Spaces:
Sleeping
Sleeping
Delete app.py
#1
by
atiyakhan15
- opened
app.py
DELETED
|
@@ -1,270 +0,0 @@
|
|
| 1 |
-
######### pull files
|
| 2 |
-
import os
|
| 3 |
-
from huggingface_hub import hf_hub_download
|
| 4 |
-
config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
| 5 |
-
filename="multi_temporal_crop_classification_Prithvi_100M.py",
|
| 6 |
-
token=os.environ.get("token"))
|
| 7 |
-
ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification",
|
| 8 |
-
filename='multi_temporal_crop_classification_Prithvi_100M.pth',
|
| 9 |
-
token=os.environ.get("token"))
|
| 10 |
-
##########
|
| 11 |
-
import argparse
|
| 12 |
-
from mmcv import Config
|
| 13 |
-
|
| 14 |
-
from mmseg.models import build_segmentor
|
| 15 |
-
|
| 16 |
-
from mmseg.datasets.pipelines import Compose, LoadImageFromFile
|
| 17 |
-
|
| 18 |
-
import rasterio
|
| 19 |
-
import torch
|
| 20 |
-
|
| 21 |
-
from mmseg.apis import init_segmentor
|
| 22 |
-
|
| 23 |
-
from mmcv.parallel import collate, scatter
|
| 24 |
-
|
| 25 |
-
import numpy as np
|
| 26 |
-
import glob
|
| 27 |
-
import os
|
| 28 |
-
|
| 29 |
-
import time
|
| 30 |
-
|
| 31 |
-
import numpy as np
|
| 32 |
-
import gradio as gr
|
| 33 |
-
from functools import partial
|
| 34 |
-
|
| 35 |
-
import pdb
|
| 36 |
-
|
| 37 |
-
import matplotlib.pyplot as plt
|
| 38 |
-
|
| 39 |
-
from skimage import exposure
|
| 40 |
-
|
| 41 |
-
cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190)},
|
| 42 |
-
{'value': 2, 'label': 'Forest', 'rgb': (149,206,147)},
|
| 43 |
-
{'value': 3, 'label': 'Corn', 'rgb': (255,212,0)},
|
| 44 |
-
{'value': 4, 'label': 'Soybeans', 'rgb': (38,115,0)},
|
| 45 |
-
{'value': 5, 'label': 'Wetlands', 'rgb': (128,179,179)},
|
| 46 |
-
{'value': 6, 'label': 'Developed/Barren', 'rgb': (156,156,156)},
|
| 47 |
-
{'value': 7, 'label': 'Open Water', 'rgb': (77,112,163)},
|
| 48 |
-
{'value': 8, 'label': 'Winter Wheat', 'rgb': (168,112,0)},
|
| 49 |
-
{'value': 9, 'label': 'Alfalfa', 'rgb': (255,168,227)},
|
| 50 |
-
{'value': 10, 'label': 'Fallow/Idle cropland', 'rgb': (191,191,122)},
|
| 51 |
-
{'value': 11, 'label': 'Cotton', 'rgb':(255,38,38)},
|
| 52 |
-
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15)},
|
| 53 |
-
{'value': 13, 'label': 'Other', 'rgb':(0,175,77)}]
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def apply_color_map(rgb, color_map=cdl_color_map):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
rgb_mapped = rgb.copy()
|
| 60 |
-
|
| 61 |
-
for map_tmp in cdl_color_map:
|
| 62 |
-
|
| 63 |
-
for i in range(3):
|
| 64 |
-
rgb_mapped[i] = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), map_tmp['rgb'][i], rgb_mapped[i])
|
| 65 |
-
|
| 66 |
-
return rgb_mapped
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def stretch_rgb(rgb):
|
| 70 |
-
|
| 71 |
-
ls_pct=0
|
| 72 |
-
pLow, pHigh = np.percentile(rgb[~np.isnan(rgb)], (ls_pct,100-ls_pct))
|
| 73 |
-
img_rescale = exposure.rescale_intensity(rgb, in_range=(pLow,pHigh))
|
| 74 |
-
|
| 75 |
-
return img_rescale
|
| 76 |
-
|
| 77 |
-
def open_tiff(fname):
|
| 78 |
-
|
| 79 |
-
with rasterio.open(fname, "r") as src:
|
| 80 |
-
|
| 81 |
-
data = src.read()
|
| 82 |
-
|
| 83 |
-
return data
|
| 84 |
-
|
| 85 |
-
def write_tiff(img_wrt, filename, metadata):
|
| 86 |
-
|
| 87 |
-
"""
|
| 88 |
-
It writes a raster image to file.
