Spaces:
Sleeping
Sleeping
File size: 15,174 Bytes
1450fb5 8607c3a 1450fb5 43595e4 1450fb5 43595e4 1450fb5 43595e4 1450fb5 43595e4 1450fb5 43595e4 8607c3a 43595e4 1450fb5 43595e4 1450fb5 43595e4 1450fb5 43595e4 1450fb5 4010e76 1450fb5 43595e4 1450fb5 43595e4 1450fb5 43595e4 1450fb5 73c40ca 1450fb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import gradio as gr
import numpy as np
import pandas as pd
import yfinance as yf
import joblib
from tensorflow.keras.models import load_model
import plotly.graph_objects as go
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
class StockPredictorApp:
def __init__(self, arima_path='arima_model.pkl',
lstm_path='lstm_model.h5',
scaler_path='scaler.pkl'):
"""
Initialize the stock predictor with pre-trained models
"""
try:
# Load models
self.arima_model = joblib.load(arima_path)
self.lstm_model = load_model(lstm_path)
self.scaler = joblib.load(scaler_path)
self.lookback = 60 # Default lookback period for LSTM
print("Models loaded successfully!")
except Exception as e:
print(f"Error loading models: {e}")
self.arima_model = None
self.lstm_model = None
self.scaler = None
def fetch_stock_data(self, ticker, days_back=365):
"""
Fetch recent stock data for prediction
"""
try:
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Download stock data
stock_data = yf.download(ticker,
start=start_date.strftime('%Y-%m-%d'),
end=end_date.strftime('%Y-%m-%d'),
progress=False)
if stock_data.empty:
return None, "No data found for this ticker"
# Extract closing prices
prices = stock_data[['Close']].copy()
prices.columns = ['price']
return prices, None
except Exception as e:
return None, f"Error fetching data: {str(e)}"
def prepare_lstm_input(self, data):
"""
Prepare data for LSTM prediction
"""
# Scale the data
scaled_data = self.scaler.transform(data[['price']])
# Create sequences
if len(scaled_data) < self.lookback:
# Pad with the first value if not enough data
padding = np.tile(scaled_data[0], (self.lookback - len(scaled_data), 1))
scaled_data = np.vstack([padding, scaled_data])
# Take the last lookback values
sequence = scaled_data[-self.lookback:].reshape(1, self.lookback, 1)
return sequence
def predict_next_days(self, ticker, num_days):
"""
Predict stock prices for the next n days
"""
if not all([self.arima_model, self.lstm_model, self.scaler]):
return None, None, "Models not loaded properly. Please check model files."
# Fetch historical data
historical_data, error = self.fetch_stock_data(ticker, days_back=365)
if error:
return None, None, error
try:
# ARIMA Predictions
arima_forecast = self.arima_model.forecast(steps=num_days)
# LSTM Predictions
lstm_predictions = []
current_data = historical_data.copy()
for _ in range(num_days):
# Prepare input
lstm_input = self.prepare_lstm_input(current_data)
# Make prediction
scaled_pred = self.lstm_model.predict(lstm_input, verbose=0)
pred = self.scaler.inverse_transform(scaled_pred)[0, 0]
lstm_predictions.append(pred)
# Add prediction to data for next iteration
next_date = current_data.index[-1] + timedelta(days=1)
new_row = pd.DataFrame({'price': [pred]}, index=[next_date])
current_data = pd.concat([current_data, new_row])
# Create future dates
last_date = historical_data.index[-1]
future_dates = pd.date_range(start=last_date + timedelta(days=1),
periods=num_days, freq='D')
# Create prediction DataFrames
arima_df = pd.DataFrame({
'Date': future_dates,
'ARIMA_Prediction': arima_forecast.values
})
lstm_df = pd.DataFrame({
'Date': future_dates,
'LSTM_Prediction': lstm_predictions
})
# Combine predictions
predictions_df = pd.merge(arima_df, lstm_df, on='Date')
predictions_df['Average_Prediction'] = (predictions_df['ARIMA_Prediction'] +
predictions_df['LSTM_Prediction']) / 2
return historical_data, predictions_df, None
except Exception as e:
return None, None, f"Prediction error: {str(e)}"
def create_plot(self, historical_data, predictions_df, ticker):
"""
Create an interactive plot using Plotly
