Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	Commit 
							
							·
						
						5181cd5
	
1
								Parent(s):
							
							b028a73
								
Update to diffusers backend
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- app.py +39 -286
 - configs/stable-diffusion/v2-inference-v.yaml +0 -68
 - configs/stable-diffusion/v2-inference.yaml +0 -67
 - configs/stable-diffusion/v2-inpainting-inference.yaml +0 -158
 - configs/stable-diffusion/v2-midas-inference.yaml +0 -74
 - configs/stable-diffusion/x4-upscaling.yaml +0 -76
 - environment.yaml +0 -29
 - ldm/data/__init__.py +0 -0
 - ldm/data/util.py +0 -24
 - ldm/models/autoencoder.py +0 -219
 - ldm/models/diffusion/__init__.py +0 -0
 - ldm/models/diffusion/ddim.py +0 -336
 - ldm/models/diffusion/ddpm.py +0 -1796
 - ldm/models/diffusion/dpm_solver/__init__.py +0 -1
 - ldm/models/diffusion/dpm_solver/dpm_solver.py +0 -1154
 - ldm/models/diffusion/dpm_solver/sampler.py +0 -87
 - ldm/models/diffusion/plms.py +0 -244
 - ldm/models/diffusion/sampling_util.py +0 -22
 - ldm/modules/attention.py +0 -331
 - ldm/modules/diffusionmodules/__init__.py +0 -0
 - ldm/modules/diffusionmodules/model.py +0 -852
 - ldm/modules/diffusionmodules/openaimodel.py +0 -786
 - ldm/modules/diffusionmodules/upscaling.py +0 -81
 - ldm/modules/diffusionmodules/util.py +0 -270
 - ldm/modules/distributions/__init__.py +0 -0
 - ldm/modules/distributions/distributions.py +0 -92
 - ldm/modules/ema.py +0 -80
 - ldm/modules/encoders/__init__.py +0 -0
 - ldm/modules/encoders/modules.py +0 -213
 - ldm/modules/image_degradation/__init__.py +0 -2
 - ldm/modules/image_degradation/bsrgan.py +0 -730
 - ldm/modules/image_degradation/bsrgan_light.py +0 -651
 - ldm/modules/image_degradation/utils/test.png +0 -0
 - ldm/modules/image_degradation/utils_image.py +0 -916
 - ldm/modules/midas/__init__.py +0 -0
 - ldm/modules/midas/api.py +0 -170
 - ldm/modules/midas/midas/__init__.py +0 -0
 - ldm/modules/midas/midas/base_model.py +0 -16
 - ldm/modules/midas/midas/blocks.py +0 -342
 - ldm/modules/midas/midas/dpt_depth.py +0 -109
 - ldm/modules/midas/midas/midas_net.py +0 -76
 - ldm/modules/midas/midas/midas_net_custom.py +0 -128
 - ldm/modules/midas/midas/transforms.py +0 -234
 - ldm/modules/midas/midas/vit.py +0 -491
 - ldm/modules/midas/utils.py +0 -189
 - ldm/util.py +0 -197
 - requirements.txt +4 -13
 - scripts/img2img.py +0 -279
 - scripts/streamlit/depth2img.py +0 -158
 - scripts/streamlit/inpainting.py +0 -194
 
    	
        app.py
    CHANGED
    
    | 
         @@ -1,63 +1,21 @@ 
     | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 2 | 
         
            -
            import argparse, os
         
     | 
| 3 | 
         
             
            import cv2
         
     | 
| 4 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 5 | 
         
             
            import numpy as np
         
     | 
| 6 | 
         
            -
            from omegaconf import OmegaConf
         
     | 
| 7 | 
         
             
            from PIL import Image
         
     | 
| 8 | 
         
            -
            from tqdm import tqdm, trange
         
     | 
| 9 | 
         
            -
            from itertools import islice
         
     | 
| 10 | 
         
            -
            from einops import rearrange
         
     | 
| 11 | 
         
            -
            from torchvision.utils import make_grid
         
     | 
| 12 | 
         
            -
            from pytorch_lightning import seed_everything
         
     | 
| 13 | 
         
            -
            from torch import autocast
         
     | 
| 14 | 
         
            -
            from contextlib import nullcontext
         
     | 
| 15 | 
         
            -
            from imwatermark import WatermarkEncoder
         
     | 
| 16 | 
         
             
            import re
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            from ldm.util import instantiate_from_config
         
