aknapitsch user
initial commit of map anything demo
9507532
"""
Utils for Metrics
Source for Pose AUC Metrics: VGGT
"""
import math
import numpy as np
import torch
import torch.nn.functional as F
def l2_distance_of_unit_quats_to_angular_error(l2_distance):
"""
Converts a given L2 distance (for unit quaternions) to the angular error in degrees.
For two quaternions differing by an angle θ the relationship is:
L2 distance = 2 * sin(θ/4)
Hence, the angular error in degrees is computed as:
4 * asin(l2_distance / 2) * (180/π)
Args:
l2_distance: L2 distance between two unit quaternions (torch.Tensor, shape: (N,))
Returns:
angular_error_degrees: Angular error in degrees (torch.Tensor, shape: (N,))
"""
angular_error_radians = 4 * torch.asin(l2_distance / 2)
angular_error_degrees = angular_error_radians * 180.0 / math.pi
return angular_error_degrees
def l2_distance_of_unit_ray_directions_to_angular_error(l2_distance):
"""
Converts a given L2 distance (for unit ray directions) to the angular error in degrees.
For two unit ray directions differing by an angle θ the relationship is:
L2 distance = 2 * sin(θ/2)
Hence, the angular error in degrees is computed as:
2 * asin(l2_distance / 2) * (180/π)
Args:
l2_distance: L2 distance between two unit ray directions (torch.Tensor, shape: (N,))
Returns:
angular_error_degrees: Angular error in degrees (torch.Tensor, shape: (N,))
"""
angular_error_radians = 2 * torch.asin(l2_distance / 2)
angular_error_degrees = angular_error_radians * 180.0 / math.pi
return angular_error_degrees
def valid_mean(arr, mask, axis=None, keepdims=np._NoValue):
"""Compute mean of elements across given dimensions of an array, considering only valid elements.
Args:
arr: The array to compute the mean.
mask: Array with numerical or boolean values for element weights or validity. For bool, False means invalid.
axis: Dimensions to reduce.
keepdims: If true, retains reduced dimensions with length 1.
Returns:
Mean array/scalar and a valid array/scalar that indicates where the mean could be computed successfully.
"""
mask = mask.astype(arr.dtype) if mask.dtype == bool else mask
num_valid = np.sum(mask, axis=axis, keepdims=keepdims)
masked_arr = arr * mask
masked_arr_sum = np.sum(masked_arr, axis=axis, keepdims=keepdims)
with np.errstate(divide="ignore", invalid="ignore"):
valid_mean = masked_arr_sum / num_valid
is_valid = np.isfinite(valid_mean)
valid_mean = np.nan_to_num(valid_mean, nan=0, posinf=0, neginf=0)
return valid_mean, is_valid
def thresh_inliers(gt, pred, thresh=1.03, mask=None, output_scaling_factor=1.0):
"""Computes the inlier (=error within a threshold) ratio for a predicted and ground truth dense map of size H x W x C.
Args:
gt: Ground truth depth map as numpy array of shape HxW. Negative or 0 values are invalid and ignored.
pred: Predicted depth map as numpy array of shape HxW.
thresh: Threshold for the relative difference between the prediction and ground truth. Default: 1.03
mask: Array of shape HxW with boolean values to indicate validity. For bool, False means invalid. Default: None
output_scaling_factor: Scaling factor that is applied after computing the metrics (e.g. to get [%]). Default: 1
Returns:
Scalar that indicates the inlier ratio. Scalar is np.nan if the result is invalid.