"""
fig = go.Figure()
# Plot historical data
fig.add_trace(go.Scatter(
x=historical_data.index,
y=historical_data['price'],
mode='lines',
name='Historical Price',
line=dict(color='black', width=2)
))
# Plot ARIMA predictions
fig.add_trace(go.Scatter(
x=predictions_df['Date'],
y=predictions_df['ARIMA_Prediction'],
mode='lines+markers',
name='ARIMA Forecast',
line=dict(color='blue', width=2, dash='dash'),
marker=dict(size=6)
))
# Plot LSTM predictions
fig.add_trace(go.Scatter(
x=predictions_df['Date'],
y=predictions_df['LSTM_Prediction'],
mode='lines+markers',
name='LSTM Forecast',
line=dict(color='red', width=2, dash='dash'),
marker=dict(size=6)
))
# Plot average predictions
fig.add_trace(go.Scatter(
x=predictions_df['Date'],
y=predictions_df['Average_Prediction'],
mode='lines+markers',
name='Ensemble (Average)',
line=dict(color='green', width=2, dash='dot'),
marker=dict(size=8)
))
# Update layout
fig.update_layout(
title=f'{ticker} Stock Price Forecast',
xaxis_title='Date',
yaxis_title='Price ($)',
hovermode='x unified',
showlegend=True,
template='plotly_white',
height=600
)
# Add a vertical line to separate historical and predicted
# Convert timestamp to string to avoid Plotly issues
last_date = historical_data.index[-1]
if hasattr(last_date, 'strftime'):
last_date = last_date.strftime('%Y-%m-%d')
fig.add_vline(x=last_date,
line_dash="solid",
line_color="gray",
annotation_text="Forecast Start")
return fig
# Initialize the app
predictor = StockPredictorApp()
def predict_stock_price(ticker, num_days):
"""
Main prediction function for Gradio interface
"""
# Create empty dataframe for error cases
empty_df = pd.DataFrame()
if not ticker:
return None, "Please enter a stock ticker symbol", empty_df
# Convert ticker to uppercase
ticker = ticker.upper()
# Validate number of days
if num_days < 1 or num_days > 90:
return None, "Please enter a number of days between 1 and 90", empty_df
# Get predictions
historical_data, predictions_df, error = predictor.predict_next_days(ticker, num_days)
if error:
return None, error, empty_df
# Create plot
fig = predictor.create_plot(historical_data, predictions_df, ticker)
# Format predictions table
predictions_display = predictions_df.copy()
predictions_display['Date'] = predictions_display['Date'].dt.strftime('%Y-%m-%d')
predictions_display = predictions_display.round(2)
# Calculate summary statistics
summary = f"""
### Prediction Summary for {ticker}
**Forecast Period**: {num_days} days
**ARIMA Model**:
- First Day: ${predictions_df['ARIMA_Prediction'].iloc[0]:.2f}
- Last Day: ${predictions_df['ARIMA_Prediction'].iloc[-1]:.2f}
- Average: ${predictions_df['ARIMA_Prediction'].mean():.2f}
- Trend: {'π Upward' if predictions_df['ARIMA_Prediction'].iloc[-1] > predictions_df['ARIMA_Prediction'].iloc[0] else 'π Downward'}
**LSTM Model**:
- First Day: ${predictions_df['LSTM_Prediction'].iloc[0]:.2f}
- Last Day: ${predictions_df['LSTM_Prediction'].iloc[-1]:.2f}
- Average: ${predictions_df['LSTM_Prediction'].mean():.2f}
- Trend: {'π Upward' if predictions_df['LSTM_Prediction'].iloc[-1] > predictions_df['LSTM_Prediction'].iloc[0] else 'π Downward'}
**Ensemble (Average)**:
- First Day: ${predictions_df['Average_Prediction'].iloc[0]:.2f}
- Last Day: ${predictions_df['Average_Prediction'].iloc[-1]:.2f}
- Average: ${predictions_df['Average_Prediction'].mean():.2f}
**Current Price**: ${historical_data['price'].iloc[-1]:.2f}
**Expected Change**: {'+' if predictions_df['Average_Prediction'].iloc[-1] > historical_data['price'].iloc[-1] else ''}{((predictions_df['Average_Prediction'].iloc[-1] / historical_data['price'].iloc[-1] - 1) * 100):.2f}%
"""
return fig, summary, predictions_display
# Create demo mode for when models aren't available
def create_demo_predictions(ticker, num_days):
"""
Create demo predictions when models aren't loaded
"""
# Create fake historical data
dates = pd.date_range(end=datetime.now(), periods=100, freq='D')