     | 
| 19 | 
         
            -
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 20 | 
         
            -
            from ldm.models.diffusion.plms import PLMSSampler
         
     | 
| 21 | 
         
            -
            from ldm.models.diffusion.dpm_solver import DPMSolverSampler
         
     | 
| 22 | 
         
            -
            from huggingface_hub import hf_hub_download
         
     | 
| 23 | 
         
             
            from datasets import load_dataset
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            torch.set_grad_enabled(False)
         
     | 
| 26 | 
         | 
| 27 | 
         
             
            from share_btn import community_icon_html, loading_icon_html, share_js
         
     | 
| 28 | 
         | 
| 29 | 
         
             
            REPO_ID = "stabilityai/stable-diffusion-2"
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            CONFIG_PATH = "./configs/stable-diffusion/v2-inference-v.yaml"
         
     | 
| 32 | 
         
            -
            device = "cuda"
         
     | 
| 33 | 
         
            -
            stable_diffusion_2_path = hf_hub_download(repo_id=REPO_ID, filename=CKPT_NAME)
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            torch.set_grad_enabled(False)
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            def chunk(it, size):
         
     | 
| 38 | 
         
            -
                it = iter(it)
         
     | 
| 39 | 
         
            -
                return iter(lambda: tuple(islice(it, size)), ())
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            def load_model_from_config(config, ckpt, verbose=False):
         
     | 
| 43 | 
         
            -
                print(f"Loading model from {ckpt}")
         
     | 
| 44 | 
         
            -
                pl_sd = torch.load(ckpt, map_location="cpu")
         
     | 
| 45 | 
         
            -
                if "global_step" in pl_sd:
         
     | 
| 46 | 
         
            -
                    print(f"Global Step: {pl_sd['global_step']}")
         
     | 
| 47 | 
         
            -
                sd = pl_sd["state_dict"]
         
     | 
| 48 | 
         
            -
                model = instantiate_from_config(config.model)
         
     | 
| 49 | 
         
            -
                m, u = model.load_state_dict(sd, strict=False)
         
     | 
| 50 | 
         
            -
                if len(m) > 0 and verbose:
         
     | 
| 51 | 
         
            -
                    print("missing keys:")
         
     | 
| 52 | 
         
            -
                    print(m)
         
     | 
| 53 | 
         
            -
                if len(u) > 0 and verbose:
         
     | 
| 54 | 
         
            -
                    print("unexpected keys:")
         
     | 
| 55 | 
         
            -
                    print(u)
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
                model.cuda()
         
     | 
| 58 | 
         
            -
                model.eval()
         
     | 
| 59 | 
         
            -
                return model
         
     | 
| 60 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 61 | 
         
             
            def put_watermark(img, wm_encoder=None):
         
     | 
| 62 | 
         
             
                if wm_encoder is not None:
         
     | 
| 63 | 
         
             
                    img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
         
     | 
| 
         @@ -65,234 +23,28 @@ def put_watermark(img, wm_encoder=None): 
     | 
|
| 65 | 
         
             
                    img = Image.fromarray(img[:, :, ::-1])
         
     | 
| 66 | 
         
             
                return img
         
     | 
| 67 | 
         | 
| 68 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 69 | 
         
             
            word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
         
     | 
| 70 | 
         
             
            word_list = word_list_dataset["train"]['text']
         
     | 
| 71 | 
         | 
| 72 | 
         
            -
            config = OmegaConf.load(CONFIG_PATH)
         
     | 
| 73 | 
         
            -
            model = load_model_from_config(config, stable_diffusion_2_path)
         
     | 
| 74 | 
         
            -
            device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 75 | 
         
            -
            model = model.to(device)
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
            def parse_args():
         
     | 
| 78 | 
         
            -
                parser = argparse.ArgumentParser()
         