|
| 89 |
-
|
| 90 |
-
:param img_wrt: numpy array containing the data (can be 2D for single band or 3D for multiple bands)
|
| 91 |
-
:param filename: file path to the output file
|
| 92 |
-
:param metadata: metadata to use to write the raster to disk
|
| 93 |
-
:return:
|
| 94 |
-
"""
|
| 95 |
-
|
| 96 |
-
with rasterio.open(filename, "w", **metadata) as dest:
|
| 97 |
-
|
| 98 |
-
if len(img_wrt.shape) == 2:
|
| 99 |
-
|
| 100 |
-
img_wrt = img_wrt[None]
|
| 101 |
-
|
| 102 |
-
for i in range(img_wrt.shape[0]):
|
| 103 |
-
dest.write(img_wrt[i, :, :], i + 1)
|
| 104 |
-
|
| 105 |
-
return filename
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def get_meta(fname):
|
| 109 |
-
|
| 110 |
-
with rasterio.open(fname, "r") as src:
|
| 111 |
-
|
| 112 |
-
meta = src.meta
|
| 113 |
-
|
| 114 |
-
return meta
|
| 115 |
-
|
| 116 |
-
def preprocess_example(example_list):
|
| 117 |
-
|
| 118 |
-
example_list = [os.path.join(os.path.abspath(''), x) for x in example_list]
|
| 119 |
-
|
| 120 |
-
return example_list
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
def inference_segmentor(model, imgs, custom_test_pipeline=None):
|
| 124 |
-
"""Inference image(s) with the segmentor.
|
| 125 |
-
|
| 126 |
-
Args:
|
| 127 |
-
model (nn.Module): The loaded segmentor.
|
| 128 |
-
imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
|
| 129 |
-
images.
|
| 130 |
-
|
| 131 |
-
Returns:
|
| 132 |
-
(list[Tensor]): The segmentation result.
|
| 133 |
-
"""
|
| 134 |
-
cfg = model.cfg
|
| 135 |
-
device = next(model.parameters()).device # model device
|
| 136 |
-
# build the data pipeline
|
| 137 |
-
test_pipeline = [LoadImageFromFile()] + cfg.data.test.pipeline[1:] if custom_test_pipeline == None else custom_test_pipeline
|
| 138 |
-
test_pipeline = Compose(test_pipeline)
|
| 139 |
-
# prepare data
|
| 140 |
-
data = []
|
| 141 |
-
imgs = imgs if isinstance(imgs, list) else [imgs]
|
| 142 |
-
for img in imgs:
|
| 143 |
-
img_data = {'img_info': {'filename': img}}
|
| 144 |
-
img_data = test_pipeline(img_data)
|
| 145 |
-
data.append(img_data)
|
| 146 |
-
# print(data.shape)
|
| 147 |
-
|
| 148 |
-
data = collate(data, samples_per_gpu=len(imgs))
|
| 149 |
-
if next(model.parameters()).is_cuda:
|
| 150 |
-
# data = collate(data, samples_per_gpu=len(imgs))
|
| 151 |
-
# scatter to specified GPU
|
| 152 |
-
data = scatter(data, [device])[0]
|
| 153 |
-
else:
|
| 154 |
-
# img_metas = scatter(data['img_metas'],'cpu')
|
| 155 |
-
# data['img_metas'] = [i.data[0] for i in data['img_metas']]
|
| 156 |
-
|
| 157 |
-
img_metas = data['img_metas'].data[0]
|
| 158 |
-
img = data['img']
|
| 159 |
-
data = {'img': img, 'img_metas':img_metas}
|
| 160 |
-
|
| 161 |
-
with torch.no_grad():
|
| 162 |
-
result = model(return_loss=False, rescale=True, **data)
|
| 163 |
-
return result
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
def process_rgb(input, mask, indexes):
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
rgb = stretch_rgb((input[indexes, :, :].transpose((1,2,0))/10000*255).astype(np.uint8))
|
| 170 |
-
rgb = np.where(mask.transpose((1,2,0)) == 1, 0, rgb)
|
| 171 |
-
rgb = np.where(rgb < 0, 0, rgb)
|
| 172 |
-
rgb = np.where(rgb > 255, 255, rgb)
|
| 173 |
-
|
| 174 |
-
return rgb
|
| 175 |
-
|
| 176 |
-
def inference_on_file(target_image, model, custom_test_pipeline):
|
| 177 |
-
|
| 178 |
-
target_image = target_image.name
|
| 179 |
-
time_taken=-1
|
| 180 |
-
st = time.time()
|
| 181 |
-
print('Running inference...')
