File size: 41,783 Bytes
0d0aa07
4b17916
2a0098d
6142af3
 
46a015f
132c134
6c6c904
 
ad8dd04
6c6c904
6142af3
ffce11c
6142af3
2a0098d
4b17916
2a0098d
6c6c904
4d61bdb
4b17916
 
6c6c904
 
 
 
 
2a0098d
 
6c6c904
2a0098d
 
0e14740
6ac9507
2a0098d
46a015f
4c88f38
31e12c0
0d0aa07
 
 
c830710
 
0d0aa07
 
 
 
c830710
 
 
9942a54
 
46a015f
6c6c904
 
 
0d0aa07
6c6c904
 
 
 
 
 
 
 
4b17916
6c6c904
 
 
 
 
1e679fd
6142af3
 
0d0aa07
6142af3
b58dc7b
 
 
 
 
ffce11c
 
0d0aa07
 
6c6c904
 
 
 
 
 
0d0aa07
ffce11c
 
132c134
0d0aa07
cffab53
132c134
6c6c904
 
 
 
132c134
 
6c6c904
0d0aa07
 
 
 
 
 
 
6c6c904
4d61bdb
0d0aa07
4d61bdb
 
0d0aa07
25c899c
 
 
 
 
 
4d61bdb
0d0aa07
 
 
 
 
 
25c899c
4d61bdb
0d0aa07
4d61bdb
0d0aa07
 
 
 
4d61bdb
 
0d0aa07
 
9942a54
 
 
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9942a54
 
0d0aa07
 
25c899c
 
 
 
 
 
 
 
0d0aa07
 
58de22e
25c899c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58de22e
 
0d0aa07
25c899c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0aa07
25c899c
 
 
 
 
0d0aa07
25c899c
 
 
 
 
 
0d0aa07
58de22e
0d0aa07
25c899c
 
 
 
 
 
58de22e
6c6c904
0d0aa07
 
6c6c904
 
0d0aa07
 
 
 
 
 
 
 
 
6c6c904
4906187
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4906187
 
0d0aa07
 
6c6c904
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6c904
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6c904
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4906187
0d0aa07
 
6c6c904
 
0d0aa07
6c6c904
0d0aa07
 
 
 
c830710
0d0aa07
 
c830710
0d0aa07
c830710
0d0aa07
 
6c6c904
0d0aa07
 
 
 
 
 
6c6c904
 
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6c904
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d61bdb
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6c904
 
 
 
0d0aa07
 
 
 
6142af3
0d0aa07
 
 
 
 
6c6c904
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d61bdb
0d0aa07
 
 
 
6c6c904
 
 
0d0aa07
 
 
6c6c904
 
 
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5390ee
cffab53
c830710
 
 
 
 
 
 
 
 
 
 
0d0aa07
 
c830710
0d0aa07
 
c830710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0aa07
c830710
 
0d0aa07
c830710
0d0aa07
c830710
0d0aa07
c830710
 
0d0aa07
c830710
 
0d0aa07
c830710
0d0aa07
c830710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0aa07
c830710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cffab53
c830710
 
 
cffab53
c830710
 
0d0aa07
c830710
 
0d0aa07
 
c830710
 
 
 
 
 
25c899c
 
 
 
0d0aa07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cffab53
0d0aa07
 
 
 
 
cffab53
0d0aa07
 
 
 
 
cffab53
 
 
0d0aa07
 
 
 
 
cffab53
0d0aa07
ad8dd04
 
cffab53
 
b58dc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cffab53
 
0d0aa07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

import os
import asyncio
import json
import logging
import random
import re
import time
from typing import AsyncGenerator, Optional, Tuple, List, Dict
from urllib.parse import quote_plus, urlparse, unquote
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from collections import defaultdict

# --- Configuration ---
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
load_dotenv()

LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
    raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
    logging.info("LLM API Key loaded successfully.")

