Spaces:
Runtime error
Runtime error
add dataset selector
Browse files
app.py
CHANGED
|
@@ -2,140 +2,200 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
from sklearn.ensemble import GradientBoostingClassifier
|
| 7 |
from sklearn.model_selection import train_test_split
|
| 8 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
clf = GradientBoostingClassifier(
|
| 27 |
learning_rate=learning_rate,
|
| 28 |
-
n_estimators=n_estimators,
|
| 29 |
max_depth=int(max_depth),
|
| 30 |
random_state=42
|
| 31 |
)
|
| 32 |
clf.fit(X_train, y_train)
|
| 33 |
-
|
| 34 |
-
#
|
| 35 |
y_pred = clf.predict(X_test)
|
| 36 |
-
|
| 37 |
-
# Calculate accuracy
|
| 38 |
accuracy = accuracy_score(y_test, y_pred)
|
| 39 |
-
|
| 40 |
-
# Calculate confusion matrix
|
| 41 |
cm = confusion_matrix(y_test, y_pred)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
fig, axs = plt.subplots(
|
| 45 |
|
| 46 |
-
#
|
| 47 |
importances = clf.feature_importances_
|
| 48 |
-
axs[0].barh(range(len(
|
| 49 |
-
axs[0].set_yticks(range(len(
|
| 50 |
-
axs[0].set_yticklabels(
|
| 51 |
axs[0].set_xlabel("Importance")
|
| 52 |
axs[0].set_title("Feature Importances")
|
| 53 |
|
| 54 |
-
#
|
| 55 |
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
|
| 56 |
axs[1].set_title("Confusion Matrix")
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
axs[1].
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
axs[1].set_yticklabels(class_names)
|
| 64 |
-
axs[1].set_ylabel('True Label')
|
| 65 |
-
axs[1].set_xlabel('Predicted Label')
|
| 66 |
-
|
| 67 |
-
# Write the counts in each cell
|
| 68 |
thresh = cm.max() / 2.0
|
| 69 |
for i in range(cm.shape[0]):
|
| 70 |
for j in range(cm.shape[1]):
|
| 71 |
color = "white" if cm[i, j] > thresh else "black"
|
| 72 |
-
axs[1].text(j, i, format(cm[i, j], "d"),
|
| 73 |
-
ha="center", va="center", color=color)
|
| 74 |
|
| 75 |
plt.tight_layout()
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
with gr.Blocks() as demo:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
train_button = gr.Button("Train & Evaluate")
|
| 103 |
-
output_text = gr.Textbox(label="Results")
|
| 104 |
-
output_plot = gr.Plot(label="Feature Importances & Confusion Matrix")
|
| 105 |
-
|
| 106 |
-
train_button.click(
|
| 107 |
-
fn=train_and_evaluate,
|
| 108 |
-
inputs=[learning_rate_slider, n_estimators_slider, max_depth_slider],
|
| 109 |
-
outputs=[output_text, output_plot],
|
| 110 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
predict_button.click(
|
| 128 |
-
fn=predict_species,
|
| 129 |
-
inputs=[
|
| 130 |
-
sepal_length_input,
|
| 131 |
-
sepal_width_input,
|
| 132 |
-
petal_length_input,
|
| 133 |
-
petal_width_input,
|
| 134 |
-
learning_rate_slider2,
|
| 135 |
-
n_estimators_slider2,
|
| 136 |
-
max_depth_slider2,
|
| 137 |
-
],
|
| 138 |
-
outputs=prediction_text
|
| 139 |
-
)
|
| 140 |
|
| 141 |
demo.launch()
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
from sklearn.ensemble import GradientBoostingClassifier
|
| 9 |
from sklearn.model_selection import train_test_split
|
| 10 |
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 11 |
|
| 12 |
+
matplotlib.use('Agg') # Avoid issues in some remote environments
|
| 13 |
+
|
| 14 |
+
# Pre-populate a short list of "recommended" Hugging Face datasets
|
| 15 |
+
# (Replace "datasorg/iris" etc. with real dataset IDs you want to showcase)
|
| 16 |
+
SUGGESTED_DATASETS = [
|
| 17 |
+
"datasorg/iris", # hypothetical ID
|
| 18 |
+
"uciml/wine_quality-red", # example from the HF Hub
|
| 19 |
+
"SKIP/ENTER_CUSTOM" # We'll treat this as a "separator" or "prompt" for custom
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
def load_and_prepare_dataset(dataset_id, label_column, feature_columns):
|
| 23 |
+
"""
|
| 24 |
+
Loads a dataset from the Hugging Face Hub,
|
| 25 |
+
converts it to a pandas DataFrame,
|
| 26 |
+
returns X, y as NumPy arrays for modeling.
