Update main.py
Browse files
main.py
CHANGED
|
@@ -5,10 +5,11 @@ import logging
|
|
| 5 |
import random
|
| 6 |
import re
|
| 7 |
from typing import AsyncGenerator, Optional, Tuple, List
|
| 8 |
-
from urllib.parse import
|
| 9 |
|
| 10 |
from fastapi import FastAPI
|
| 11 |
from fastapi.responses import StreamingResponse
|
|
|
|
| 12 |
from pydantic import BaseModel
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
import aiohttp
|
|
@@ -29,7 +30,7 @@ else:
|
|
| 29 |
# --- Constants & Headers ---
|
| 30 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 31 |
LLM_MODEL = "gpt-4.1-mini"
|
| 32 |
-
MAX_SOURCES_TO_PROCESS = 15
|
| 33 |
|
| 34 |
# Real Browser User Agents for Rotation
|
| 35 |
USER_AGENTS = [
|
|
@@ -43,6 +44,23 @@ LLM_HEADERS = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "applic
|
|
| 43 |
class DeepResearchRequest(BaseModel):
|
| 44 |
query: str
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def extract_json_from_llm_response(text: str) -> Optional[list]:
|
| 47 |
match = re.search(r'\[.*\]', text, re.DOTALL)
|
| 48 |
if match:
|
|
@@ -50,26 +68,29 @@ def extract_json_from_llm_response(text: str) -> Optional[list]:
|
|
| 50 |
except json.JSONDecodeError: return None
|
| 51 |
return None
|
| 52 |
|
| 53 |
-
app = FastAPI(
|
| 54 |
-
title="AI Deep Research API",
|
| 55 |
-
description="Provides robust, long-form, streaming deep research completions.",
|
| 56 |
-
version="6.0.0" # Final Production Version
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
# --- Core Service Functions ---
|
| 60 |
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
|
| 61 |
-
search_url = f"https://html.duckduckgo.com/html/?q={
|
| 62 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 63 |
try:
|
| 64 |
async with session.get(search_url, headers=headers, timeout=15) as response:
|
| 65 |
response.raise_for_status(); html = await response.text()
|
| 66 |
soup = BeautifulSoup(html, "html.parser"); results = []
|
| 67 |
for res in soup.find_all('div', class_='result'):
|
| 68 |
-
title_tag
|
|
|
|
| 69 |
if title_tag and snippet_tag and 'href' in title_tag.attrs:
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
return results
|
| 74 |
except Exception as e:
|
| 75 |
logger.error(f"DuckDuckGo search failed for query '{query}': {e}"); return []
|
|
@@ -77,6 +98,7 @@ async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str) ->
|
|
| 77 |
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
|
| 78 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 79 |
try:
|
|
|
|
| 80 |
if source['link'].lower().endswith('.pdf'): raise ValueError("PDF content")
|
| 81 |
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
|
| 82 |
if response.status != 200: raise ValueError(f"HTTP status {response.status}")
|
|
@@ -95,7 +117,6 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 95 |
def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
|
| 96 |
try:
|
| 97 |
async with aiohttp.ClientSession() as session:
|
| 98 |
-
# Step 1: Generate Research Plan
|
| 99 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 100 |
plan_prompt = {"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"}]}
|
| 101 |
try:
|
|
@@ -108,17 +129,14 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 108 |
|
| 109 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 110 |
|
| 111 |
-
# Step 2: Conduct Deep Research
|
| 112 |
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
|
| 113 |
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
|
| 114 |
all_search_results = await asyncio.gather(*search_tasks)
|
| 115 |
-
|
| 116 |
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
|
| 117 |
|
| 118 |
if not unique_sources:
|
| 119 |
yield format_sse({"event": "error", "data": "All search queries returned zero usable sources."}); return
|
| 120 |
|
| 121 |
-
# Limit the number of sources to process for very long reports
|
| 122 |
sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
|
| 123 |
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."})
|
| 124 |
|
|
@@ -134,23 +152,8 @@ async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
|
|
| 134 |
if not consolidated_context.strip():
|
| 135 |
yield format_sse({"event": "error", "data": "Failed to gather any research context."}); return
|
| 136 |
|
| 137 |
-
# Step 3: Synthesize Long-Form Final Report
|
| 138 |
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
| 139 |
-
|
| 140 |
-
# ***** ENHANCED PROMPT FOR LONGEST POSSIBLE REPORT *****
|
| 141 |
-
report_prompt = f"""
|
| 142 |
-
You are an expert research analyst. Your task is to synthesize the provided context into a long-form, comprehensive, multi-page report on the topic: "{query}".