# --- Constants & Headers ---
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
MAX_SOURCES_TO_PROCESS = 20  # Increased for more research
MAX_CONCURRENT_REQUESTS = 2
SEARCH_TIMEOUT = 300  # 5 minutes for longer research
# Allow substantially longer overall time to enable large, multi-section outputs
TOTAL_TIMEOUT = 1800
REQUEST_DELAY = 3.0
RETRY_ATTEMPTS = 5
RETRY_DELAY = 5.0
USER_AGENT_ROTATION = True
# Context management
CONTEXT_WINDOW_SIZE = 10_000_000
MAX_CONTEXT_SIZE = 2_000_000
## Robots.txt behavior (user requested scraping even if disallowed)
RESPECT_ROBOTS_TXT = False

# Initialize fake user agent generator
try:
    ua = UserAgent()
except:
    class SimpleUA:
        def random(self):
            return random.choice([
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
                "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
            ])
    ua = SimpleUA()

LLM_HEADERS = {
    "Authorization": f"Bearer {LLM_API_KEY}",
    "Content-Type": "application/json",
    "Accept": "application/json"
}

class DeepResearchRequest(BaseModel):
    query: str
    search_time: int = 300  # Default to 5 minutes

class SearchRequest(BaseModel):
    query: str
    search_time: int = 60  # Default: 1 minute for search-only
    max_results: int = 20  # Number of results to return

app = FastAPI(
    title="AI Deep Research API",
    description="Provides comprehensive research reports from real web searches within 5 minutes.",
    version="3.0.0"
)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"]
)

def extract_json_from_llm_response(text: str) -> Optional[list]:
    """Extract JSON array from LLM response text."""
    match = re.search(r'\[.*\]', text, re.DOTALL)
    if match:
        try:
            return json.loads(match.group(0))
        except json.JSONDecodeError:
            return None
    return None

async def get_real_user_agent() -> str:
    """Get a realistic user agent string."""
    try:
        if isinstance(ua, UserAgent):
            return ua.random
        return ua.random()
    except:
        return "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"

def clean_url(url: str) -> str:
    """Clean up and normalize URLs."""
    if not url:
        return ""

    # Handle DuckDuckGo redirect links like //duckduckgo.com/l/?uddg=... or /l/?uddg=...
    if url.startswith('//duckduckgo.com/l/') or url.startswith('/l/?'):
        if url.startswith('//'):
            url = f"https:{url}"
        elif url.startswith('/'):
            url = f"https://duckduckgo.com{url}"
        try:
            parsed = urlparse(url)
            query_params = parsed.query
            if 'uddg=' in query_params:
                match = re.search(r'uddg=([^&]+)', query_params)
                if match:
                    return unquote(match.group(1))
        except Exception:
            pass

    if url.startswith('//'):
        url = 'https:' + url
    elif not url.startswith(('http://', 'https://')):
        url = 'https://' + url

    return url

async def check_robots_txt(url: str) -> bool:
    """Check if scraping is allowed by robots.txt."""
    # If configured to ignore robots.txt, always allow
    if not RESPECT_ROBOTS_TXT:
        return True
    try:
        domain_match = re.search(r'https?://([^/]+)', url)
        if not domain_match:
            return False

        domain = domain_match.group(1)
        robots_url = f"https://{domain}/robots.txt"

        async with aiohttp.ClientSession() as session:
            headers = {'User-Agent': await get_real_user_agent()}
            async with session.get(robots_url, headers=headers, timeout=5) as response:
                if response.status == 200:
                    robots = await response.text()
                    if "Disallow: /" in robots:
                        return False
                    path = re.sub(r'https?://[^/]+', '', url)
                    if any(f"Disallow: {p}" in robots for p in [path, path.rstrip('/') + '/']):
                        return False
        return True
    except Exception as e:
        logging.warning(f"Could not check robots.txt for {url}: {e}")
        # Default to allow on failure to check
        return True

async def fetch_search_results(query: str, max_results: int = 5) -> List[dict]:
    """Perform a real search using DuckDuckGo (Lite/HTML) with multi-endpoint fallback to reduce 202 issues."""
    ua_hdr = await get_real_user_agent()
    common_headers = {
        "User-Agent": ua_hdr,
        "Accept-Language": "en-US,en;q=0.9",
        "DNT": "1",
        "Cache-Control": "no-cache",
        "Pragma": "no-cache",
        "Referer": "https://duckduckgo.com/",
    }

    # Try Lite first (very lightweight HTML), then HTML mirrors
    endpoints = [
        {"name": "lite-get", "method": "GET", "url": lambda q: f"https://lite.duckduckgo.com/lite/?q={quote_plus(q)}&kl=us-en&bing_market=us-en"},
        # Per provided openapi.json: POST /lite/ with query params
        {"name": "lite-post", "method": "POST", "url": lambda q: f"https://lite.duckduckgo.com/lite/?q={quote_plus(q)}&kl=us-en&bing_market=us-en"},
        {"name": "html-mirror", "method": "GET", "url": lambda q: f"https://html.duckduckgo.com/html/?q={quote_plus(q)}"},
        {"name": "html", "method": "GET", "url": lambda q: f"https://duckduckgo.com/html/?q={quote_plus(q)}"},
    ]

    def parse_results_from_html(html: str) -> List[dict]:
        soup = BeautifulSoup(html, 'html.parser')
        results: List[dict] = []

