Spaces:
Running
on
L4
Running
on
L4
Delete CodeFormer/inference_codeformer.py
#72
by
Mdsohel
- opened
CodeFormer/inference_codeformer.py
DELETED
|
@@ -1,274 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import cv2
|
| 3 |
-
import argparse
|
| 4 |
-
import glob
|
| 5 |
-
import torch
|
| 6 |
-
from torchvision.transforms.functional import normalize
|
| 7 |
-
from basicsr.utils import imwrite, img2tensor, tensor2img
|
| 8 |
-
from basicsr.utils.download_util import load_file_from_url
|
| 9 |
-
from basicsr.utils.misc import gpu_is_available, get_device
|
| 10 |
-
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
| 11 |
-
from facelib.utils.misc import is_gray
|
| 12 |
-
|
| 13 |
-
from basicsr.utils.registry import ARCH_REGISTRY
|
| 14 |
-
|
| 15 |
-
pretrain_model_url = {
|
| 16 |
-
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
def set_realesrgan():
|
| 20 |
-
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 21 |
-
from basicsr.utils.realesrgan_utils import RealESRGANer
|
| 22 |
-
|
| 23 |
-
use_half = False
|
| 24 |
-
if torch.cuda.is_available(): # set False in CPU/MPS mode
|
| 25 |
-
no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16
|
| 26 |
-
if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]:
|
| 27 |
-
use_half = True
|
| 28 |
-
|
| 29 |
-
model = RRDBNet(
|
| 30 |
-
num_in_ch=3,
|
| 31 |
-
num_out_ch=3,
|
| 32 |
-
num_feat=64,
|
| 33 |
-
num_block=23,
|
| 34 |
-
num_grow_ch=32,
|
| 35 |
-
scale=2,
|
| 36 |
-
)
|
| 37 |
-
upsampler = RealESRGANer(
|
| 38 |
-
scale=2,
|
| 39 |
-
model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
|
| 40 |
-
model=model,
|
| 41 |
-
tile=args.bg_tile,
|
| 42 |
-
tile_pad=40,
|
| 43 |
-
pre_pad=0,
|
| 44 |
-
half=use_half
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
if not gpu_is_available(): # CPU
|
| 48 |
-
import warnings
|
| 49 |
-
warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.'
|
| 50 |
-
'The unoptimized RealESRGAN is slow on CPU. '
|
| 51 |
-
'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.',
|
| 52 |
-
category=RuntimeWarning)
|
| 53 |
-
return upsampler
|
| 54 |
-
|
| 55 |
-
if __name__ == '__main__':
|
| 56 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 57 |
-
device = get_device()
|
| 58 |
-
parser = argparse.ArgumentParser()
|
| 59 |
-
|
| 60 |
-
parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs',
|
| 61 |
-
help='Input image, video or folder. Default: inputs/whole_imgs')
|
| 62 |
-
parser.add_argument('-o', '--output_path', type=str, default=None,
|
| 63 |
-
help='Output folder. Default: results/<input_name>_<w>')
|
| 64 |
-
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5,
|
| 65 |
-
help='Balance the quality and fidelity. Default: 0.5')
|
| 66 |
-
parser.add_argument('-s', '--upscale', type=int, default=2,
|
| 67 |
-
help='The final upsampling scale of the image. Default: 2')
|
| 68 |
-
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
|
| 69 |
-
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
|
| 70 |
-
parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
|
| 71 |
-
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
|
| 72 |
-
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
|
| 73 |
-
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
|
| 74 |
-
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
|
| 75 |
-
Default: retinaface_resnet50')
|
| 76 |
-
parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
|
| 77 |
-
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
|
| 78 |
-
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
|
| 79 |
-
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
|
| 80 |
-
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
|
| 81 |
-
|
| 82 |
-
args = parser.parse_args()
|
| 83 |
-
|
| 84 |
-
# ------------------------ input & output ------------------------
|
| 85 |
-
w = args.fidelity_weight
|
| 86 |
-
input_video = False
|
| 87 |
-
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
|
| 88 |
-
input_img_list = [args.input_path]
|
| 89 |
-
result_root = f'results/test_img_{w}'
|
| 90 |
-
elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
|
| 91 |
