shagatoo's picture
Update app.py
43595e4 verified
raw
history blame
15 kB
import gradio as gr
import numpy as np
import pandas as pd
import yfinance as yf
import joblib
from tensorflow.keras.models import load_model
import plotly.graph_objects as go
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
class StockPredictorApp:
def __init__(self, arima_path='arima_model.pkl',
lstm_path='lstm_model.h5',
scaler_path='scaler.pkl'):
"""
Initialize the stock predictor with pre-trained models
"""
try:
# Load models
self.arima_model = joblib.load(arima_path)
self.lstm_model = load_model(lstm_path)
self.scaler = joblib.load(scaler_path)
self.lookback = 60 # Default lookback period for LSTM
print("Models loaded successfully!")
except Exception as e:
print(f"Error loading models: {e}")
self.arima_model = None
self.lstm_model = None
self.scaler = None
def fetch_stock_data(self, ticker, days_back=365):
"""
Fetch recent stock data for prediction
"""
try:
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Download stock data
stock_data = yf.download(ticker,
start=start_date.strftime('%Y-%m-%d'),
end=end_date.strftime('%Y-%m-%d'),
progress=False)
if stock_data.empty:
return None, "No data found for this ticker"
# Extract closing prices
prices = stock_data[['Close']].copy()
prices.columns = ['price']
return prices, None
except Exception as e:
return None, f"Error fetching data: {str(e)}"
def prepare_lstm_input(self, data):
"""
Prepare data for LSTM prediction
"""
# Scale the data
scaled_data = self.scaler.transform(data[['price']])
# Create sequences
if len(scaled_data) < self.lookback:
# Pad with the first value if not enough data
padding = np.tile(scaled_data[0], (self.lookback - len(scaled_data), 1))
scaled_data = np.vstack([padding, scaled_data])
# Take the last lookback values
sequence = scaled_data[-self.lookback:].reshape(1, self.lookback, 1)
return sequence
def predict_next_days(self, ticker, num_days):
"""
Predict stock prices for the next n days
"""
if not all([self.arima_model, self.lstm_model, self.scaler]):
return None, None, "Models not loaded properly. Please check model files."
# Fetch historical data
historical_data, error = self.fetch_stock_data(ticker, days_back=365)
if error:
return None, None, error
try:
# ARIMA Predictions
arima_forecast = self.arima_model.forecast(steps=num_days)
# LSTM Predictions
lstm_predictions = []
current_data = historical_data.copy()
for _ in range(num_days):
# Prepare input
lstm_input = self.prepare_lstm_input(current_data)
# Make prediction
scaled_pred = self.lstm_model.predict(lstm_input, verbose=0)
pred = self.scaler.inverse_transform(scaled_pred)[0, 0]
lstm_predictions.append(pred)
# Add prediction to data for next iteration
next_date = current_data.index[-1] + timedelta(days=1)
new_row = pd.DataFrame({'price': [pred]}, index=[next_date])
current_data = pd.concat([current_data, new_row])
# Create future dates
last_date = historical_data.index[-1]
future_dates = pd.date_range(start=last_date + timedelta(days=1),
periods=num_days, freq='D')
# Create prediction DataFrames
arima_df = pd.DataFrame({
'Date': future_dates,
'ARIMA_Prediction': arima_forecast.values
})
lstm_df = pd.DataFrame({
'Date': future_dates,
'LSTM_Prediction': lstm_predictions
})
# Combine predictions
predictions_df = pd.merge(arima_df, lstm_df, on='Date')
predictions_df['Average_Prediction'] = (predictions_df['ARIMA_Prediction'] +
predictions_df['LSTM_Prediction']) / 2
return historical_data, predictions_df, None
except Exception as e:
return None, None, f"Prediction error: {str(e)}"
def create_plot(self, historical_data, predictions_df, ticker):
"""
Create an interactive plot using Plotly
"""
fig = go.Figure()
# Plot historical data
fig.add_trace(go.Scatter(
x=historical_data.index,
y=historical_data['price'],
mode='lines',
name='Historical Price',
line=dict(color='black', width=2)
))
# Plot ARIMA predictions
fig.add_trace(go.Scatter(
x=predictions_df['Date'],
y=predictions_df['ARIMA_Prediction'],
mode='lines+markers',
name='ARIMA Forecast',
line=dict(color='blue', width=2, dash='dash'),
marker=dict(size=6)
))
# Plot LSTM predictions
fig.add_trace(go.Scatter(
x=predictions_df['Date'],
y=predictions_df['LSTM_Prediction'],
mode='lines+markers',
name='LSTM Forecast',
line=dict(color='red', width=2, dash='dash'),