     | 
| 79 | 
         
            -
                parser.add_argument(
         
     | 
| 80 | 
         
            -
                    "--prompt",
         
     | 
| 81 | 
         
            -
                    type=str,
         
     | 
| 82 | 
         
            -
                    nargs="?",
         
     | 
| 83 | 
         
            -
                    default="a professional photograph of an astronaut riding a triceratops",
         
     | 
| 84 | 
         
            -
                    help="the prompt to render"
         
     | 
| 85 | 
         
            -
                )
         
     | 
| 86 | 
         
            -
                parser.add_argument(
         
     | 
| 87 | 
         
            -
                    "--outdir",
         
     | 
| 88 | 
         
            -
                    type=str,
         
     | 
| 89 | 
         
            -
                    nargs="?",
         
     | 
| 90 | 
         
            -
                    help="dir to write results to",
         
     | 
| 91 | 
         
            -
                    default="outputs/txt2img-samples"
         
     | 
| 92 | 
         
            -
                )
         
     | 
| 93 | 
         
            -
                parser.add_argument(
         
     | 
| 94 | 
         
            -
                    "--steps",
         
     | 
| 95 | 
         
            -
                    type=int,
         
     | 
| 96 | 
         
            -
                    default=50,
         
     | 
| 97 | 
         
            -
                    help="number of ddim sampling steps",
         
     | 
| 98 | 
         
            -
                )
         
     | 
| 99 | 
         
            -
                parser.add_argument(
         
     | 
| 100 | 
         
            -
                    "--plms",
         
     | 
| 101 | 
         
            -
                    action='store_true',
         
     | 
| 102 | 
         
            -
                    help="use plms sampling",
         
     | 
| 103 | 
         
            -
                )
         
     | 
| 104 | 
         
            -
                parser.add_argument(
         
     | 
| 105 | 
         
            -
                    "--dpm",
         
     | 
| 106 | 
         
            -
                    action='store_true',
         
     | 
| 107 | 
         
            -
                    help="use DPM (2) sampler",
         
     | 
| 108 | 
         
            -
                )
         
     | 
| 109 | 
         
            -
                parser.add_argument(
         
     | 
| 110 | 
         
            -
                    "--fixed_code",
         
     | 
| 111 | 
         
            -
                    action='store_true',
         
     | 
| 112 | 
         
            -
                    help="if enabled, uses the same starting code across all samples ",
         
     | 
| 113 | 
         
            -
                )
         
     | 
| 114 | 
         
            -
                parser.add_argument(
         
     | 
| 115 | 
         
            -
                    "--ddim_eta",
         
     | 
| 116 | 
         
            -
                    type=float,
         
     | 
| 117 | 
         
            -
                    default=0.0,
         
     | 
| 118 | 
         
            -
                    help="ddim eta (eta=0.0 corresponds to deterministic sampling",
         
     | 
| 119 | 
         
            -
                )
         
     | 
| 120 | 
         
            -
                parser.add_argument(
         
     | 
| 121 | 
         
            -
                    "--n_iter",
         
     | 
| 122 | 
         
            -
                    type=int,
         
     | 
| 123 | 
         
            -
                    default=3,
         
     | 
| 124 | 
         
            -
                    help="sample this often",
         
     | 
| 125 | 
         
            -
                )
         
     | 
| 126 | 
         
            -
                parser.add_argument(
         
     | 
| 127 | 
         
            -
                    "--H",
         
     | 
| 128 | 
         
            -
                    type=int,
         
     | 
| 129 | 
         
            -
                    default=512,
         
     | 
| 130 | 
         
            -
                    help="image height, in pixel space",
         
     | 
| 131 | 
         
            -
                )
         
     | 
| 132 | 
         
            -
                parser.add_argument(
         
     | 
| 133 | 
         
            -
                    "--W",
         
     | 
| 134 | 
         
            -
                    type=int,
         
     | 
| 135 | 
         
            -
                    default=512,
         
     | 
| 136 | 
         
            -
                    help="image width, in pixel space",
         
     | 
| 137 | 
         
            -
                )
         
