ariG23498's picture
ariG23498 HF Staff
update demo with suggestive prompting
8b69117 verified
raw
history blame
12.5 kB
import gradio as gr
from gradio.themes.ocean import Ocean
import torch
import numpy as np
import supervision as sv
from transformers import (
AutoModelForCausalLM,
Qwen3VLForConditionalGeneration,
Qwen3VLProcessor,
)
import json
import ast
import re
from PIL import Image
from spaces import GPU
# --- Constants and Configuration ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = "auto"
CATEGORIES = ["Query", "Caption", "Point", "Detect"]
PLACEHOLDERS = {
"Query": "What's in this image?",
"Caption": "Enter caption length: short, normal, or long",
"Point": "Select an object from suggestions or enter manually",
"Detect": "Select an object from suggestions or enter manually",
}
# --- Model Loading ---
# Load Moondream
moondream = AutoModelForCausalLM.from_pretrained(
"moondream/moondream3-preview",
trust_remote_code=True,
dtype=DTYPE,
device_map=DEVICE,
revision="main",
).eval()
# Load Qwen3-VL
qwen_model = Qwen3VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct",
dtype=DTYPE,
device_map=DEVICE,
).eval()
qwen_processor = Qwen3VLProcessor.from_pretrained(
"Qwen/Qwen3-VL-4B-Instruct",
)
# --- Utility Functions ---
def safe_parse_json(text: str):
text = text.strip()
text = re.sub(r"^```(json)?", "", text)
text = re.sub(r"```$", "", text)
text = text.strip()
try:
return json.loads(text)
except json.JSONDecodeError:
pass
try:
return ast.literal_eval(text)
except Exception:
return {}
@GPU
def get_suggested_objects(image: Image.Image):
"""Get suggested objects in the image using Moondream"""
if image is None:
return []
try:
result = moondream.query(
image=image,
question="What objects are in the image, provide the list.",
reasoning=False,
)
suggested_objects = ast.literal_eval(result["answer"])
if isinstance(suggested_objects, list):
if len(suggested_objects) > 3: # send not more than 3 suggestions
return suggested_objects[:3]
else:
suggested_objects
return []
except Exception as e:
print(f"Error getting suggestions: {e}")
return []
def annotate_image(image: Image.Image, result: dict):
if not isinstance(image, Image.Image):
return image # Return original if not a valid image
if not isinstance(result, dict):
return image # Return original if result is not a dict
original_width, original_height = image.size
# Handle Point annotations
if "points" in result and result["points"]:
points_list = []
for point in result.get("points", []):
x = int(point["x"] * original_width)
y = int(point["y"] * original_height)
points_list.append([x, y])
if not points_list:
return image
points_array = np.array(points_list).reshape(1, -1, 2)
key_points = sv.KeyPoints(xy=points_array)
vertex_annotator = sv.VertexAnnotator(radius=8, color=sv.Color.RED)
annotated_image = vertex_annotator.annotate(
scene=image.copy(), key_points=key_points
)
return annotated_image
# Handle Detection annotations
if "objects" in result and result["objects"]:
detections = sv.Detections.from_vlm(
sv.VLM.MOONDREAM,
result,
resolution_wh=image.size,
)
if len(detections) == 0:
return image
box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX, thickness=5)
annotated_scene = box_annotator.annotate(
scene=image.copy(), detections=detections
)
return annotated_scene
return image
# --- Inference Functions ---
def run_qwen_inference(image: Image.Image, prompt: str):
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt},
],
}
]
inputs = qwen_processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
).to(DEVICE)
with torch.inference_mode():
generated_ids = qwen_model.generate(
**inputs,
max_new_tokens=512,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)[0]
return output_text
@GPU
def process_qwen(image: Image.Image, category: str, prompt: str):
if category == "Query":
return run_qwen_inference(image, prompt), {}
elif category == "Caption":
full_prompt = f"Provide a {prompt} length caption for the image."
return run_qwen_inference(image, full_prompt), {}
elif category == "Point":
full_prompt = (
f"Provide 2d point coordinates for {prompt}. Report in JSON format."
)
output_text = run_qwen_inference(image, full_prompt)
parsed_json = safe_parse_json(output_text)
points_result = {"points": []}
if isinstance(parsed_json, list):
for item in parsed_json:
if "point_2d" in item and len(item["point_2d"]) == 2:
x, y = item["point_2d"]
points_result["points"].append({"x": x / 1000.0, "y": y / 1000.0})
return json.dumps(points_result, indent=2), points_result
elif category == "Detect":
full_prompt = (
f"Provide bounding box coordinates for {prompt}. Report in JSON format."