|
| 27 |
+
"""
|
| 28 |
+
# Load only the "train" split for simplicity
|
| 29 |
+
# Many datasets have "train", "test", "validation" splits
|
| 30 |
+
ds = load_dataset(dataset_id, split="train")
|
| 31 |
+
|
| 32 |
+
# Convert to a DataFrame for easy manipulation
|
| 33 |
+
df = pd.DataFrame(ds)
|
| 34 |
+
|
| 35 |
+
# Subset to selected columns
|
| 36 |
+
if label_column not in df.columns:
|
| 37 |
+
raise ValueError(f"Label column '{label_column}' not in dataset columns: {df.columns.to_list()}")
|
| 38 |
+
|
| 39 |
+
for col in feature_columns:
|
| 40 |
+
if col not in df.columns:
|
| 41 |
+
raise ValueError(f"Feature column '{col}' not in dataset columns: {df.columns.to_list()}")
|
| 42 |
+
|
| 43 |
+
# Split into X and y
|
| 44 |
+
X = df[feature_columns].values
|
| 45 |
+
y = df[label_column].values
|
| 46 |
+
|
| 47 |
+
return X, y, df.columns.tolist()
|
| 48 |
+
|
| 49 |
+
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
|
| 50 |
+
learning_rate, n_estimators, max_depth, test_size):
|
| 51 |
+
"""
|
| 52 |
+
1. Determine final dataset ID (either from dropdown or custom text).
|
| 53 |
+
2. Load dataset -> DataFrame -> X, y.
|
| 54 |
+
3. Train a GradientBoostingClassifier.
|
| 55 |
+
4. Generate plots & metrics (accuracy and confusion matrix).
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
# Decide which dataset ID to use
|
| 59 |
+
if dataset_id != "SKIP/ENTER_CUSTOM":
|
| 60 |
+
final_id = dataset_id
|
| 61 |
+
else:
|
| 62 |
+
# Use the user-supplied "custom_dataset_id"
|
| 63 |
+
final_id = custom_dataset_id.strip()
|
| 64 |
+
|
| 65 |
+
# Prepare data
|
| 66 |
+
X, y, columns_available = load_and_prepare_dataset(
|
| 67 |
+
final_id,
|
| 68 |
+
label_column,
|
| 69 |
+
feature_columns
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Train/test split
|
| 73 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 74 |
+
X, y, test_size=test_size, random_state=42
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Train model
|
| 78 |
clf = GradientBoostingClassifier(
|
| 79 |
learning_rate=learning_rate,
|
| 80 |
+
n_estimators=int(n_estimators),
|
| 81 |
max_depth=int(max_depth),
|
| 82 |
random_state=42
|
| 83 |
)
|
| 84 |
clf.fit(X_train, y_train)
|
| 85 |
+
|
| 86 |
+
# Evaluate
|
| 87 |
y_pred = clf.predict(X_test)
|
|
|
|
|
|
|
| 88 |
accuracy = accuracy_score(y_test, y_pred)
|
|
|
|
|
|
|
| 89 |
cm = confusion_matrix(y_test, y_pred)
|
| 90 |
|
| 91 |
+
# Plot figure
|
| 92 |
+
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
|
| 93 |
|
| 94 |
+
# Subplot 1: Feature Importances
|
| 95 |
importances = clf.feature_importances_
|
| 96 |
+
axs[0].barh(range(len(feature_columns)), importances, color='skyblue')
|
| 97 |
+
axs[0].set_yticks(range(len(feature_columns)))
|
| 98 |
+
axs[0].set_yticklabels(feature_columns)
|
| 99 |
axs[0].set_xlabel("Importance")
|
| 100 |
axs[0].set_title("Feature Importances")
|
| 101 |
|
| 102 |
+
# Subplot 2: Confusion Matrix Heatmap
|
| 103 |
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
|
| 104 |
axs[1].set_title("Confusion Matrix")
|
| 105 |
+
plt.colorbar(im, ax=axs[1])
|
| 106 |
+
# Labeling
|
| 107 |
+
axs[1].set_xlabel("Predicted")
|
| 108 |
+
axs[1].set_ylabel("True")
|
| 109 |
+
|
| 110 |
+
# If you want to annotate each cell:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
thresh = cm.max() / 2.0
|
| 112 |
for i in range(cm.shape[0]):
|
| 113 |
for j in range(cm.shape[1]):
|
| 114 |
color = "white" if cm[i, j] > thresh else "black"
|
| 115 |
+
axs[1].text(j, i, format(cm[i, j], "d"), ha="center", va="center", color=color)
|
|
|
|
| 116 |
|
| 117 |
plt.tight_layout()
|
| 118 |
|
| 119 |
+
output_text = f"**Dataset used:** {final_id}\n\n"
|
| 120 |
+
output_text += f"**Accuracy:** {accuracy:.3f}\n\n"
|
| 121 |
+
output_text += "**Confusion Matrix** (raw counts above)."