-
from basicsr.utils.video_util import VideoReader, VideoWriter
|
| 92 |
-
input_img_list = []
|
| 93 |
-
vidreader = VideoReader(args.input_path)
|
| 94 |
-
image = vidreader.get_frame()
|
| 95 |
-
while image is not None:
|
| 96 |
-
input_img_list.append(image)
|
| 97 |
-
image = vidreader.get_frame()
|
| 98 |
-
audio = vidreader.get_audio()
|
| 99 |
-
fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
|
| 100 |
-
video_name = os.path.basename(args.input_path)[:-4]
|
| 101 |
-
result_root = f'results/{video_name}_{w}'
|
| 102 |
-
input_video = True
|
| 103 |
-
vidreader.close()
|
| 104 |
-
else: # input img folder
|
| 105 |
-
if args.input_path.endswith('/'): # solve when path ends with /
|
| 106 |
-
args.input_path = args.input_path[:-1]
|
| 107 |
-
# scan all the jpg and png images
|
| 108 |
-
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
|
| 109 |
-
result_root = f'results/{os.path.basename(args.input_path)}_{w}'
|
| 110 |
-
|
| 111 |
-
if not args.output_path is None: # set output path
|
| 112 |
-
result_root = args.output_path
|
| 113 |
-
|
| 114 |
-
test_img_num = len(input_img_list)
|
| 115 |
-
if test_img_num == 0:
|
| 116 |
-
raise FileNotFoundError('No input image/video is found...\n'
|
| 117 |
-
'\tNote that --input_path for video should end with .mp4|.mov|.avi')
|
| 118 |
-
|
| 119 |
-
# ------------------ set up background upsampler ------------------
|
| 120 |
-
if args.bg_upsampler == 'realesrgan':
|
| 121 |
-
bg_upsampler = set_realesrgan()
|
| 122 |
-
else:
|
| 123 |
-
bg_upsampler = None
|
| 124 |
-
|
| 125 |
-
# ------------------ set up face upsampler ------------------
|
| 126 |
-
if args.face_upsample:
|
| 127 |
-
if bg_upsampler is not None:
|
| 128 |
-
face_upsampler = bg_upsampler
|
| 129 |
-
else:
|
| 130 |
-
face_upsampler = set_realesrgan()
|
| 131 |
-
else:
|
| 132 |
-
face_upsampler = None
|
| 133 |
-
|
| 134 |
-
# ------------------ set up CodeFormer restorer -------------------
|
| 135 |
-
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
|
| 136 |
-
connect_list=['32', '64', '128', '256']).to(device)
|
| 137 |
-
|
| 138 |
-
# ckpt_path = 'weights/CodeFormer/codeformer.pth'
|
| 139 |
-
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
|
| 140 |
-
model_dir='weights/CodeFormer', progress=True, file_name=None)
|
| 141 |
-
checkpoint = torch.load(ckpt_path)['params_ema']
|
| 142 |
-
net.load_state_dict(checkpoint)
|
| 143 |
-
net.eval()
|
| 144 |
-
|
| 145 |
-
# ------------------ set up FaceRestoreHelper -------------------
|
| 146 |
-
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
|
| 147 |
-
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
|
| 148 |
-
if not args.has_aligned:
|
| 149 |
-
print(f'Face detection model: {args.detection_model}')
|
| 150 |
-
if bg_upsampler is not None:
|
| 151 |
-
print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
|
| 152 |
-
else:
|
| 153 |
-
print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
|
| 154 |
-
|
| 155 |
-
face_helper = FaceRestoreHelper(
|
| 156 |
-
args.upscale,
|
| 157 |
-
face_size=512,
|
| 158 |
-
crop_ratio=(1, 1),
|
| 159 |
-
det_model = args.detection_model,
|
| 160 |
-
save_ext='png',
|
| 161 |
-
use_parse=True,
|
| 162 |
-
device=device)
|
| 163 |
-
|
| 164 |
-
# -------------------- start to processing ---------------------
|
| 165 |
-
for i, img_path in enumerate(input_img_list):
|
| 166 |
-
# clean all the intermediate results to process the next image
|
| 167 |
-
face_helper.clean_all()
|
| 168 |
-
|
| 169 |
-
if isinstance(img_path, str):
|
| 170 |
-
img_name = os.path.basename(img_path)
|
| 171 |
-
basename, ext = os.path.splitext(img_name)
|
| 172 |
-
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
|
| 173 |
-
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
| 174 |
-
else: # for video processing
|
| 175 |
-
basename = str(i).zfill(6)
|
| 176 |
-
img_name = f'{video_name}_{basename}' if input_video else basename
|
| 177 |
-
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
|
| 178 |
-
img = img_path
|
| 179 |
-
|
| 180 |
-
if args.has_aligned:
|
| 181 |
-
# the input faces are already cropped and aligned
|