     | 
| 138 | 
         
            -
                parser.add_argument(
         
     | 
| 139 | 
         
            -
                    "--C",
         
     | 
| 140 | 
         
            -
                    type=int,
         
     | 
| 141 | 
         
            -
                    default=4,
         
     | 
| 142 | 
         
            -
                    help="latent channels",
         
     | 
| 143 | 
         
            -
                )
         
     | 
| 144 | 
         
            -
                parser.add_argument(
         
     | 
| 145 | 
         
            -
                    "--f",
         
     | 
| 146 | 
         
            -
                    type=int,
         
     | 
| 147 | 
         
            -
                    default=8,
         
     | 
| 148 | 
         
            -
                    help="downsampling factor, most often 8 or 16",
         
     | 
| 149 | 
         
            -
                )
         
     | 
| 150 | 
         
            -
                parser.add_argument(
         
     | 
| 151 | 
         
            -
                    "--n_samples",
         
     | 
| 152 | 
         
            -
                    type=int,
         
     | 
| 153 | 
         
            -
                    default=3,
         
     | 
| 154 | 
         
            -
                    help="how many samples to produce for each given prompt. A.k.a batch size",
         
     | 
| 155 | 
         
            -
                )
         
     | 
| 156 | 
         
            -
                parser.add_argument(
         
     | 
| 157 | 
         
            -
                    "--n_rows",
         
     | 
| 158 | 
         
            -
                    type=int,
         
     | 
| 159 | 
         
            -
                    default=0,
         
     | 
| 160 | 
         
            -
                    help="rows in the grid (default: n_samples)",
         
     | 
| 161 | 
         
            -
                )
         
     | 
| 162 | 
         
            -
                parser.add_argument(
         
     | 
| 163 | 
         
            -
                    "--scale",
         
     | 
| 164 | 
         
            -
                    type=float,
         
     | 
| 165 | 
         
            -
                    default=9.0,
         
     | 
| 166 | 
         
            -
                    help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
         
     | 
| 167 | 
         
            -
                )
         
     | 
| 168 | 
         
            -
                parser.add_argument(
         
     | 
| 169 | 
         
            -
                    "--from-file",
         
     | 
| 170 | 
         
            -
                    type=str,
         
     | 
| 171 | 
         
            -
                    help="if specified, load prompts from this file, separated by newlines",
         
     | 
| 172 | 
         
            -
                )
         
     | 
| 173 | 
         
            -
                parser.add_argument(
         
     | 
| 174 | 
         
            -
                    "--config",
         
     | 
| 175 | 
         
            -
                    type=str,
         
     | 
| 176 | 
         
            -
                    default="configs/stable-diffusion/v2-inference.yaml",
         
     | 
| 177 | 
         
            -
                    help="path to config which constructs model",
         
     | 
| 178 | 
         
            -
                )
         
     | 
| 179 | 
         
            -
                parser.add_argument(
         
     | 
| 180 | 
         
            -
                    "--ckpt",
         
     | 
| 181 | 
         
            -
                    type=str,
         
     | 
| 182 | 
         
            -
                    help="path to checkpoint of model",
         
     | 
| 183 | 
         
            -
                )
         
     | 
| 184 | 
         
            -
                parser.add_argument(
         
     | 
| 185 | 
         
            -
                    "--seed",
         
     | 
| 186 | 
         
            -
                    type=int,
         
     | 
| 187 | 
         
            -
                    default=42,
         
     | 
| 188 | 
         
            -
                    help="the seed (for reproducible sampling)",
         
     | 
| 189 | 
         
            -
                )
         
     | 
| 190 | 
         
            -
                parser.add_argument(
         
     | 
| 191 | 
         
            -
                    "--precision",
         
     | 
| 192 | 
         
            -
                    type=str,
         
     | 
| 193 | 
         
            -
                    help="evaluate at this precision",
         
     | 
| 194 | 
         
            -
                    choices=["full", "autocast"],
         
     | 
| 195 | 
         
            -
                    default="autocast"
         
     | 
| 196 | 
         
            -
                )
         
     | 
| 197 | 
         
            -
                parser.add_argument(
         
     | 
| 198 | 
         
            -
                    "--repeat",
         
     | 
| 199 | 
         
            -
                    type=int,
         
     | 
| 200 | 
         
            -
                    default=1,
         
     | 
| 201 | 
         
            -
                    help="repeat each prompt in file this often",
         
     | 
| 202 | 
         
            -
                )
         
     | 
| 203 | 
         
            -
                opt = parser.parse_args()
         
     | 
| 204 | 
         
            -
                return opt
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
             
            def infer(prompt, samples, steps, scale, seed):
         
     | 
| 207 | 
         
            -
                 
     | 
| 208 | 
         
            -
                opt.seed = seed
         
     | 
| 209 | 
         
            -
                seed_everything(seed)
         