        # Primary selectors (full HTML interface)
        candidates = soup.select('.result__body')
        if not candidates:
            candidates = soup.select('.result')

        for result in candidates:
            try:
                title_elem = result.select_one('.result__title .result__a') or result.select_one('.result__a')
                if not title_elem:
                    # Lite fallback: find first anchor in this block
                    title_elem = result.find('a')
                    if not title_elem:
                        continue
                link = title_elem.get('href')
                if not link:
                    continue
                snippet_elem = result.select_one('.result__snippet') or result.find('p')
                clean_link = clean_url(link)
                if not clean_link or clean_link.startswith('javascript:'):
                    continue
                snippet = snippet_elem.get_text(strip=True) if snippet_elem else ""
                title_text = title_elem.get_text(strip=True)
                results.append({'title': title_text, 'link': clean_link, 'snippet': snippet})
            except Exception as e:
                logging.warning(f"Error parsing search result: {e}")
                continue

        # DuckDuckGo Lite often uses simple anchors; target likely link patterns first
        if not results:
            lite_links = soup.select('a[href*="/l/?uddg="]')
            for a in lite_links:
                try:
                    href = a.get('href')
                    title_text = a.get_text(strip=True)
                    if not href or not title_text:
                        continue
                    clean_link = clean_url(href)
                    if not clean_link or clean_link.startswith('javascript:'):
                        continue
                    results.append({'title': title_text, 'link': clean_link, 'snippet': ''})
                    if len(results) >= max_results:
                        break
                except Exception:
                    continue

        # If still empty, do a very generic anchor scrape (fallback)
        if not results:
            anchors = soup.find_all('a', href=True)
            for a in anchors:
                text = a.get_text(strip=True)
                href = a['href']
                if not text or not href:
                    continue
                if '/l/?' in href or href.startswith('http') or href.startswith('//'):
                    clean_link = clean_url(href)
                    if clean_link and not clean_link.startswith('javascript:'):
                        results.append({'title': text, 'link': clean_link, 'snippet': ''})
                if len(results) >= max_results * 2:
                    break

        return results[:max_results]

    for attempt in range(RETRY_ATTEMPTS):
        try:
            async with aiohttp.ClientSession() as session:
                for ep in endpoints:
                    url = ep['url'](query)
                    headers = {**common_headers, "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"}
                    try:
                        if ep['method'] == 'GET':
                            resp = await session.get(url, headers=headers, timeout=12)
                        else:
                            # POST with querystring parameters as specified; no body required
                            resp = await session.post(url, headers=headers, timeout=12)
                        async with resp as response:
                            if response.status == 200:
                                html = await response.text()
                                results = parse_results_from_html(html)
                                if results:
                                    logging.info(f"Found {len(results)} real search results for '{query}' via {ep['name']}")
                                    return results
                                # If empty, try next endpoint
                                logging.warning(f"No results parsed from {ep['name']} for '{query}', trying next endpoint...")
                                continue
                            elif response.status == 202:
                                logging.warning(f"Search attempt {attempt + 1} got 202 at {ep['name']} for '{query}', trying next endpoint")
                                continue
                            else:
                                logging.warning(f"Search failed with status {response.status} at {ep['name']} for '{query}'")
                                continue
                    except asyncio.TimeoutError:
                        logging.warning(f"Timeout contacting {ep['name']} for '{query}'")
                        continue
                    except Exception as e:
                        logging.warning(f"Error contacting {ep['name']} for '{query}': {e}")
                        continue

        except Exception as e:
            logging.error(f"Search attempt {attempt + 1} failed for '{query}': {e}")

