphore(source))
processing_tasks.append(task)
if (i + 1) % 2 == 0 or (i + 1) == len(selected_sources):
yield format_sse({
"event": "status",
"data": f"Processed {min(i+1, len(selected_sources))}/{len(selected_sources)} sources..."
})
for future in asyncio.as_completed(processing_tasks):
processed_sources += 1
content, source_info = await future
if content and content.strip():
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
all_sources_used.append(source_info)
successful_sources += 1
total_tokens += len(content.split())
yield format_sse({
"event": "processed_source",
"data": source_info
})
else:
processing_errors += 1
yield format_sse({
"event": "warning",
"data": f"Failed to extract content from {source_info['link']}"
})
if not consolidated_context.strip():
yield format_sse({
"event": "error",
"data": f"Failed to extract content from any sources. {processing_errors} errors occurred."
})
return
# Prepare numbered citations list for the model and a references block we'll emit at the end
sources_catalog = []
for idx, s in enumerate(all_sources_used, start=1):
title = s.get('title') or s.get('link')
sources_catalog.append({
"id": idx,
"title": title,
"url": s.get('link')
})
# Section-by-section long-form synthesis (streamed)
yield format_sse({
"event": "status",
"data": f"Synthesizing a long multi-section report from {successful_sources} sources..."
})
sections = [
{"key": "introduction", "title": "1. Introduction and Background", "target_words": 800},
{"key": "features", "title": "2. Key Features and Capabilities", "target_words": 900},
{"key": "comparative", "title": "3. Comparative Analysis with Alternatives", "target_words": 900},
{"key": "trends", "title": "4. Current Developments and Trends", "target_words": 900},
{"key": "challenges", "title": "5. Challenges and Limitations", "target_words": 900},
{"key": "future", "title": "6. Future Outlook", "target_words": 900},
{"key": "conclusion", "title": "7. Conclusion and Recommendations", "target_words": 600},
]
# Common preface for all section prompts
preface = (
"You are a meticulous research assistant. Write the requested section in clear, structured markdown. "
"Use subheadings, bullet lists, and short paragraphs. Provide deep analysis, data points, and concrete examples. "
"When drawing from a listed source, include inline citations like [n] where n is the source number from the catalog. "
"Avoid repeating the section title at the top if already included. Do not include a references list inside the section."
)
catalog_md = "\n".join([f"[{s['id']}] {s['title']} — {s['url']}" for s in sources_catalog])
# Stream each section individually to achieve very long total output
for sec in sections:
if time.time() - start_time > TOTAL_TIMEOUT:
yield format_sse({
"event": "warning",
"data": "Time limit reached before completing all sections."
})
break
yield format_sse({"event": "section_start", "data": {"key": sec["key"], "title": sec["title"]}})
section_prompt = f"""
{preface}
Write the section titled: "{sec['title']}" (aim for ~{sec['target_words']} words, it's okay to exceed if valuable).
Topic: "{query}"
Sub-questions to consider (optional):
{json.dumps(sub_questions, ensure_ascii=False)}
Source Catalog (use inline citations like [1], [2]):
{catalog_md}
Evidence and notes from crawled sources (trimmed):
{consolidated_context[:MAX_CONTEXT_SIZE]}
"""
payload = {
"model": LLM_MODEL,
"messages": [
{"role": "system", "content": "You are an expert web research analyst and technical writer."},
{"role": "user", "content": section_prompt}
],
"stream": True,
"temperature": 0.6
}
try:
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=payload) as response:
if response.status != 200:
yield format_sse({
"event": "warning",
"data": f"Section '{sec['title']}' failed to start (HTTP {response.status}). Skipping."
})
continue
buffer = ""
async for line in response.content:
if time.time() - start_time > TOTAL_TIMEOUT:
yield format_sse({
"event": "warning",
"data": "Time limit reached, halting section generation early."