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
             
                for filter in word_list:
         
     | 
| 212 | 
         
             
                    if re.search(rf"\b{filter}\b", prompt):
         
     | 
| 213 | 
         
             
                        raise gr.Error("Unsafe content found. Please try again with different prompts.")
         
     | 
| 214 | 
         
            -
                
         
     | 
| 215 | 
         
            -
                 
     | 
| 216 | 
         
            -
                 
     | 
| 217 | 
         
            -
                 
     | 
| 218 | 
         
            -
             
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
                 
     | 
| 221 | 
         
            -
                os.makedirs(opt.outdir, exist_ok=True)
         
     | 
| 222 | 
         
            -
                outpath = opt.outdir
         
     | 
| 223 | 
         
            -
             
     | 
| 224 | 
         
            -
                print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
         
     | 
| 225 | 
         
            -
                wm = "SDV2"
         
     | 
| 226 | 
         
            -
                wm_encoder = WatermarkEncoder()
         
     | 
| 227 | 
         
            -
                wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
         
     | 
| 228 | 
         
            -
             
     | 
| 229 | 
         
            -
                batch_size = opt.n_samples
         
     | 
| 230 | 
         
            -
                n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
         
     | 
| 231 | 
         
            -
                if not opt.from_file:
         
     | 
| 232 | 
         
            -
                    prompt = opt.prompt
         
     | 
| 233 | 
         
            -
                    assert prompt is not None
         
     | 
| 234 | 
         
            -
                    data = [batch_size * [prompt]]
         
     | 
| 235 | 
         
            -
                else:
         
     | 
| 236 | 
         
            -
                    print(f"reading prompts from {opt.from_file}")
         
     | 
| 237 | 
         
            -
                    with open(opt.from_file, "r") as f:
         
     | 
| 238 | 
         
            -
                        data = f.read().splitlines()
         
     | 
| 239 | 
         
            -
                        data = [p for p in data for i in range(opt.repeat)]
         
     | 
| 240 | 
         
            -
                        data = list(chunk(data, batch_size))
         
     | 
| 241 | 
         
            -
                prompt = prompt
         
     | 
| 242 | 
         
            -
                assert prompt is not None
         
     | 
| 243 | 
         
            -
                data = [batch_size * [prompt]]
         
     | 
| 244 | 
         
            -
                
         
     | 
| 245 | 
         
            -
                sample_path = os.path.join(outpath, "samples")
         
     | 
| 246 | 
         
            -
                os.makedirs(sample_path, exist_ok=True)
         
     | 
| 247 | 
         
            -
                sample_count = 0
         
     | 
| 248 | 
         
            -
                base_count = len(os.listdir(sample_path))
         
     | 
| 249 | 
         
            -
                grid_count = len(os.listdir(outpath)) - 1
         
     | 
| 250 | 
         
            -
             
     | 
| 251 | 
         
            -
                opt.W = 768
         
     | 
| 252 | 
         
            -
                opt.H = 768
         
     | 
| 253 | 
         
            -
             
     | 
| 254 | 
         
            -
                start_code = None
         
     | 
| 255 | 
         
            -
                if opt.fixed_code:
         
     | 
| 256 | 
         
            -
                    start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
                precision_scope = autocast if opt.precision == "autocast" else nullcontext
         
     | 
| 259 | 
         
            -
                image_samples = []
         
     | 
| 260 | 
         
            -
                with torch.no_grad(), \
         
     | 
| 261 | 
         
            -
                    precision_scope("cuda"), \
         
     | 
| 262 | 
         
            -
                    model.ema_scope():
         
