Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| from sklearn.datasets import load_iris | |
| from sklearn.ensemble import GradientBoostingClassifier | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import accuracy_score, confusion_matrix | |
| # 1. Load dataset | |
| iris = load_iris() | |
| X, y = iris.data, iris.target | |
| feature_names = iris.feature_names | |
| class_names = iris.target_names | |
| # Split into train/test | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| X, y, test_size=0.3, random_state=42 | |
| ) | |
| # 2. Define a function that takes hyperparameters and returns model accuracy + confusion matrix | |
| def train_and_evaluate(learning_rate, n_estimators, max_depth): | |
| # Train model | |
| clf = GradientBoostingClassifier( | |
| learning_rate=learning_rate, | |
| n_estimators=n_estimators, | |
| max_depth=int(max_depth), | |
| random_state=42 | |
| ) | |
| clf.fit(X_train, y_train) | |
| # Predict on test data | |
| y_pred = clf.predict(X_test) | |
| # Calculate metrics | |
| accuracy = accuracy_score(y_test, y_pred) | |
| cm = confusion_matrix(y_test, y_pred) | |
| # Convert confusion matrix to a more display-friendly format | |
| cm_display = "" | |
| for row in cm: | |
| cm_display += str(row) + "\n" | |
| return f"Accuracy: {accuracy:.3f}\nConfusion Matrix:\n{cm_display}" | |
| # 3. Define a prediction function for user-supplied feature values | |
| def predict_species(sepal_length, sepal_width, petal_length, petal_width, | |
| learning_rate, n_estimators, max_depth): | |
| # Train a new model using same hyperparams | |
| clf = GradientBoostingClassifier( | |
| learning_rate=learning_rate, | |
| n_estimators=n_estimators, | |
| max_depth=int(max_depth), | |
| random_state=42 | |
| ) | |
| clf.fit(X_train, y_train) | |
| # Predict species | |
| user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]]) | |
| prediction = clf.predict(user_sample)[0] | |
| return f"Predicted species: {class_names[prediction]}" | |
| # 4. Build the Gradio interface | |
| # Inputs to tune hyperparameters | |
| hyperparam_inputs = [ | |
| gr.inputs.Slider(0.01, 1.0, step=0.01, default=0.1, label="learning_rate"), | |
| gr.inputs.Slider(50, 300, step=50, default=100, label="n_estimators"), | |
| gr.inputs.Slider(1, 10, step=1, default=3, label="max_depth") | |
| ] | |
| # Button or automatic โliveโ updates | |
| training_interface = gr.Interface( | |
| fn=train_and_evaluate, | |
| inputs=hyperparam_inputs, | |
| outputs="text", | |
| title="Gradient Boosting Training and Evaluation", | |
| description="Train a GradientBoostingClassifier on the Iris dataset with different hyperparameters." | |
| ) | |
| # Inputs for real-time prediction | |
| feature_inputs = [ | |
| gr.inputs.Number(default=5.1, label=feature_names[0]), | |
| gr.inputs.Number(default=3.5, label=feature_names[1]), | |
| gr.inputs.Number(default=1.4, label=feature_names[2]), | |
| gr.inputs.Number(default=0.2, label=feature_names[3]) | |
| ] + hyperparam_inputs | |
| prediction_interface = gr.Interface( | |
| fn=predict_species, | |
| inputs=feature_inputs, | |
| outputs="text", | |
| title="Iris Species Prediction", | |
| description="Use a GradientBoostingClassifier to predict Iris species from user input." | |
| ) | |
| demo = gr.TabbedInterface([training_interface, prediction_interface], | |
| ["Train & Evaluate", "Predict"]) | |
| # Launch the Gradio app | |
| demo.launch() | |