        # Backoff before next multi-endpoint attempt
        if attempt < RETRY_ATTEMPTS - 1:
            await asyncio.sleep(RETRY_DELAY)

    logging.error(f"All {RETRY_ATTEMPTS} search attempts failed across endpoints for '{query}'")
    return []

async def process_web_source(session: aiohttp.ClientSession, source: dict, timeout: int = 15) -> Tuple[str, dict]:
    """Process a real web source with improved content extraction and error handling."""
    headers = {'User-Agent': await get_real_user_agent()}
    source_info = source.copy()
    source_info['link'] = clean_url(source['link'])

    if not source_info['link'] or not source_info['link'].startswith(('http://', 'https://')):
        logging.warning(f"Invalid URL: {source_info['link']}")
        return source.get('snippet', ''), source_info

    if not await check_robots_txt(source_info['link']):
        logging.info(f"Scraping disallowed by robots.txt for {source_info['link']}")
        return source.get('snippet', ''), source_info

    try:
        logging.info(f"Processing source: {source_info['link']}")
        start_time = time.time()

        if any(source_info['link'].lower().endswith(ext) for ext in ['.pdf', '.doc', '.docx', '.ppt', '.pptx', '.xls', '.xlsx']):
            logging.info(f"Skipping non-HTML content at {source_info['link']}")
            return source.get('snippet', ''), source_info

        await asyncio.sleep(REQUEST_DELAY)

        async with session.get(source_info['link'], headers=headers, timeout=timeout, ssl=False) as response:
            if response.status != 200:
                logging.warning(f"HTTP {response.status} for {source_info['link']}")
                return source.get('snippet', ''), source_info

            content_type = response.headers.get('Content-Type', '').lower()
            if 'text/html' not in content_type:
                logging.info(f"Non-HTML content at {source_info['link']} (type: {content_type})")
                return source.get('snippet', ''), source_info

            html = await response.text()
            soup = BeautifulSoup(html, "html.parser")

            for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside', 'iframe', 'noscript', 'form']):
                tag.decompose()

            selectors_to_try = [
                'main',
                'article',
                '[role="main"]',
                '.main-content',
                '.content',
                '.article-body',
                '.post-content',
                '.entry-content',
                '#content',
                '#main',
                '.main',
                '.article'
            ]

            main_content = None
            for selector in selectors_to_try:
                main_content = soup.select_one(selector)
                if main_content:
                    break

            if not main_content:
                all_elements = soup.find_all()
                candidates = [el for el in all_elements if el.name not in ['script', 'style', 'nav', 'footer', 'header']]
                if candidates:
                    candidates.sort(key=lambda x: len(x.get_text()), reverse=True)
                    main_content = candidates[0] if candidates else soup

            if not main_content:
                main_content = soup.find('body') or soup

            content = " ".join(main_content.stripped_strings)
            content = re.sub(r'\s+', ' ', content).strip()

            if len(content.split()) < 50 and len(html) > 10000:
                paras = soup.find_all('p')
                content = " ".join([p.get_text() for p in paras if p.get_text().strip()])
                content = re.sub(r'\s+', ' ', content).strip()

                if len(content.split()) < 50:
                    content = " ".join(soup.stripped_strings)
                    content = re.sub(r'\s+', ' ', content).strip()

            if len(content.split()) < 30:
                for tag in ['div', 'section', 'article']:
                    for element in soup.find_all(tag):
                        if len(element.get_text().split()) > 200:
                            content = " ".join(element.stripped_strings)
                            content = re.sub(r'\s+', ' ', content).strip()
                            if len(content.split()) >= 30:
                                break
                    if len(content.split()) >= 30:
                        break

            if len(content.split()) < 30:
                logging.warning(f"Very little content extracted from {source_info['link']}")
                return source.get('snippet', ''), source_info

            source_info['word_count'] = len(content.split())
            source_info['processing_time'] = time.time() - start_time
            return content, source_info

    except asyncio.TimeoutError:
        logging.warning(f"Timeout while processing {source_info['link']}")
        return source.get('snippet', ''), source_info
    except Exception as e:
        logging.warning(f"Error processing {source_info['link']}: {str(e)[:200]}")
        return source.get('snippet', ''), source_info

async def generate_research_plan(query: str, session: aiohttp.ClientSession) -> List[str]:
    """Generate a comprehensive research plan with sub-questions."""
    try:
        plan_prompt = {
            "model": LLM_MODEL,
            "messages": [{
                "role": "user",
                "content": f"""Generate 4-8 comprehensive sub-questions for in-depth research on '{query}'.
                Focus on key aspects that would provide a complete understanding of the topic.
                Your response MUST be ONLY the raw JSON array with no additional text.
                Example: [\"What is the historical background of X?\", \"What are the current trends in X?\"]"""
            }],
            "temperature": 0.7
        }

        async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=30) as response:
            response.raise_for_status()
            result = await response.json()