     | 
| 263 | 
         
            -
                        all_samples = list()
         
     | 
| 264 | 
         
            -
                        for n in trange(opt.n_iter, desc="Sampling"):
         
     | 
| 265 | 
         
            -
                            for prompts in tqdm(data, desc="data"):
         
     | 
| 266 | 
         
            -
                                uc = None
         
     | 
| 267 | 
         
            -
                                if opt.scale != 1.0:
         
     | 
| 268 | 
         
            -
                                    uc = model.get_learned_conditioning(batch_size * [""])
         
     | 
| 269 | 
         
            -
                                if isinstance(prompts, tuple):
         
     | 
| 270 | 
         
            -
                                    prompts = list(prompts)
         
     | 
| 271 | 
         
            -
                                c = model.get_learned_conditioning(prompts)
         
     | 
| 272 | 
         
            -
                                shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
         
     | 
| 273 | 
         
            -
                                samples, _ = sampler.sample(S=opt.steps,
         
     | 
| 274 | 
         
            -
                                                                 conditioning=c,
         
     | 
| 275 | 
         
            -
                                                                 batch_size=opt.n_samples,
         
     | 
| 276 | 
         
            -
                                                                 shape=shape,
         
     | 
| 277 | 
         
            -
                                                                 verbose=False,
         
     | 
| 278 | 
         
            -
                                                                 unconditional_guidance_scale=opt.scale,
         
     | 
| 279 | 
         
            -
                                                                 unconditional_conditioning=uc,
         
     | 
| 280 | 
         
            -
                                                                 eta=opt.ddim_eta,
         
     | 
| 281 | 
         
            -
                                                                 x_T=start_code)
         
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
                                x_samples = model.decode_first_stage(samples)
         
     | 
| 284 | 
         
            -
                                x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
         
     | 
| 285 | 
         
            -
                                
         
     | 
| 286 | 
         
            -
                                for x_sample in x_samples:
         
     | 
| 287 | 
         
            -
                                    x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
         
     | 
| 288 | 
         
            -
                                    img = Image.fromarray(x_sample.astype(np.uint8))
         
     | 
| 289 | 
         
            -
                                    img = put_watermark(img, wm_encoder)
         
     | 
| 290 | 
         
            -
                                    image_samples.append(img)
         
     | 
| 291 | 
         
            -
                                    base_count += 1
         
     | 
| 292 | 
         
            -
                                    sample_count += 1
         
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
                                all_samples.append(x_samples)
         
     | 
| 295 | 
         
            -
                return image_samples
         
     | 
| 296 | 
         | 
| 297 | 
         
             
            css = """
         
     | 
| 298 | 
         
             
                    .gradio-container {
         
     | 
| 
         @@ -412,7 +164,8 @@ css = """ 
     | 
|
| 412 | 
         
             
                    #prompt-container{
         
     | 
| 413 | 
         
             
                        gap: 0;
         
     | 
| 414 | 
         
             
                    }
         
     | 
| 415 | 
         
            -
                    #component- 
     | 
| 
         | 
|
| 416 | 
         
             
            """
         
     | 
| 417 | 
         | 
| 418 | 
         
             
            block = gr.Blocks(css=css)
         