|
| 143 |
-
|
| 144 |
-
Follow these instructions carefully:
|
| 145 |
-
1. Write in a professional, academic tone.
|
| 146 |
-
2. Structure the report with a clear introduction, multiple detailed sections with sub-headings using Markdown, and a concluding summary.
|
| 147 |
-
3. Elaborate extensively on each point. Use multiple paragraphs for each section to explore the nuances of the topic.
|
| 148 |
-
4. Base your entire report *only* on the information provided in the context below. Do not use any external knowledge.
|
| 149 |
-
5. Aim for the most detailed and thorough report possible based on the given material.
|
| 150 |
-
|
| 151 |
-
## Research Context ##
|
| 152 |
-
{consolidated_context}
|
| 153 |
-
"""
|
| 154 |
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
|
| 155 |
|
| 156 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
|
@@ -160,7 +163,7 @@ Follow these instructions carefully:
|
|
| 160 |
if line_str.startswith('data:'): line_str = line_str[5:].strip()
|
| 161 |
if line_str == "[DONE]": break
|
| 162 |
|
| 163 |
-
# *****
|
| 164 |
try:
|
| 165 |
chunk = json.loads(line_str)
|
| 166 |
choices = chunk.get("choices")
|
|
@@ -169,9 +172,8 @@ Follow these instructions carefully:
|
|
| 169 |
if content:
|
| 170 |
yield format_sse({"event": "chunk", "data": content})
|
| 171 |
except json.JSONDecodeError:
|
| 172 |
-
continue
|
| 173 |
|
| 174 |
-
# Final event with all source data
|
| 175 |
yield format_sse({"event": "sources", "data": all_sources_used})
|
| 176 |
except Exception as e:
|
| 177 |
logger.error(f"A critical error occurred: {e}", exc_info=True)
|
|
@@ -179,7 +181,6 @@ Follow these instructions carefully:
|
|
| 179 |
finally:
|
| 180 |
yield format_sse({"event": "done", "data": "Deep research complete."})
|
| 181 |
|
| 182 |
-
# --- API Endpoints ---
|
| 183 |
@app.post("/v1/deepresearch/completions")
|
| 184 |
async def deep_research_endpoint(request: DeepResearchRequest):
|
| 185 |
return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream")
|
|
|
|
| 5 |
import random
|
| 6 |
import re
|
| 7 |
from typing import AsyncGenerator, Optional, Tuple, List
|
| 8 |
+
from urllib.parse import unquote
|
| 9 |
|
| 10 |
from fastapi import FastAPI
|
| 11 |
from fastapi.responses import StreamingResponse
|
| 12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 13 |
from pydantic import BaseModel
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import aiohttp
|
|
|
|
| 30 |
# --- Constants & Headers ---
|
| 31 |
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
|
| 32 |
LLM_MODEL = "gpt-4.1-mini"
|
| 33 |
+
MAX_SOURCES_TO_PROCESS = 15
|
| 34 |
|
| 35 |
# Real Browser User Agents for Rotation
|
| 36 |
USER_AGENTS = [
|
|
|
|
| 44 |
class DeepResearchRequest(BaseModel):
|
| 45 |
query: str
|
| 46 |
|
| 47 |
+
app = FastAPI(
|
| 48 |
+
title="AI Deep Research API",
|
| 49 |
+
description="Provides robust, long-form, streaming deep research completions.",
|
| 50 |
+
version="7.0.0" # Final Production Version
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# ***** CHANGE 1: Enable CORS for all origins *****
|
| 54 |
+
app.add_middleware(
|
| 55 |
+
CORSMiddleware,
|
| 56 |
+
allow_origins=["*"], # Allows all origins
|
| 57 |
+
allow_credentials=True,
|
| 58 |
+
allow_methods=["*"], # Allows all methods
|
| 59 |
+
allow_headers=["*"], # Allows all headers
|
| 60 |
+
)
|
| 61 |
+
logger.info("CORS middleware enabled for all origins.")