marker=dict(size=6)
))
# Plot average predictions
fig.add_trace(go.Scatter(
x=predictions_df['Date'],
y=predictions_df['Average_Prediction'],
mode='lines+markers',
name='Ensemble (Average)',
line=dict(color='green', width=2, dash='dot'),
marker=dict(size=8)
))
# Update layout
fig.update_layout(
title=f'{ticker} Stock Price Forecast',
xaxis_title='Date',
yaxis_title='Price ($)',
hovermode='x unified',
showlegend=True,
template='plotly_white',
height=600
)
# Add a vertical line to separate historical and predicted
fig.add_vline(x=historical_data.index[-1],
line_dash="solid",
line_color="gray",
annotation_text="Forecast Start")
return fig
# Initialize the app
predictor = StockPredictorApp()
def predict_stock_price(ticker, num_days):
"""
Main prediction function for Gradio interface
"""
# Create empty dataframe for error cases
empty_df = pd.DataFrame()
if not ticker:
return None, "Please enter a stock ticker symbol", empty_df
# Convert ticker to uppercase
ticker = ticker.upper()
# Validate number of days
if num_days < 1 or num_days > 90:
return None, "Please enter a number of days between 1 and 90", empty_df
# Get predictions
historical_data, predictions_df, error = predictor.predict_next_days(ticker, num_days)
if error:
return None, error, empty_df
# Create plot
fig = predictor.create_plot(historical_data, predictions_df, ticker)
# Format predictions table
predictions_display = predictions_df.copy()
predictions_display['Date'] = predictions_display['Date'].dt.strftime('%Y-%m-%d')
predictions_display = predictions_display.round(2)
# Calculate summary statistics
summary = f"""
### Prediction Summary for {ticker}
**Forecast Period**: {num_days} days
**ARIMA Model**:
- First Day: ${predictions_df['ARIMA_Prediction'].iloc[0]:.2f}
- Last Day: ${predictions_df['ARIMA_Prediction'].iloc[-1]:.2f}
- Average: ${predictions_df['ARIMA_Prediction'].mean():.2f}
- Trend: {'πŸ“ˆ Upward' if predictions_df['ARIMA_Prediction'].iloc[-1] > predictions_df['ARIMA_Prediction'].iloc[0] else 'πŸ“‰ Downward'}
**LSTM Model**:
- First Day: ${predictions_df['LSTM_Prediction'].iloc[0]:.2f}
- Last Day: ${predictions_df['LSTM_Prediction'].iloc[-1]:.2f}
- Average: ${predictions_df['LSTM_Prediction'].mean():.2f}
- Trend: {'πŸ“ˆ Upward' if predictions_df['LSTM_Prediction'].iloc[-1] > predictions_df['LSTM_Prediction'].iloc[0] else 'πŸ“‰ Downward'}
**Ensemble (Average)**:
- First Day: ${predictions_df['Average_Prediction'].iloc[0]:.2f}
- Last Day: ${predictions_df['Average_Prediction'].iloc[-1]:.2f}
- Average: ${predictions_df['Average_Prediction'].mean():.2f}
**Current Price**: ${historical_data['price'].iloc[-1]:.2f}
**Expected Change**: {'+' if predictions_df['Average_Prediction'].iloc[-1] > historical_data['price'].iloc[-1] else ''}{((predictions_df['Average_Prediction'].iloc[-1] / historical_data['price'].iloc[-1] - 1) * 100):.2f}%
"""
return fig, summary, predictions_display
# Create demo mode for when models aren't available
def create_demo_predictions(ticker, num_days):
"""
Create demo predictions when models aren't loaded
"""
# Create fake historical data
dates = pd.date_range(end=datetime.now(), periods=100, freq='D')
base_price = 150.0
historical_data = pd.DataFrame({
'price': base_price + np.cumsum(np.random.randn(100) * 2)
}, index=dates)
# Create fake predictions
future_dates = pd.date_range(start=dates[-1] + timedelta(days=1),
periods=num_days, freq='D')
last_price = historical_data['price'].iloc[-1]
arima_pred = last_price + np.cumsum(np.random.randn(num_days) * 1.5)
lstm_pred = last_price + np.cumsum(np.random.randn(num_days) * 1.5)
predictions_df = pd.DataFrame({
'Date': future_dates,
'ARIMA_Prediction': arima_pred,
'LSTM_Prediction': lstm_pred,
'Average_Prediction': (arima_pred + lstm_pred) / 2
})
return historical_data, predictions_df
# Modified predict function with fallback to demo mode
def predict_stock_price_safe(ticker, num_days):
"""
Safe prediction function with demo fallback
"""
empty_df = pd.DataFrame()
if not ticker:
return None, "Please enter a stock ticker symbol", empty_df
ticker = ticker.upper()
if num_days < 1 or num_days > 90:
return None, "Please enter a number of days between 1 and 90", empty_df
# Check if models are loaded
if not all([predictor.arima_model, predictor.lstm_model, predictor.scaler]):
# Use demo mode
demo_msg = f"""