     | 
| 
         @@ -421,36 +174,36 @@ examples = [ 
     | 
|
| 421 | 
         
             
                [
         
     | 
| 422 | 
         
             
                    'A high tech solarpunk utopia in the Amazon rainforest',
         
     | 
| 423 | 
         
             
                    4,
         
     | 
| 424 | 
         
            -
                     
     | 
| 425 | 
         
            -
                     
     | 
| 426 | 
         
             
                    1024,
         
     | 
| 427 | 
         
             
                ],
         
     | 
| 428 | 
         
             
                [
         
     | 
| 429 | 
         
             
                    'A pikachu fine dining with a view to the Eiffel Tower',
         
     | 
| 430 | 
         
             
                    4,
         
     | 
| 431 | 
         
            -
                     
     | 
| 432 | 
         
            -
                     
     | 
| 433 | 
         
             
                    1024,
         
     | 
| 434 | 
         
             
                ],
         
     | 
| 435 | 
         
             
                [
         
     | 
| 436 | 
         
             
                    'A mecha robot in a favela in expressionist style',
         
     | 
| 437 | 
         
             
                    4,
         
     | 
| 438 | 
         
            -
                     
     | 
| 439 | 
         
            -
                     
     | 
| 440 | 
         
             
                    1024,
         
     | 
| 441 | 
         
             
                ],
         
     | 
| 442 | 
         
             
                [
         
     | 
| 443 | 
         
             
                    'an insect robot preparing a delicious meal',
         
     | 
| 444 | 
         
             
                    4,
         
     | 
| 445 | 
         
            -
                     
     | 
| 446 | 
         
            -
                     
     | 
| 447 | 
         
             
                    1024,
         
     | 
| 448 | 
         
             
                ],
         
     | 
| 449 | 
         
             
                [
         
     | 
| 450 | 
         
             
                    "A small cabin on top of a snowy mountain in the style of Disney, artstation",
         
     | 
| 451 | 
         
             
                    4,
         
     | 
| 452 | 
         
            -
                     
     | 
| 453 | 
         
            -
                     
     | 
| 454 | 
         
             
                    1024,
         
     | 
| 455 | 
         
             
                ],
         
     | 
| 456 | 
         
             
            ]
         
     | 
| 
         @@ -458,7 +211,7 @@ examples = [ 
     | 
|
| 458 | 
         
             
            with block:
         
     | 
| 459 | 
         
             
                gr.HTML(
         
     | 
| 460 | 
         
             
                    """
         
     | 
| 461 | 
         
            -
                        <div style="text-align: center;  
     | 
| 462 | 
         
             
                          <div
         
     | 
| 463 | 
         
             
                            style="
         
     | 
| 464 | 
         
             
                              display: inline-flex;
         
     | 
| 
         @@ -504,7 +257,7 @@ with block: 
     | 
|
| 504 | 
         
             
                              Stable Diffusion 2 Demo
         
     | 
| 505 | 
         
             
                            </h1>
         
     | 
| 506 | 
         
             
                          </div>
         
     | 
| 507 | 
         
            -
                          <p style="margin-bottom: 10px; font-size: 94 
     | 
| 508 | 
         
             
                            Stable Diffusion 2 is the latest text-to-image model from StabilityAI. <a style="text-decoration: underline;" href="https://huggingface.co/spaces/stabilityai/stable-diffusion-1">Access Stable Diffusion 1 Space here</a><br>For faster generation and API
         
     | 
| 509 | 
         
             
                            access you can try
         
     | 
| 510 | 
         
             
                            <a
         
     | 
| 
         @@ -512,7 +265,7 @@ with block: 
     | 
|
| 512 | 
         
             
                              style="text-decoration: underline;"
         
     | 
| 513 | 
         
             
                              target="_blank"
         
     | 
| 514 | 
         
             
                              >DreamStudio Beta</a
         
     | 
| 515 | 
         
            -
                            >
         
     | 
| 516 | 
         
             
                          </p>
         
     | 
| 517 | 
         
             
                        </div>
         
     | 
| 518 | 
         
             
                    """
         
     | 
| 
         @@ -563,7 +316,7 @@ with block: 
     | 
|
| 563 | 
         
             
                            loading_icon = gr.HTML(loading_icon_html)
         
     | 
| 564 | 
         
             
                            share_button = gr.Button("Share to community", elem_id="share-btn")
         
     | 
| 565 | 
         | 
| 566 | 
         
            -
                    ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery 
     | 
| 567 | 
         
             
                    ex.dataset.headers = [""]
         
     | 
| 568 | 
         | 
| 569 | 
         
             
                    text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery])
         
     | 
| 
         @@ -578,7 +331,7 @@ with block: 
     | 
|
| 578 | 
         
             
                    gr.HTML(
         
     | 
| 579 | 
         
             
                        """
         
     | 
| 580 | 
         
             
                            <div class="footer">
         
     | 
| 581 | 
         
            -
                                <p>Model by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio Demo by 🤗 Hugging Face
         
     | 
| 582 | 
         
             
                                </p>
         
     | 
| 583 | 
         
             
                            </div>
         
     | 
| 584 | 
         
             
                            <div class="acknowledgments">
         
     | 
| 
         @@ -590,4 +343,4 @@ Despite how impressive being able to turn text into image is, beware to the fact 
     | 
|
| 590 | 
         