"""
# Compute the norms
gt_norm = np.linalg.norm(gt, axis=-1)
pred_norm = np.linalg.norm(pred, axis=-1)
gt_norm_valid = (gt_norm) > 0
if mask is not None:
combined_mask = mask & gt_norm_valid
else:
combined_mask = gt_norm_valid
with np.errstate(divide="ignore", invalid="ignore"):
rel_1 = np.nan_to_num(
gt_norm / pred_norm, nan=thresh + 1, posinf=thresh + 1, neginf=thresh + 1
) # pred=0 should be an outlier
rel_2 = np.nan_to_num(
pred_norm / gt_norm, nan=0, posinf=0, neginf=0
) # gt=0 is masked out anyways
max_rel = np.maximum(rel_1, rel_2)
inliers = ((0 < max_rel) & (max_rel < thresh)).astype(
np.float32
) # 1 for inliers, 0 for outliers
inlier_ratio, valid = valid_mean(inliers, combined_mask)
inlier_ratio = inlier_ratio * output_scaling_factor
inlier_ratio = inlier_ratio if valid else np.nan
return inlier_ratio
def m_rel_ae(gt, pred, mask=None, output_scaling_factor=1.0):
"""Computes the mean-relative-absolute-error for a predicted and ground truth dense map of size HxWxC.
Args:
gt: Ground truth map as numpy array of shape H x W x C.
pred: Predicted map as numpy array of shape H x W x C.
mask: Array of shape HxW with boolean values to indicate validity. For bool, False means invalid. Default: None
output_scaling_factor: Scaling factor that is applied after computing the metrics (e.g. to get [%]). Default: 1
Returns:
Scalar that indicates the mean-relative-absolute-error. Scalar is np.nan if the result is invalid.
"""
error_norm = np.linalg.norm(pred - gt, axis=-1)
gt_norm = np.linalg.norm(gt, axis=-1)
gt_norm_valid = (gt_norm) > 0
if mask is not None:
combined_mask = mask & gt_norm_valid
else:
combined_mask = gt_norm_valid
with np.errstate(divide="ignore", invalid="ignore"):
rel_ae = np.nan_to_num(error_norm / gt_norm, nan=0, posinf=0, neginf=0)
m_rel_ae, valid = valid_mean(rel_ae, combined_mask)
m_rel_ae = m_rel_ae * output_scaling_factor
m_rel_ae = m_rel_ae if valid else np.nan
return m_rel_ae
def align(model, data):
"""Align two trajectories using the method of Horn (closed-form).
Args:
model -- first trajectory (3xn)
data -- second trajectory (3xn)
Returns:
rot -- rotation matrix (3x3)
trans -- translation vector (3x1)
trans_error -- translational error per point (1xn)
"""
np.set_printoptions(precision=3, suppress=True)
model_zerocentered = model - model.mean(1).reshape((3, -1))
data_zerocentered = data - data.mean(1).reshape((3, -1))
W = np.zeros((3, 3))
for column in range(model.shape[1]):
W += np.outer(model_zerocentered[:, column], data_zerocentered[:, column])
U, d, Vh = np.linalg.linalg.svd(W.transpose())
S = np.matrix(np.identity(3))
if np.linalg.det(U) * np.linalg.det(Vh) < 0:
S[2, 2] = -1
rot = U * S * Vh
trans = data.mean(1).reshape((3, -1)) - rot * model.mean(1).reshape((3, -1))
model_aligned = rot * model + trans
alignment_error = model_aligned - data
trans_error = np.sqrt(np.sum(np.multiply(alignment_error, alignment_error), 0)).A[0]
return rot, trans, trans_error
def evaluate_ate(gt_traj, est_traj):
"""
Input :
gt_traj: list of 4x4 matrices
est_traj: list of 4x4 matrices
len(gt_traj) == len(est_traj)
"""
gt_traj_pts = [gt_traj[idx][:3, 3] for idx in range(len(gt_traj))]
est_traj_pts = [est_traj[idx][:3, 3] for idx in range(len(est_traj))]
gt_traj_pts = torch.stack(gt_traj_pts).detach().cpu().numpy().T
est_traj_pts = torch.stack(est_traj_pts).detach().cpu().numpy().T
_, _, trans_error = align(gt_traj_pts, est_traj_pts)
avg_trans_error = trans_error.mean()
return avg_trans_error
def build_pair_index(N, B=1):
"""
Build indices for all possible pairs of frames.