|
| 122 |
+
|
| 123 |
+
return output_text, fig, columns_available
|
| 124 |
+
|
| 125 |
+
def update_columns(dataset_id, custom_dataset_id):
|
| 126 |
+
"""
|
| 127 |
+
Callback to dynamically fetch the columns from the dataset
|
| 128 |
+
so the user can pick which columns to use as features/labels.
|
| 129 |
+
"""
|
| 130 |
+
if dataset_id != "SKIP/ENTER_CUSTOM":
|
| 131 |
+
final_id = dataset_id
|
| 132 |
+
else:
|
| 133 |
+
final_id = custom_dataset_id.strip()
|
| 134 |
+
|
| 135 |
+
# Try to load the dataset and return columns
|
| 136 |
+
try:
|
| 137 |
+
ds = load_dataset(final_id, split="train")
|
| 138 |
+
df = pd.DataFrame(ds)
|
| 139 |
+
cols = df.columns.tolist()
|
| 140 |
+
# Return as list of selectable options
|
| 141 |
+
return gr.update(choices=cols), gr.update(choices=cols), f"Columns found: {cols}"
|
| 142 |
+
except Exception as e:
|
| 143 |
+
return gr.update(choices=[]), gr.update(choices=[]), f"Error loading {final_id}: {e}"
|
| 144 |
|
| 145 |
with gr.Blocks() as demo:
|
| 146 |
+
gr.Markdown("## Train GradientBoostingClassifier on a Hugging Face dataset of your choice")
|
| 147 |
+
|
| 148 |
+
with gr.Row():
|
| 149 |
+
dataset_dropdown = gr.Dropdown(
|
| 150 |
+
choices=SUGGESTED_DATASETS,
|
| 151 |
+
value=SUGGESTED_DATASETS[0],
|
| 152 |
+
label="Choose a dataset"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
)
|
| 154 |
+
custom_dataset_id = gr.Textbox(label="Or enter HF dataset (user/dataset)", value="",
|
| 155 |
+
placeholder="e.g. 'username/my_custom_dataset'")
|
| 156 |
+
|
| 157 |
+
# Button to load columns from the chosen dataset
|
| 158 |
+
load_cols_btn = gr.Button("Load columns")
|
| 159 |
+
load_cols_info = gr.Markdown()
|
| 160 |
+
|
| 161 |
+
with gr.Row():
|
| 162 |
+
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
|
| 163 |
+
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
|
| 164 |
+
|
| 165 |
+
# Once columns are chosen, we can set hyperparams
|
| 166 |
+
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
|
| 167 |
+
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
|
| 168 |
+
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
|
| 169 |
+
test_size_slider = gr.Slider(0.1, 0.9, value=0.3, step=0.1, label="test_size (fraction)")
|
| 170 |
+
|
| 171 |
+
train_button = gr.Button("Train & Evaluate")
|
| 172 |
+
|
| 173 |
+
output_text = gr.Markdown()
|
| 174 |
+
output_plot = gr.Plot()
|
| 175 |
+
# We might also want to show the columns for reference post-training
|
| 176 |
+
columns_return = gr.Markdown()
|
| 177 |
+
|
| 178 |
+
# When "Load columns" is clicked, we call update_columns to fetch the dataset columns
|
| 179 |
+
load_cols_btn.click(
|
| 180 |
+
fn=update_columns,
|
| 181 |
+
inputs=[dataset_dropdown, custom_dataset_id],
|
| 182 |
+
outputs=[label_col, feature_cols, load_cols_info]
|
| 183 |
+
)
|
| 184 |
|
| 185 |
+
# When "Train & Evaluate" is clicked, we train the model
|
| 186 |
+
train_button.click(
|
| 187 |
+
fn=train_model,
|
| 188 |
+
inputs=[
|
| 189 |
+
dataset_dropdown,
|
| 190 |
+
custom_dataset_id,
|
| 191 |
+
label_col,
|
| 192 |
+
feature_cols,
|
| 193 |
+
learning_rate_slider,
|
| 194 |
+
n_estimators_slider,
|
| 195 |
+
max_depth_slider,
|
| 196 |
+
test_size_slider
|
| 197 |
+
],
|
| 198 |
+
outputs=[output_text, output_plot, columns_return]
|
| 199 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
demo.launch()
|