            if isinstance(result, list):
                return result
            elif isinstance(result, dict) and 'choices' in result:
                content = result['choices'][0]['message']['content']
                sub_questions = extract_json_from_llm_response(content)
                if sub_questions and isinstance(sub_questions, list):
                    cleaned = []
                    for q in sub_questions:
                        if isinstance(q, str) and q.strip():
                            cleaned_q = re.sub(r'^[^a-zA-Z0-9]*|[^a-zA-Z0-9]*$', '', q)
                            if cleaned_q:
                                cleaned.append(cleaned_q)
                    return cleaned[:6]

        return [
            f"What is {query} and its key features?",
            f"How does {query} compare to alternatives?",
            f"What are the current developments in {query}?",
            f"What are the main challenges with {query}?",
            f"What does the future hold for {query}?"
        ]
    except Exception as e:
        logging.error(f"Failed to generate research plan: {e}")
        return [
            f"What is {query}?",
            f"What are the key aspects of {query}?",
            f"What are current trends in {query}?",
            f"What are the challenges with {query}?"
        ]

async def continuous_search(query: str, search_time: int = 300) -> AsyncGenerator[Dict[str, any], None]:
    """Perform continuous searching with retries and diverse queries, yielding updates for each new result."""
    start_time = time.time()
    all_results = []
    seen_urls = set()
    fallback_results = []

    query_variations = [
        query,
        f"{query} comparison",
        f"{query} review",
        f"{query} latest developments",
        f"{query} features and benefits",
        f"{query} challenges and limitations"
    ]

    async with aiohttp.ClientSession() as session:
        iteration = 0
        result_count = 0
        while time.time() - start_time < search_time:
            iteration += 1
            random.shuffle(query_variations)
            for q in query_variations:
                if time.time() - start_time >= search_time:
                    logger.info(f"Search timed out after {search_time} seconds. Found {len(all_results)} results.")
                    break

                logger.info(f"Iteration {iteration}: Searching for query variation: {q}")
                yield {"event": "status", "data": f"Searching for '{q}'..."}

                try:
                    results = await fetch_search_results(q, max_results=5)
                    logger.info(f"Retrieved {len(results)} results for query '{q}'")
                    for result in results:
                        clean_link = clean_url(result['link'])
                        if clean_link and clean_link not in seen_urls:
                            seen_urls.add(clean_link)
                            result['link'] = clean_link
                            all_results.append(result)
                            fallback_results.append(result)
                            result_count += 1
                            logger.info(f"Added new result: {result['title']} ({result['link']})")
                            yield {"event": "found_result", "data": f"Found result {result_count}: {result['title']} ({result['link']})"}

                    await asyncio.sleep(REQUEST_DELAY)
                    if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5:
                        logger.info(f"Reached sufficient results: {len(all_results)}")
                        break
                except Exception as e:
                    logger.error(f"Error during search for '{q}': {e}")
                    yield {"event": "warning", "data": f"Search error for '{q}': {str(e)[:100]}"}
                    await asyncio.sleep(RETRY_DELAY)

            if len(all_results) >= MAX_SOURCES_TO_PROCESS * 1.5:
                break

        logger.info(f"Completed continuous search. Total results: {len(all_results)}")

    if len(all_results) < MAX_SOURCES_TO_PROCESS:
        logger.warning(f"Insufficient results ({len(all_results)}), using fallback results")
        yield {"event": "warning", "data": f"Insufficient results, using fallback results to reach minimum."}
        all_results.extend(fallback_results[:MAX_SOURCES_TO_PROCESS - len(all_results)])

    if all_results:
        def score_result(result):
            query_terms = set(query.lower().split())
            title = result['title'].lower()
            snippet = result['snippet'].lower()
            matches = sum(1 for term in query_terms if term in title or term in snippet)
            snippet_length = len(result['snippet'].split())
            return matches * 10 + snippet_length

        all_results.sort(key=score_result, reverse=True)

    yield {"event": "final_search_results", "data": all_results[:MAX_SOURCES_TO_PROCESS * 2]}

async def filter_and_select_sources(results: List[dict]) -> List[dict]:
    """Filter and select the best sources from search results."""
    if not results:
        logger.warning("No search results to filter.")
        return []

    logger.info(f"Filtering {len(results)} search results...")

