khang119966's picture
Update app.py
c2f8f51 verified
raw
history blame
8.74 kB
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import spaces
import os
import tempfile
from PIL import Image
# --- 1. Load Model and Tokenizer (Done only once at startup) ---
print("Loading model and tokenizer...")
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load the model to CPU first; it will be moved to GPU during processing
model = AutoModel.from_pretrained(
model_name,
_attn_implementation="flash_attention_2",
trust_remote_code=True,
use_safetensors=True,
)
model = model.eval()
print("βœ… Model loaded successfully.")
# --- 2. Main Processing Function ---
@spaces.GPU
def process_ocr_task(image, model_size, task_type, ref_text):
"""
Processes an image with DeepSeek-OCR for all supported tasks.
Args:
image (PIL.Image): The input image.
model_size (str): The model size configuration.
task_type (str): The type of OCR task to perform.
ref_text (str): The reference text for the 'Locate' task.
"""
if image is None:
return "Please upload an image first.", None
# Move the model to GPU and use bfloat16 for better performance
print("πŸš€ Moving model to GPU...")
model_gpu = model.cuda().to(torch.bfloat16)
print("βœ… Model is on GPU.")
# Create a temporary directory to store files
with tempfile.TemporaryDirectory() as output_path:
# --- Build the prompt based on the selected task type ---
if task_type == "πŸ“ Free OCR":
prompt = "<image>\nFree OCR."
elif task_type == "πŸ“„ Convert to Markdown":
prompt = "<image>\n<|grounding|>Convert the document to markdown."
elif task_type == "πŸ“ˆ Parse Figure":
prompt = "<image>\nParse the figure."
elif task_type == "πŸ” Locate Object by Reference":
if not ref_text or ref_text.strip() == "":
raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
# Use an f-string to embed the user's reference text into the prompt
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
else:
prompt = "<image>\nFree OCR." # Default fallback
# Save the uploaded image to the temporary path
temp_image_path = os.path.join(output_path, "temp_image.png")
image.save(temp_image_path)
# Configure model size parameters
size_configs = {
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
print(f"πŸƒ Running inference with prompt: {prompt}")
# --- Run the model's inference method ---
text_result = model_gpu.infer(
tokenizer,
prompt=prompt,
image_file=temp_image_path,
output_path=output_path,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
save_results=True, # Important: Must be True to get the output image
test_compress=True,
eval_mode=True,
)
print(f"====\nπŸ“„ Text Result: {text_result}\n====")
# --- Handle the output (both text and image) ---
image_result_path = None
# Tasks that generate a visual output usually create a 'grounding' or 'result' image
if task_type in ["πŸ” Locate Object by Reference", "πŸ“„ Convert to Markdown", "πŸ“ˆ Parse Figure"]:
# Find the result image in the output directory
for filename in os.listdir(output_path):
if "grounding" in filename or "result" in filename:
image_result_path = os.path.join(output_path, filename)
break
# If an image was found, open it with PIL; otherwise, return None
result_image_pil = Image.open(image_result_path) if image_result_path else None
return text_result, result_image_pil
# --- 3. Build the Gradio Interface ---
with gr.Blocks(title="🐳DeepSeek-OCR🐳", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🐳 Full Demo of DeepSeek-OCR 🐳
Upload an image to explore the document recognition and understanding capabilities of DeepSeek-OCR.
**πŸ’‘ How to use:**
1. **Upload an image** using the upload box.
2. Select a **Model Size**. `Gundam` is recommended for most documents for a good balance of speed and accuracy.
3. Choose a **Task Type**:
- **πŸ“ Free OCR**: Extracts raw text from the image. Best for simple text extraction.
- **πŸ“„ Convert to Markdown**: Converts the entire document into Markdown format, preserving structure like headers, lists, and tables.
- **πŸ“ˆ Parse Figure**: Analyzes and extracts structured data from charts, graphs, and geometric figures.
- **πŸ” Locate Object by Reference**: Finds a specific object or piece of text in the image. You **must** type what you're looking for into the **"Reference Text"** box that appears.
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="πŸ–ΌοΈ Upload Image", sources=["upload", "clipboard"])
model_size = gr.Dropdown(
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
value="Gundam (Recommended)",
label="βš™οΈ Model Size",
)
task_type = gr.Dropdown(
choices=["πŸ“ Free OCR", "πŸ“„ Convert to Markdown", "πŸ“ˆ Parse Figure", "πŸ” Locate Object by Reference"],
value="πŸ“„ Convert to Markdown",
label="πŸš€ Task Type",
)
ref_text_input = gr.Textbox(
label="πŸ“ Reference Text (for Locate task)",
placeholder="e.g., the teacher, 11-2=, a red car...",
visible=False, # Initially hidden
)
submit_btn = gr.Button("Process Image", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="πŸ“„ Text Result", lines=15, show_copy_button=True)
output_image = gr.Image(label="πŸ–ΌοΈ Image Result (if any)", type="pil")
# --- UI Interaction Logic ---
def toggle_ref_text_visibility(task):
# If the user selects the 'Locate' task, make the reference textbox visible
if task == "πŸ” Locate Object by Reference":
return gr.Textbox(visible=True)
else:
return gr.Textbox(visible=False)
# When the 'task_type' dropdown changes, call the function to update the visibility
task_type.change(
fn=toggle_ref_text_visibility,
inputs=task_type,
outputs=ref_text_input,
)
# Define what happens when the submit button is clicked
submit_btn.click(
fn=process_ocr_task,
inputs=[image_input, model_size, task_type, ref_text_input],
outputs=[output_text, output_image],
)
# --- Example Images and Tasks ---
gr.Examples(
examples=[
["doc_markdown.png", "Gundam (Recommended)", "πŸ“„ Convert to Markdown", ""],
["chart.png", "Gundam (Recommended)", "πŸ“ˆ Parse Figure", ""],
["teacher.jpg", "Base", "πŸ” Locate Object by Reference", "the teacher"],
["math_locate.jpg", "Small", "πŸ” Locate Object by Reference", "20-10"],
["receipt.jpg", "Base", "πŸ“ Free OCR", ""],
],
inputs=[image_input, model_size, task_type, ref_text_input],
outputs=[output_text, output_image],
fn=process_ocr_task,
cache_examples=False, # Disable caching to ensure examples run every time
)
# --- 4. Launch the App ---
if __name__ == "__main__":
# Create an 'examples' directory if it doesn't exist
if not os.path.exists("examples"):
os.makedirs("examples")
# Please manually download the example images into the "examples" folder.
# e.g., doc_markdown.png, chart.png, teacher.png, math_locate.png, receipt.jpg
demo.queue(max_size=20)
demo.launch(share=True) # Set share=True to create a public link