Args:
N: Number of frames
B: Batch size
Returns:
i1, i2: Indices for all possible pairs
"""
i1_, i2_ = torch.combinations(torch.arange(N), 2, with_replacement=False).unbind(-1)
i1, i2 = [(i[None] + torch.arange(B)[:, None] * N).reshape(-1) for i in [i1_, i2_]]
return i1, i2
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
if torch.is_grad_enabled():
ret[positive_mask] = torch.sqrt(x[positive_mask])
else:
ret = torch.where(positive_mask, torch.sqrt(x), ret)
return ret
def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part last, as tensor of shape (..., 4).
Quaternion Order: XYZW or say ijkr, scalar-last
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
out = quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,)) # pylint: disable=not-callable
# Convert from rijk to ijkr
out = out[..., [1, 2, 3, 0]]
out = standardize_quaternion(out)
return out
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert a unit quaternion to a standard form: one in which the real
part is non negative.
Args:
quaternions: Quaternions with real part last,
as tensor of shape (..., 4).
Returns:
Standardized quaternions as tensor of shape (..., 4).
"""
return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions)
def rotation_angle(rot_gt, rot_pred, batch_size=None, eps=1e-15):
"""
Calculate rotation angle error between ground truth and predicted rotations.
Args:
rot_gt: Ground truth rotation matrices
rot_pred: Predicted rotation matrices
batch_size: Batch size for reshaping the result
eps: Small value to avoid numerical issues
Returns:
Rotation angle error in degrees
"""
q_pred = mat_to_quat(rot_pred)
q_gt = mat_to_quat(rot_gt)
loss_q = (1 - (q_pred * q_gt).sum(dim=1) ** 2).clamp(min=eps)
err_q = torch.arccos(1 - 2 * loss_q)
rel_rangle_deg = err_q * 180 / np.pi
if batch_size is not None:
rel_rangle_deg = rel_rangle_deg.reshape(batch_size, -1)
return rel_rangle_deg
def translation_angle(tvec_gt, tvec_pred, batch_size=None, ambiguity=True):
"""
Calculate translation angle error between ground truth and predicted translations.
Args:
tvec_gt: Ground truth translation vectors
tvec_pred: Predicted translation vectors
batch_size: Batch size for reshaping the result
ambiguity: Whether to handle direction ambiguity
Returns:
Translation angle error in degrees
"""
rel_tangle_deg = compare_translation_by_angle(tvec_gt, tvec_pred)
rel_tangle_deg = rel_tangle_deg * 180.0 / np.pi
if ambiguity:
rel_tangle_deg = torch.min(rel_tangle_deg, (180 - rel_tangle_deg).abs())
if batch_size is not None:
rel_tangle_deg = rel_tangle_deg.reshape(batch_size, -1)
return rel_tangle_deg
def compare_translation_by_angle(t_gt, t, eps=1e-15, default_err=1e6):
"""
Normalize the translation vectors and compute the angle between them.
Args:
t_gt: Ground truth translation vectors
t: Predicted translation vectors
eps: Small value to avoid division by zero
default_err: Default error value for invalid cases
Returns:
Angular error between translation vectors in radians
"""
t_norm = torch.norm(t, dim=1, keepdim=True)
t = t / (t_norm + eps)
t_gt_norm = torch.norm(t_gt, dim=1, keepdim=True)
t_gt = t_gt / (t_gt_norm + eps)
loss_t = torch.clamp_min(1.0 - torch.sum(t * t_gt, dim=1) ** 2, eps)
err_t = torch.acos(torch.sqrt(1 - loss_t))
err_t[torch.isnan(err_t) | torch.isinf(err_t)] = default_err
return err_t
def calculate_auc_np(r_error, t_error, max_threshold=30):
"""
Calculate the Area Under the Curve (AUC) for the given error arrays using NumPy.