)
output_text = run_qwen_inference(image, full_prompt)
parsed_json = safe_parse_json(output_text)
objects_result = {"objects": []}
if isinstance(parsed_json, list):
for item in parsed_json:
if "bbox_2d" in item and len(item["bbox_2d"]) == 4:
xmin, ymin, xmax, ymax = item["bbox_2d"]
objects_result["objects"].append(
{
"x_min": xmin / 1000.0,
"y_min": ymin / 1000.0,
"x_max": xmax / 1000.0,
"y_max": ymax / 1000.0,
}
)
return json.dumps(objects_result, indent=2), objects_result
return "Invalid category", {}
@GPU
def process_moondream(image: Image.Image, category: str, prompt: str):
if category == "Query":
result = moondream.query(image=image, question=prompt)
return result["answer"], {}
elif category == "Caption":
result = moondream.caption(image, length=prompt)
return result["caption"], {}
elif category == "Point":
result = moondream.point(image, prompt)
return json.dumps(result, indent=2), result
elif category == "Detect":
result = moondream.detect(image, prompt)
return json.dumps(result, indent=2), result
return "Invalid category", {}
# --- Gradio Interface Logic ---
def on_category_and_image_change(image, category):
"""Generate suggestions when category changes to Point or Detect"""
text_box = gr.Textbox(value="", placeholder=PLACEHOLDERS.get(category, ""), interactive=True)
if image is None or category not in ["Point", "Detect", "Caption"]:
return gr.Radio(choices=[], visible=False), text_box
if category == "Caption":
return gr.Radio(choices=["short", "normal", "long"], visible=True), text_box
suggestions = get_suggested_objects(image)
if suggestions:
return gr.Radio(choices=suggestions, visible=True, interactive=True), text_box
else:
return gr.Radio(choices=["no choice possible"], visible=True, interactive=True), text_box
def update_prompt_from_radio(selected_object):
"""Update prompt textbox when a radio option is selected"""
if selected_object:
return gr.Textbox(value=selected_object)
return gr.Textbox(value="")
def process_inputs(image, category, prompt):
if image is None:
raise gr.Error("Please upload an image.")
if not prompt:
raise gr.Error("Please provide a prompt.")
# Process with Qwen
qwen_text, qwen_data = process_qwen(image, category, prompt)
qwen_annotated_image = annotate_image(image, qwen_data)
# Process with Moondream
moondream_text, moondream_data = process_moondream(image, category, prompt)
moondream_annotated_image = annotate_image(image, moondream_data)
return qwen_annotated_image, qwen_text, moondream_annotated_image, moondream_text
css_hide_share = """
button#gradio-share-link-button-0 {
display: none !important;
}
"""
# --- Gradio UI Layout ---
with gr.Blocks(theme=Ocean(), css=css_hide_share) as demo:
gr.Markdown("# 👓 Object Understanding with Vision Language Models")
gr.Markdown(
"### Explore object detection, visual grounding, keypoint detection, and/or object counting through natural language prompts."
)
gr.Markdown("""
*Powered by [Qwen3-VL 4B](https://huggingface.co/Qwen/Qwen3-VL-4B-Instruct) and [Moondream 3 Preview](https://huggingface.co/moondream/moondream3-preview). Inspired by the tutorial [Object Detection and Visual Grounding with Qwen 2.5](https://pyimagesearch.com/2025/06/09/object-detection-and-visual-grounding-with-qwen-2-5/) on PyImageSearch.*
*Moondream 3 uses the [moondream-preview](https://huggingface.co/vikhyatk/moondream2/blob/main/moondream.py), selecting `detect` for categories with "Object Detection" `point` for the ones with "Keypoint Detection", and reasoning-based querying for all others.*
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image")
category_select = gr.Radio(
choices=CATEGORIES,
value=CATEGORIES[0],
label="Select Task Category",
interactive=True,
)
# Suggested objects radio (hidden by default)
suggestions_radio = gr.Radio(
choices=[],
label="Suggestions",
visible=False,
interactive=True,
)
prompt_input = gr.Textbox(
placeholder=PLACEHOLDERS[CATEGORIES[0]],
label="Prompt",
lines=2,
)
submit_btn = gr.Button("Compare Models", variant="primary")
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
gr.Markdown("### Qwen/Qwen3-VL-4B-Instruct")
qwen_img_output = gr.Image(label="Annotated Image")
qwen_text_output = gr.Textbox(
label="Text Output", lines=8, interactive=False
)
with gr.Column():
gr.Markdown("### moondream/moondream3-preview")
moon_img_output = gr.Image(label="Annotated Image")
moon_text_output = gr.Textbox(
label="Text Output", lines=8, interactive=False
)
gr.Examples(
examples=[
["examples/example_1.jpg", "Query", "How many cars are in the image?"],
["examples/example_1.jpg", "Caption", ""],
["examples/example_2.JPG", "Point", ""],
["examples/example_2.JPG", "Detect", ""],
],
inputs=[image_input, category_select, prompt_input],
)
# --- Event Listeners ---
category_select.change(
fn=on_category_and_image_change,
inputs=[image_input, category_select],
outputs=[suggestions_radio, prompt_input],
)
suggestions_radio.change(
fn=update_prompt_from_radio,
inputs=[suggestions_radio],
outputs=[prompt_input],
)
submit_btn.click(
fn=process_inputs,
inputs=[image_input, category_select, prompt_input],
outputs=[qwen_img_output, qwen_text_output, moon_img_output, moon_text_output],
)
if __name__ == "__main__":
demo.launch()