base_price = 150.0
historical_data = pd.DataFrame({
'price': base_price + np.cumsum(np.random.randn(100) * 2)
}, index=dates)
# Create fake predictions
future_dates = pd.date_range(start=dates[-1] + timedelta(days=1),
periods=num_days, freq='D')
last_price = historical_data['price'].iloc[-1]
arima_pred = last_price + np.cumsum(np.random.randn(num_days) * 1.5)
lstm_pred = last_price + np.cumsum(np.random.randn(num_days) * 1.5)
predictions_df = pd.DataFrame({
'Date': future_dates,
'ARIMA_Prediction': arima_pred,
'LSTM_Prediction': lstm_pred,
'Average_Prediction': (arima_pred + lstm_pred) / 2
})
return historical_data, predictions_df
# Modified predict function with fallback to demo mode
def predict_stock_price_safe(ticker, num_days):
"""
Safe prediction function with demo fallback
"""
empty_df = pd.DataFrame()
if not ticker:
return None, "Please enter a stock ticker symbol", empty_df
ticker = ticker.upper()
if num_days < 1 or num_days > 90:
return None, "Please enter a number of days between 1 and 90", empty_df
# Check if models are loaded
if not all([predictor.arima_model, predictor.lstm_model, predictor.scaler]):
# Use demo mode
demo_msg = f"""
### β οΈ Demo Mode Active
**Note**: Pre-trained models are not available. Showing demo predictions with random data.
To use real predictions, ensure you have:
1. `arima_model.pkl` - ARIMA model file
2. `lstm_model.h5` - LSTM model file
3. `scaler.pkl` - Data scaler file
Place these files in the same directory as the app.
"""
try:
historical_data, predictions_df = create_demo_predictions(ticker, num_days)
fig = predictor.create_plot(historical_data, predictions_df, f"{ticker} (DEMO)")
predictions_display = predictions_df.copy()
predictions_display['Date'] = predictions_display['Date'].dt.strftime('%Y-%m-%d')
predictions_display = predictions_display.round(2)
return fig, demo_msg, predictions_display
except Exception as e:
error_msg = f"Error creating demo predictions: {str(e)}"
return None, error_msg, empty_df
# Normal prediction flow
return predict_stock_price(ticker, num_days)
# Create Gradio interface
with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
gr.Markdown(
"""
# π Stock Price Forecaster
This app uses pre-trained ARIMA and LSTM models to predict stock prices.
Enter a stock ticker symbol and the number of days to forecast.
**Models:**
- π΅ ARIMA: Statistical time series model
- π΄ LSTM: Deep learning sequential model
- π’ Ensemble: Average of both models
"""
)
with gr.Row():
with gr.Column(scale=1):
ticker_input = gr.Textbox(
label="Stock Ticker Symbol",
placeholder="AAPL",
value="AAPL"
)
days_input = gr.Slider(
minimum=1,
maximum=30,
value=7,
step=1,
label="Number of Days to Forecast"
)
predict_button = gr.Button("π Generate Forecast", variant="primary")
with gr.Row():
with gr.Column(scale=2):
plot_output = gr.Plot(label="Price Forecast Chart")
with gr.Row():
summary_output = gr.Markdown(label="Forecast Summary")
with gr.Row():
predictions_table = gr.Dataframe(
label="Detailed Predictions",
headers=["Date", "ARIMA_Prediction", "LSTM_Prediction", "Average_Prediction"],
datatype=["str", "number", "number", "number"]
)
# Add examples (use safe function)
gr.Examples(
examples=[
["AAPL", 7],
["AAPL", 15]
],
inputs=[ticker_input, days_input],
outputs=[plot_output, summary_output, predictions_table],
fn=predict_stock_price_safe,
cache_examples=False
)
# Connect the safe prediction function
predict_button.click(
fn=predict_stock_price_safe,
inputs=[ticker_input, days_input],
outputs=[plot_output, summary_output, predictions_table]
)
gr.Markdown(
"""
---
### π About the Models
- **ARIMA**: Auto-Regressive Integrated Moving Average model trained on historical price data
- **LSTM**: Long Short-Term Memory neural network with 3 layers and dropout regularization
- **Training Data**: Historical stock prices from Yahoo Finance
"""
)
# Launch the app
if __name__ == "__main__":
app.launch(share=True) |