Args:
r_error: numpy array representing R error values (Degree)
t_error: numpy array representing T error values (Degree)
max_threshold: Maximum threshold value for binning the histogram
Returns:
AUC value and the normalized histogram
"""
error_matrix = np.concatenate((r_error[:, None], t_error[:, None]), axis=1)
max_errors = np.max(error_matrix, axis=1)
bins = np.arange(max_threshold + 1)
histogram, _ = np.histogram(max_errors, bins=bins)
num_pairs = float(len(max_errors))
normalized_histogram = histogram.astype(float) / num_pairs
return np.mean(np.cumsum(normalized_histogram)), normalized_histogram
def closed_form_inverse_se3(se3, R=None, T=None):
"""
Compute the inverse of each 4x4 (or 3x4) SE3 matrix in a batch.
If `R` and `T` are provided, they must correspond to the rotation and translation
components of `se3`. Otherwise, they will be extracted from `se3`.
Args:
se3: Nx4x4 or Nx3x4 array or tensor of SE3 matrices.
R (optional): Nx3x3 array or tensor of rotation matrices.
T (optional): Nx3x1 array or tensor of translation vectors.
Returns:
Inverted SE3 matrices with the same type and device as `se3`.
Shapes:
se3: (N, 4, 4)
R: (N, 3, 3)
T: (N, 3, 1)
"""
# Check if se3 is a numpy array or a torch tensor
is_numpy = isinstance(se3, np.ndarray)
# Validate shapes
if se3.shape[-2:] != (4, 4) and se3.shape[-2:] != (3, 4):
raise ValueError(f"se3 must be of shape (N,4,4), got {se3.shape}.")
# Extract R and T if not provided
if R is None:
R = se3[:, :3, :3] # (N,3,3)
if T is None:
T = se3[:, :3, 3:] # (N,3,1)
# Transpose R
if is_numpy:
# Compute the transpose of the rotation for NumPy
R_transposed = np.transpose(R, (0, 2, 1))
# -R^T t for NumPy
top_right = -np.matmul(R_transposed, T)
inverted_matrix = np.tile(np.eye(4), (len(R), 1, 1))
else:
R_transposed = R.transpose(1, 2) # (N,3,3)
top_right = -torch.bmm(R_transposed, T) # (N,3,1)
inverted_matrix = torch.eye(4, 4)[None].repeat(len(R), 1, 1)
inverted_matrix = inverted_matrix.to(R.dtype).to(R.device)
inverted_matrix[:, :3, :3] = R_transposed
inverted_matrix[:, :3, 3:] = top_right
return inverted_matrix
def se3_to_relative_pose_error(pred_se3, gt_se3, num_frames):
"""
Compute rotation and translation errors between predicted and ground truth poses.
Args:
pred_se3: Predicted SE(3) transformations
gt_se3: Ground truth SE(3) transformations
num_frames: Number of frames
Returns:
Rotation and translation angle errors in degrees
"""
pair_idx_i1, pair_idx_i2 = build_pair_index(num_frames)
# Compute relative camera poses between pairs
# We use closed_form_inverse to avoid potential numerical loss by torch.inverse()
relative_pose_gt = closed_form_inverse_se3(gt_se3[pair_idx_i1]).bmm(
gt_se3[pair_idx_i2]
)
relative_pose_pred = closed_form_inverse_se3(pred_se3[pair_idx_i1]).bmm(
pred_se3[pair_idx_i2]
)
# Compute the difference in rotation and translation
rel_rangle_deg = rotation_angle(
relative_pose_gt[:, :3, :3], relative_pose_pred[:, :3, :3]
)
rel_tangle_deg = translation_angle(
relative_pose_gt[:, :3, 3], relative_pose_pred[:, :3, 3]
)
return rel_rangle_deg, rel_tangle_deg