    domain_counts = defaultdict(int)
    domain_results = defaultdict(list)
    for result in results:
        domain = urlparse(result['link']).netloc
        domain_counts[domain] += 1
        domain_results[domain].append(result)

    selected = []
    for domain, domain_res in domain_results.items():
        if len(selected) >= MAX_SOURCES_TO_PROCESS:
            break
        if domain_res:
            selected.append(domain_res[0])
            logger.info(f"Selected top result from domain {domain}: {domain_res[0]['link']}")

    if len(selected) < MAX_SOURCES_TO_PROCESS:
        domain_quality = {}
        for domain, domain_res in domain_results.items():
            avg_length = sum(len(r['snippet'].split()) for r in domain_res) / len(domain_res)
            domain_quality[domain] = avg_length

        sorted_domains = sorted(domain_quality.items(), key=lambda x: x[1], reverse=True)
        for domain, _ in sorted_domains:
            if len(selected) >= MAX_SOURCES_TO_PROCESS:
                break
            for res in domain_results[domain]:
                if res not in selected:
                    selected.append(res)
                    logger.info(f"Added additional result from high-quality domain {domain}: {res['link']}")
                    if len(selected) >= MAX_SOURCES_TO_PROCESS:
                        break

    if len(selected) < MAX_SOURCES_TO_PROCESS:
        all_results_sorted = sorted(results, key=lambda x: len(x['snippet'].split()), reverse=True)
        for res in all_results_sorted:
            if res not in selected:
                selected.append(res)
                logger.info(f"Added fallback high-snippet result: {res['link']}")
                if len(selected) >= MAX_SOURCES_TO_PROCESS:
                    break

    logger.info(f"Selected {len(selected)} sources after filtering.")
    return selected[:MAX_SOURCES_TO_PROCESS]

async def run_deep_research_stream(query: str, search_time: int = 300) -> AsyncGenerator[str, None]:
    def format_sse(data: dict) -> str:
        return f"data: {json.dumps(data)}\n\n"

    start_time = time.time()
    processed_sources = 0
    successful_sources = 0
    total_tokens = 0

    try:
        yield format_sse({
            "event": "status",
            "data": f"Starting deep research on '{query}'. Search time limit: {search_time} seconds."
        })

        async with aiohttp.ClientSession() as session:
            yield format_sse({"event": "status", "data": "Generating comprehensive research plan..."})
            try:
                sub_questions = await generate_research_plan(query, session)
                yield format_sse({"event": "plan", "data": sub_questions})
            except Exception as e:
                yield format_sse({
                    "event": "error",
                    "data": f"Failed to generate research plan: {str(e)[:200]}"
                })
                sub_questions = [
                    f"What is {query}?",
                    f"What are the key aspects of {query}?",
                    f"What are current trends in {query}?",
                    f"What are the challenges with {query}?"
                ]
                yield format_sse({"event": "plan", "data": sub_questions})

            yield format_sse({
                "event": "status",
                "data": f"Performing continuous search for up to {search_time} seconds..."
            })

            search_results = []
            async for update in continuous_search(query, search_time):
                if update["event"] == "final_search_results":
                    search_results = update["data"]
                else:
                    yield format_sse(update)

            yield format_sse({
                "event": "status",
                "data": f"Found {len(search_results)} potential sources. Selecting the best ones..."
            })
            yield format_sse({
                "event": "found_sources",
                "data": search_results
            })

            if not search_results:
                yield format_sse({
                    "event": "error",
                    "data": "No search results found. Check your query and try again."
                })
                return

            selected_sources = await filter_and_select_sources(search_results)
            yield format_sse({
                "event": "status",
                "data": f"Selected {len(selected_sources)} high-quality sources to process."
            })
            yield format_sse({
                "event": "selected_sources",
                "data": selected_sources
            })

            if not selected_sources:
                yield format_sse({
                    "event": "error",
                    "data": "No valid sources found after filtering."
                })
                return

            semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
            consolidated_context = ""
            all_sources_used = []
            processing_errors = 0

            async def process_with_semaphore(source):
                async with semaphore:
                    return await process_web_source(session, source, timeout=20)

            processing_tasks = []
            for i, source in enumerate(selected_sources):
                elapsed = time.time() - start_time
                if elapsed > TOTAL_TIMEOUT * 0.8:
                    yield format_sse({
                        "event": "status",
                        "data": f"Approaching time limit, stopping source processing at {i}/{len(selected_sources)}"
                    })
                    break

                if i > 0:
                    await asyncio.sleep(REQUEST_DELAY * 0.5)

                task = asyncio.create_task(process_with_semaphore(source))
                processing_tasks.append(task)

                if (i + 1) % 2 == 0 or (i + 1) == len(selected_sources):
                    yield format_sse({
                        "event": "status",
                        "data": f"Processed {min(i+1, len(selected_sources))}/{len(selected_sources)} sources..."
                    })