| 182 |
-
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
| 183 |
-
face_helper.is_gray = is_gray(img, threshold=10)
|
| 184 |
-
if face_helper.is_gray:
|
| 185 |
-
print('Grayscale input: True')
|
| 186 |
-
face_helper.cropped_faces = [img]
|
| 187 |
-
else:
|
| 188 |
-
face_helper.read_image(img)
|
| 189 |
-
# get face landmarks for each face
|
| 190 |
-
num_det_faces = face_helper.get_face_landmarks_5(
|
| 191 |
-
only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
|
| 192 |
-
print(f'\tdetect {num_det_faces} faces')
|
| 193 |
-
# align and warp each face
|
| 194 |
-
face_helper.align_warp_face()
|
| 195 |
-
|
| 196 |
-
# face restoration for each cropped face
|
| 197 |
-
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
| 198 |
-
# prepare data
|
| 199 |
-
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
| 200 |
-
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
| 201 |
-
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
| 202 |
-
|
| 203 |
-
try:
|
| 204 |
-
with torch.no_grad():
|
| 205 |
-
output = net(cropped_face_t, w=w, adain=True)[0]
|
| 206 |
-
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
| 207 |
-
del output
|
| 208 |
-
torch.cuda.empty_cache()
|
| 209 |
-
except Exception as error:
|
| 210 |
-
print(f'\tFailed inference for CodeFormer: {error}')
|
| 211 |
-
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
| 212 |
-
|
| 213 |
-
restored_face = restored_face.astype('uint8')
|
| 214 |
-
face_helper.add_restored_face(restored_face, cropped_face)
|
| 215 |
-
|
| 216 |
-
# paste_back
|
| 217 |
-
if not args.has_aligned:
|
| 218 |
-
# upsample the background
|
| 219 |
-
if bg_upsampler is not None:
|
| 220 |
-
# Now only support RealESRGAN for upsampling background
|
| 221 |
-
bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
|
| 222 |
-
else:
|
| 223 |
-
bg_img = None
|
| 224 |
-
face_helper.get_inverse_affine(None)
|
| 225 |
-
# paste each restored face to the input image
|
| 226 |
-
if args.face_upsample and face_upsampler is not None:
|
| 227 |
-
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
|
| 228 |
-
else:
|
| 229 |
-
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
|
| 230 |
-
|
| 231 |
-
# save faces
|
| 232 |
-
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
|
| 233 |
-
# save cropped face
|
| 234 |
-
if not args.has_aligned:
|
| 235 |
-
save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
|
| 236 |
-
imwrite(cropped_face, save_crop_path)
|
| 237 |
-
# save restored face
|
| 238 |
-
if args.has_aligned:
|
| 239 |
-
save_face_name = f'{basename}.png'
|
| 240 |
-
else:
|
| 241 |
-
save_face_name = f'{basename}_{idx:02d}.png'
|
| 242 |
-
if args.suffix is not None:
|
| 243 |
-
save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
|
| 244 |
-
save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
|
| 245 |
-
imwrite(restored_face, save_restore_path)
|
| 246 |
-
|
| 247 |
-
# save restored img
|
| 248 |
-
if not args.has_aligned and restored_img is not None:
|
| 249 |
-
if args.suffix is not None:
|
| 250 |
-
basename = f'{basename}_{args.suffix}'
|
| 251 |
-
save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
|
| 252 |
-
imwrite(restored_img, save_restore_path)
|
| 253 |
-
|
| 254 |
-
# save enhanced video
|
| 255 |
-
if input_video:
|
| 256 |
-
print('Video Saving...')
|
| 257 |
-
# load images
|
| 258 |
-
video_frames = []
|
| 259 |
-
img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
|
| 260 |
-
for img_path in img_list:
|
| 261 |
-
img = cv2.imread(img_path)
|
| 262 |
-
video_frames.append(img)
|
| 263 |
-
# write images to video
|
| 264 |
-
height, width = video_frames[0].shape[:2]
|
| 265 |
-
if args.suffix is not None:
|
| 266 |
-
video_name = f'{video_name}_{args.suffix}.png'
|
| 267 |
-
save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
|
| 268 |
-
vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
|
| 269 |
-
|
| 270 |
-
for f in video_frames:
|
| 271 |
-
vidwriter.write_frame(f)
|
| 272 |
-
vidwriter.close()
|
| 273 |
-
|
| 274 |
-
print(f'\nAll results are saved in {result_root}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|