|
| 182 |
-
result = inference_segmentor(model, target_image, custom_test_pipeline)
|
| 183 |
-
print("Output has shape: " + str(result[0].shape))
|
| 184 |
-
|
| 185 |
-
##### get metadata mask
|
| 186 |
-
input = open_tiff(target_image)
|
| 187 |
-
meta = get_meta(target_image)
|
| 188 |
-
mask = np.where(input == meta['nodata'], 1, 0)
|
| 189 |
-
mask = np.max(mask, axis=0)[None]
|
| 190 |
-
|
| 191 |
-
rgb1 = process_rgb(input, mask, [2, 1, 0])
|
| 192 |
-
rgb2 = process_rgb(input, mask, [8, 7, 6])
|
| 193 |
-
rgb3 = process_rgb(input, mask, [14, 13, 12])
|
| 194 |
-
|
| 195 |
-
result[0] = np.where(mask == 1, 0, result[0])
|
| 196 |
-
|
| 197 |
-
et = time.time()
|
| 198 |
-
time_taken = np.round(et - st, 1)
|
| 199 |
-
print(f'Inference completed in {str(time_taken)} seconds')
|
| 200 |
-
|
| 201 |
-
output=result[0][0] + 1
|
| 202 |
-
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
|
| 203 |
-
output=apply_color_map(output).transpose((1,2,0))
|
| 204 |
-
|
| 205 |
-
return rgb1,rgb2,rgb3,output
|
| 206 |
-
|
| 207 |
-
def process_test_pipeline(custom_test_pipeline, bands=None):
|
| 208 |
-
|
| 209 |
-
# change extracted bands if necessary
|
| 210 |
-
if bands is not None:
|
| 211 |
-
|
| 212 |
-
extract_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'] == 'BandsExtract' ]
|
| 213 |
-
|
| 214 |
-
if len(extract_index) > 0:
|
| 215 |
-
|
| 216 |
-
custom_test_pipeline[extract_index[0]]['bands'] = eval(bands)
|
| 217 |
-
|
| 218 |
-
collect_index = [i for i, x in enumerate(custom_test_pipeline) if x['type'].find('Collect') > -1]
|
| 219 |
-
|
| 220 |
-
# adapt collected keys if necessary
|
| 221 |
-
if len(collect_index) > 0:
|
| 222 |
-
|
| 223 |
-
keys = ['img_info', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg']
|
| 224 |
-
custom_test_pipeline[collect_index[0]]['meta_keys'] = keys
|
| 225 |
-
|
| 226 |
-
return custom_test_pipeline
|
| 227 |
-
|
| 228 |
-
config = Config.fromfile(config_path)
|
| 229 |
-
config.model.backbone.pretrained=None
|
| 230 |
-
model = init_segmentor(config, ckpt, device='cpu')
|
| 231 |
-
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
| 232 |
-
|
| 233 |
-
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
| 234 |
-
|
| 235 |
-
with gr.Blocks() as demo:
|
| 236 |
-
|
| 237 |
-
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
| 238 |
-
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
| 239 |
-
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
| 240 |
-
''')
|
| 241 |
-
with gr.Row():
|
| 242 |
-
with gr.Column():
|
| 243 |
-
inp = gr.File()
|
| 244 |
-
btn = gr.Button("Submit")
|
| 245 |
-
|
| 246 |
-
with gr.Row():
|
| 247 |
-
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
|
| 248 |
-
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
|
| 249 |
-
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
| 250 |
-
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
| 251 |
-
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
| 252 |
-
|
| 253 |
-
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
| 254 |
-
|
| 255 |
-
with gr.Row():
|
| 256 |
-
with gr.Column():
|
| 257 |
-
gr.Examples(examples=["chip_102_345_merged.tif",
|
| 258 |
-
"chip_104_104_merged.tif",
|
| 259 |
-
"chip_109_421_merged.tif"],
|
| 260 |
-
inputs=inp,
|
| 261 |
-
outputs=[inp1, inp2, inp3, out],
|
| 262 |
-
preprocess=preprocess_example,
|
| 263 |
-
fn=func,
|
| 264 |
-
cache_examples=True)
|
| 265 |
-
with gr.Column():
|
| 266 |
-
gr.Markdown(value='### Model prediction legend')
|
| 267 |
-
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|