})
break
line_str = line.decode('utf-8', errors='ignore').strip()
if line_str.startswith('data:'):
line_str = line_str[5:].strip()
if not line_str:
continue
if line_str == "[DONE]":
if buffer:
# Back-compat: emit raw chunk
yield format_sse({"event": "chunk", "data": buffer})
# New: emit section-tagged chunk
yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
break
try:
chunk = json.loads(line_str)
choices = chunk.get("choices")
if choices and isinstance(choices, list):
delta = choices[0].get("delta", {})
content = delta.get("content")
if content:
buffer += content
if len(buffer) >= 400:
# Back-compat: emit raw chunk
yield format_sse({"event": "chunk", "data": buffer})
# New: emit section-tagged chunk
yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
buffer = ""
except json.JSONDecodeError:
# Some providers send keep-alives or non-JSON noise; ignore
continue
except Exception as e:
logging.warning(f"Error processing stream chunk: {e}")
continue
if buffer:
yield format_sse({"event": "chunk", "data": buffer})
yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
yield format_sse({"event": "section_end", "data": {"key": sec["key"], "title": sec["title"]}})
except Exception as e:
yield format_sse({
"event": "warning",
"data": f"Section '{sec['title']}' failed: {str(e)[:160]}"
})
# Emit references as a final chunk for convenience
if sources_catalog:
refs_md_lines = ["\n\n## References"] + [
f"[{s['id']}] {s['title']} — {s['url']}" for s in sources_catalog
]
refs_md = "\n".join(refs_md_lines)
# Back-compat: plain chunk
yield format_sse({"event": "chunk", "data": refs_md})
# New: section-tagged chunk
yield format_sse({"event": "section_chunk", "data": {"text": refs_md, "section": "references"}})
duration = time.time() - start_time
stats = {
"total_time_seconds": round(duration),
"sources_processed": processed_sources,
"sources_successful": successful_sources,
"estimated_tokens": total_tokens,
"sources_used": len(all_sources_used)
}
yield format_sse({
"event": "status",
"data": f"Research completed successfully in {duration:.1f} seconds."
})
yield format_sse({"event": "stats", "data": stats})
yield format_sse({"event": "sources", "data": all_sources_used})
except asyncio.TimeoutError:
yield format_sse({
"event": "error",
"data": f"Research process timed out after {TOTAL_TIMEOUT} seconds."
})
except Exception as e:
logging.error(f"Critical error in research process: {e}", exc_info=True)
yield format_sse({
"event": "error",
"data": f"An unexpected error occurred: {str(e)[:200]}"
})
finally:
duration = time.time() - start_time
yield format_sse({
"event": "complete",
"data": f"Research process finished after {duration:.1f} seconds."
})
@app.post("/deep-research", response_class=StreamingResponse)
async def deep_research_endpoint(request: DeepResearchRequest):
"""Endpoint for deep research that streams SSE responses."""
if not request.query or len(request.query.strip()) < 3:
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
search_time = min(max(request.search_time, 60), 300) # Clamp to 5 minutes max
return StreamingResponse(
run_deep_research_stream(request.query.strip(), search_time),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"}
)
@app.post("/v1/search")
async def search_only_endpoint(request: SearchRequest):
"""Search-only endpoint that returns JSON (no streaming)."""
if not request.query or len(request.query.strip()) < 3:
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
# Clamp durations and limits
search_time = min(max(int(request.search_time), 5), 300)
max_results = min(max(int(request.max_results), 1), MAX_SOURCES_TO_PROCESS * 2)
aggregated: List[Dict[str, str]] = []
async for update in continuous_search(request.query.strip(), search_time):
# We ignore status/warning events; only keep final results
if update.get("event") == "final_search_results":
aggregated = update.get("data", [])
# Deduplicate by normalized link
dedup: List[Dict[str, str]] = []
seen: set = set()
for r in aggregated:
link = clean_url(r.get("link", ""))
title = r.get("title", "")
snippet = r.get("snippet", "")
if not link:
continue
if link in seen:
continue
seen.add(link)
dedup.append({"title": title, "link": link, "snippet": snippet})
if len(dedup) >= max_results:
break
return {
"query": request.query.strip(),
"count": len(dedup),
"results": dedup,
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|