            for future in asyncio.as_completed(processing_tasks):
                processed_sources += 1
                content, source_info = await future
                if content and content.strip():
                    consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
                    all_sources_used.append(source_info)
                    successful_sources += 1
                    total_tokens += len(content.split())
                    yield format_sse({
                        "event": "processed_source",
                        "data": source_info
                    })
                else:
                    processing_errors += 1
                    yield format_sse({
                        "event": "warning",
                        "data": f"Failed to extract content from {source_info['link']}"
                    })

            if not consolidated_context.strip():
                yield format_sse({
                    "event": "error",
                    "data": f"Failed to extract content from any sources. {processing_errors} errors occurred."
                })
                return

            # Prepare numbered citations list for the model and a references block we'll emit at the end
            sources_catalog = []
            for idx, s in enumerate(all_sources_used, start=1):
                title = s.get('title') or s.get('link')
                sources_catalog.append({
                    "id": idx,
                    "title": title,
                    "url": s.get('link')
                })

            # Section-by-section long-form synthesis (streamed)
            yield format_sse({
                "event": "status",
                "data": f"Synthesizing a long multi-section report from {successful_sources} sources..."
            })

            sections = [
                {"key": "introduction", "title": "1. Introduction and Background", "target_words": 800},
                {"key": "features", "title": "2. Key Features and Capabilities", "target_words": 900},
                {"key": "comparative", "title": "3. Comparative Analysis with Alternatives", "target_words": 900},
                {"key": "trends", "title": "4. Current Developments and Trends", "target_words": 900},
                {"key": "challenges", "title": "5. Challenges and Limitations", "target_words": 900},
                {"key": "future", "title": "6. Future Outlook", "target_words": 900},
                {"key": "conclusion", "title": "7. Conclusion and Recommendations", "target_words": 600},
            ]

            # Common preface for all section prompts
            preface = (
                "You are a meticulous research assistant. Write the requested section in clear, structured markdown. "
                "Use subheadings, bullet lists, and short paragraphs. Provide deep analysis, data points, and concrete examples. "
                "When drawing from a listed source, include inline citations like [n] where n is the source number from the catalog. "
                "Avoid repeating the section title at the top if already included. Do not include a references list inside the section."
            )

            catalog_md = "\n".join([f"[{s['id']}] {s['title']}{s['url']}" for s in sources_catalog])

            # Stream each section individually to achieve very long total output
            for sec in sections:
                if time.time() - start_time > TOTAL_TIMEOUT:
                    yield format_sse({
                        "event": "warning",
                        "data": "Time limit reached before completing all sections."
                    })
                    break

                yield format_sse({"event": "section_start", "data": {"key": sec["key"], "title": sec["title"]}})

                section_prompt = f"""
{preface}

Write the section titled: "{sec['title']}" (aim for ~{sec['target_words']} words, it's okay to exceed if valuable).

Topic: "{query}"

Sub-questions to consider (optional):
{json.dumps(sub_questions, ensure_ascii=False)}

Source Catalog (use inline citations like [1], [2]):
{catalog_md}

Evidence and notes from crawled sources (trimmed):
{consolidated_context[:MAX_CONTEXT_SIZE]}
"""

                payload = {
                    "model": LLM_MODEL,
                    "messages": [
                        {"role": "system", "content": "You are an expert web research analyst and technical writer."},
                        {"role": "user", "content": section_prompt}
                    ],
                    "stream": True,
                    "temperature": 0.6
                }

                try:
                    async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=payload) as response:
                        if response.status != 200:
                            yield format_sse({
                                "event": "warning",
                                "data": f"Section '{sec['title']}' failed to start (HTTP {response.status}). Skipping."
                            })
                            continue

                        buffer = ""
                        async for line in response.content:
                            if time.time() - start_time > TOTAL_TIMEOUT:
                                yield format_sse({
                                    "event": "warning",
                                    "data": "Time limit reached, halting section generation early."
                                })
                                break