### ⚠️ Demo Mode Active
**Note**: Pre-trained models are not available. Showing demo predictions with random data.
To use real predictions, ensure you have:
1. `arima_model.pkl` - ARIMA model file
2. `lstm_model.h5` - LSTM model file
3. `scaler.pkl` - Data scaler file
Place these files in the same directory as the app.
"""
historical_data, predictions_df = create_demo_predictions(ticker, num_days)
fig = predictor.create_plot(historical_data, predictions_df, f"{ticker} (DEMO)")
predictions_display = predictions_df.copy()
predictions_display['Date'] = predictions_display['Date'].dt.strftime('%Y-%m-%d')
predictions_display = predictions_display.round(2)
return fig, demo_msg, predictions_display
# Normal prediction flow
return predict_stock_price(ticker, num_days)
# Create Gradio interface
with gr.Blocks(title="Stock Price Forecaster", theme=gr.themes.Soft()) as app:
gr.Markdown(
"""
# πŸ“ˆ Stock Price Forecaster
This app uses pre-trained ARIMA and LSTM models to predict stock prices.
Enter a stock ticker symbol and the number of days to forecast.
**Models:**
- πŸ”΅ ARIMA: Statistical time series model
- πŸ”΄ LSTM: Deep learning sequential model
- 🟒 Ensemble: Average of both models
"""
)
with gr.Row():
with gr.Column(scale=1):
ticker_input = gr.Textbox(
label="Stock Ticker Symbol",
placeholder="AAPL",
value="AAPL"
)
days_input = gr.Slider(
minimum=1,
maximum=30,
value=7,
step=1,
label="Number of Days to Forecast"
)
predict_button = gr.Button("πŸš€ Generate Forecast", variant="primary")
with gr.Row():
with gr.Column(scale=2):
plot_output = gr.Plot(label="Price Forecast Chart")
with gr.Row():
summary_output = gr.Markdown(label="Forecast Summary")
with gr.Row():
predictions_table = gr.Dataframe(
label="Detailed Predictions",
headers=["Date", "ARIMA_Prediction", "LSTM_Prediction", "Average_Prediction"],
datatype=["str", "number", "number", "number"]
)
# Add examples (use safe function)
gr.Examples(
examples=[
["AAPL", 7],
],
inputs=[ticker_input, days_input],
outputs=[plot_output, summary_output, predictions_table],
fn=predict_stock_price_safe,
cache_examples=False
)
# Connect the safe prediction function
predict_button.click(
fn=predict_stock_price_safe,
inputs=[ticker_input, days_input],
outputs=[plot_output, summary_output, predictions_table]
)
gr.Markdown(
"""
---
### πŸ“Š About the Models
- **ARIMA**: Auto-Regressive Integrated Moving Average model trained on historical price data
- **LSTM**: Long Short-Term Memory neural network with 3 layers and dropout regularization
- **Training Data**: Historical stock prices from Yahoo Finance
### ⚠️ Disclaimer
This is for educational purposes only. Stock predictions are inherently uncertain and should not be used as the sole basis for investment decisions.
"""
)
# Launch the app
if __name__ == "__main__":
app.launch(share=True)