|
| 62 |
+
|
| 63 |
+
# --- Helper Functions ---
|
| 64 |
def extract_json_from_llm_response(text: str) -> Optional[list]:
|
| 65 |
match = re.search(r'\[.*\]', text, re.DOTALL)
|
| 66 |
if match:
|
|
|
|
| 68 |
except json.JSONDecodeError: return None
|
| 69 |
return None
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
# --- Core Service Functions ---
|
| 72 |
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str) -> List[dict]:
|
| 73 |
+
search_url = f"https://html.duckduckgo.com/html/?q={query.replace(' ', '+')}"
|
| 74 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 75 |
try:
|
| 76 |
async with session.get(search_url, headers=headers, timeout=15) as response:
|
| 77 |
response.raise_for_status(); html = await response.text()
|
| 78 |
soup = BeautifulSoup(html, "html.parser"); results = []
|
| 79 |
for res in soup.find_all('div', class_='result'):
|
| 80 |
+
title_tag = res.find('a', class_='result__a')
|
| 81 |
+
snippet_tag = res.find('a', class_='result__snippet')
|
| 82 |
if title_tag and snippet_tag and 'href' in title_tag.attrs:
|
| 83 |
+
# ***** CHANGE 2: The critical fix for scraping. Decode the real URL. *****
|
| 84 |
+
try:
|
| 85 |
+
raw_link = title_tag['href']
|
| 86 |
+
# The real URL is percent-encoded in the 'uddg' parameter
|
| 87 |
+
actual_url = unquote(raw_link.split('uddg=')[1])
|
| 88 |
+
if actual_url.startswith("http"):
|
| 89 |
+
results.append({'title': title_tag.text, 'link': actual_url, 'snippet': snippet_tag.text})
|
| 90 |
+
except IndexError:
|
| 91 |
+
# This link format is unexpected, skip it
|
| 92 |
+
continue
|
| 93 |
+
logger.info(f"Found {len(results)} valid sources from DuckDuckGo for: '{query}'")
|
| 94 |
return results
|
| 95 |
except Exception as e:
|
| 96 |
logger.error(f"DuckDuckGo search failed for query '{query}': {e}"); return []
|
|
|
|
| 98 |
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
|
| 99 |
headers = {'User-Agent': random.choice(USER_AGENTS)}
|
| 100 |
try:
|
| 101 |
+
logger.info(f"Scraping: {source['link']}")
|
| 102 |
if source['link'].lower().endswith('.pdf'): raise ValueError("PDF content")
|
| 103 |
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
|
| 104 |
if response.status != 200: raise ValueError(f"HTTP status {response.status}")
|
|
|
|
| 117 |
def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
|
| 118 |
try:
|
| 119 |
async with aiohttp.ClientSession() as session:
|
|
|
|
| 120 |
yield format_sse({"event": "status", "data": "Generating research plan..."})
|
| 121 |
plan_prompt = {"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"}]}
|
| 122 |
try:
|
|
|
|
| 129 |
|
| 130 |
yield format_sse({"event": "plan", "data": sub_questions})
|
| 131 |
|
|
|
|
| 132 |
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
|
| 133 |
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
|
| 134 |
all_search_results = await asyncio.gather(*search_tasks)
|
|
|
|
| 135 |
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
|
| 136 |
|
| 137 |
if not unique_sources:
|
| 138 |
yield format_sse({"event": "error", "data": "All search queries returned zero usable sources."}); return
|
| 139 |
|
|
|
|
| 140 |
sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
|
| 141 |
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."})
|
| 142 |
|
|
|
|
| 152 |
if not consolidated_context.strip():
|
| 153 |
yield format_sse({"event": "error", "data": "Failed to gather any research context."}); return
|
| 154 |
|
|
|
|
| 155 |
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
|
| 156 |
+
report_prompt = f'Synthesize the provided context into a long-form, comprehensive, multi-page report on "{query}". Use markdown. Elaborate extensively on each point. Base your entire report ONLY on the provided context.\n\n## Research Context ##\n{consolidated_context}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
|
| 158 |
|
| 159 |
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
|
|
|
|
| 163 |
if line_str.startswith('data:'): line_str = line_str[5:].strip()
|
| 164 |
if line_str == "[DONE]": break
|
| 165 |
|
| 166 |
+
# ***** CHANGE 3: The definitive fix for the 'list index out of range' error *****
|
| 167 |
try:
|
| 168 |
chunk = json.loads(line_str)
|
| 169 |
choices = chunk.get("choices")
|
|
|
|
| 172 |
if content:
|
| 173 |
yield format_sse({"event": "chunk", "data": content})
|
| 174 |
except json.JSONDecodeError:
|
| 175 |
+
continue
|
| 176 |
|
|
|
|
| 177 |
yield format_sse({"event": "sources", "data": all_sources_used})
|
| 178 |
except Exception as e:
|
| 179 |
logger.error(f"A critical error occurred: {e}", exc_info=True)
|
|
|
|
| 181 |
finally:
|
| 182 |
yield format_sse({"event": "done", "data": "Deep research complete."})
|
| 183 |
|
|
|
|
| 184 |
@app.post("/v1/deepresearch/completions")
|
| 185 |
async def deep_research_endpoint(request: DeepResearchRequest):
|
| 186 |
return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream")
|