                            line_str = line.decode('utf-8', errors='ignore').strip()
                            if line_str.startswith('data:'):
                                line_str = line_str[5:].strip()
                            if not line_str:
                                continue
                            if line_str == "[DONE]":
                                if buffer:
                                    # Back-compat: emit raw chunk
                                    yield format_sse({"event": "chunk", "data": buffer})
                                    # New: emit section-tagged chunk
                                    yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
                                break
                            try:
                                chunk = json.loads(line_str)
                                choices = chunk.get("choices")
                                if choices and isinstance(choices, list):
                                    delta = choices[0].get("delta", {})
                                    content = delta.get("content")
                                    if content:
                                        buffer += content
                                        if len(buffer) >= 400:
                                            # Back-compat: emit raw chunk
                                            yield format_sse({"event": "chunk", "data": buffer})
                                            # New: emit section-tagged chunk
                                            yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})
                                            buffer = ""
                            except json.JSONDecodeError:
                                # Some providers send keep-alives or non-JSON noise; ignore
                                continue
                            except Exception as e:
                                logging.warning(f"Error processing stream chunk: {e}")
                                continue

                        if buffer:
                            yield format_sse({"event": "chunk", "data": buffer})
                            yield format_sse({"event": "section_chunk", "data": {"text": buffer, "section": sec["key"]}})

                    yield format_sse({"event": "section_end", "data": {"key": sec["key"], "title": sec["title"]}})
                except Exception as e:
                    yield format_sse({
                        "event": "warning",
                        "data": f"Section '{sec['title']}' failed: {str(e)[:160]}"
                    })

            # Emit references as a final chunk for convenience
            if sources_catalog:
                refs_md_lines = ["\n\n## References"] + [
                    f"[{s['id']}] {s['title']}{s['url']}" for s in sources_catalog
                ]
                refs_md = "\n".join(refs_md_lines)
                # Back-compat: plain chunk
                yield format_sse({"event": "chunk", "data": refs_md})
                # New: section-tagged chunk
                yield format_sse({"event": "section_chunk", "data": {"text": refs_md, "section": "references"}})

            duration = time.time() - start_time
            stats = {
                "total_time_seconds": round(duration),
                "sources_processed": processed_sources,
                "sources_successful": successful_sources,
                "estimated_tokens": total_tokens,
                "sources_used": len(all_sources_used)
            }
            yield format_sse({
                "event": "status",
                "data": f"Research completed successfully in {duration:.1f} seconds."
            })
            yield format_sse({"event": "stats", "data": stats})
            yield format_sse({"event": "sources", "data": all_sources_used})

    except asyncio.TimeoutError:
        yield format_sse({
            "event": "error",
            "data": f"Research process timed out after {TOTAL_TIMEOUT} seconds."
        })
    except Exception as e:
        logging.error(f"Critical error in research process: {e}", exc_info=True)
        yield format_sse({
            "event": "error",
            "data": f"An unexpected error occurred: {str(e)[:200]}"
        })
    finally:
        duration = time.time() - start_time
        yield format_sse({
            "event": "complete",
            "data": f"Research process finished after {duration:.1f} seconds."
        })

@app.post("/deep-research", response_class=StreamingResponse)
async def deep_research_endpoint(request: DeepResearchRequest):
    """Endpoint for deep research that streams SSE responses."""
    if not request.query or len(request.query.strip()) < 3:
        raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")

    search_time = min(max(request.search_time, 60), 300)  # Clamp to 5 minutes max
    return StreamingResponse(
        run_deep_research_stream(request.query.strip(), search_time),
        media_type="text/event-stream",
        headers={"Cache-Control": "no-cache", "Connection": "keep-alive"}
    )

@app.post("/v1/search")
async def search_only_endpoint(request: SearchRequest):
    """Search-only endpoint that returns JSON (no streaming)."""
    if not request.query or len(request.query.strip()) < 3:
        raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")

    # Clamp durations and limits
    search_time = min(max(int(request.search_time), 5), 300)
    max_results = min(max(int(request.max_results), 1), MAX_SOURCES_TO_PROCESS * 2)

    aggregated: List[Dict[str, str]] = []
    async for update in continuous_search(request.query.strip(), search_time):
        # We ignore status/warning events; only keep final results
        if update.get("event") == "final_search_results":
            aggregated = update.get("data", [])

    # Deduplicate by normalized link
    dedup: List[Dict[str, str]] = []
    seen: set = set()
    for r in aggregated:
        link = clean_url(r.get("link", ""))
        title = r.get("title", "")
        snippet = r.get("snippet", "")
        if not link:
            continue
        if link in seen:
            continue
        seen.add(link)
        dedup.append({"title": title, "link": link, "snippet": snippet})
        if len(dedup) >= max_results:
            break

    return {
        "query": request.query.strip(),
        "count": len(dedup),
        "results": dedup,
    }

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)