             
                       """
         
     | 
| 591 | 
         
             
                    )
         
     | 
| 592 | 
         | 
| 593 | 
         
            -
            block.queue(concurrency_count=1, max_size= 
     | 
| 
         | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 
         | 
|
| 2 | 
         
             
            import cv2
         
     | 
| 3 | 
         
             
            import torch
         
     | 
| 4 | 
         
            +
            from imwatermark import WatermarkEncoder
         
     | 
| 5 | 
         
             
            import numpy as np
         
     | 
| 
         | 
|
| 6 | 
         
             
            from PIL import Image
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 7 | 
         
             
            import re
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 8 | 
         
             
            from datasets import load_dataset
         
     | 
| 9 | 
         
            +
            from diffusers import DiffusionPipeline, EulerDiscreteScheduler
         
     | 
| 
         | 
|
| 10 | 
         | 
| 11 | 
         
             
            from share_btn import community_icon_html, loading_icon_html, share_js
         
     | 
| 12 | 
         | 
| 13 | 
         
             
            REPO_ID = "stabilityai/stable-diffusion-2"
         
     | 
| 14 | 
         
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 15 | 
         | 
| 16 | 
         
            +
            wm = "SDV2"
         
     | 
| 17 | 
         
            +
            wm_encoder = WatermarkEncoder()
         
     | 
| 18 | 
         
            +
            wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
         
     | 
| 19 | 
         
             
            def put_watermark(img, wm_encoder=None):
         
     | 
| 20 | 
         
             
                if wm_encoder is not None:
         
     | 
| 21 | 
         
             
                    img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
         
     | 
| 
         | 
|
| 23 | 
         
             
                    img = Image.fromarray(img[:, :, ::-1])
         
     | 
| 24 | 
         
             
                return img
         
     | 
| 25 | 
         | 
| 26 | 
         
            +
            repo_id = "stabilityai/stable-diffusion-2"
         
     | 
| 27 | 
         
            +
            scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler", prediction_type="v_prediction")
         
     | 
| 28 | 
         
            +
            pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16", scheduler=scheduler)
         
     | 
| 29 | 
         
            +
            pipe = pipe.to(device)
         
     | 
| 30 | 
         
            +
            pipe.enable_xformers_memory_efficient_attention()
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            #If you have duplicated this Space or is running locally, you can remove this part
         
     | 
| 33 | 
         
             
            word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
         
     | 
| 34 | 
         
             
            word_list = word_list_dataset["train"]['text']
         
     | 
| 35 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 36 | 
         
             
            def infer(prompt, samples, steps, scale, seed):
         
     | 
| 37 | 
         
            +
                #If you have duplicated this Space or is running locally, you can remove this part
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 38 | 
         
             
                for filter in word_list:
         
     | 
| 39 | 
         
             
                    if re.search(rf"\b{filter}\b", prompt):
         
     | 
| 40 | 
         
             
                        raise gr.Error("Unsafe content found. Please try again with different prompts.")
         
     | 
| 41 | 
         
            +
                generator = torch.Generator(device=device).manual_seed(seed)
         
     | 
| 42 | 
         
            +
                images = pipe(prompt, width=768, height=768, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=samples, generator=generator).images
         
     | 
| 43 | 
         
            +
                images_watermarked = []
         
     | 
| 44 | 
         
            +
                for image in images:
         
     | 
| 45 | 
         
            +
                    image = put_watermark(image, wm_encoder)
         
     | 
| 46 | 
         
            +
                    images_watermarked.append(image)
         
     | 
| 47 | 
         
            +
                return images_watermarked
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 48 | 
         | 
| 49 | 
         
             
            css = """
         
     | 
| 50 | 
         
             
                    .gradio-container {
         
     | 
| 
         | 
|
| 164 | 
         
             
                    #prompt-container{
         
     | 
| 165 | 
         
             
                        gap: 0;
         
     | 
| 166 | 
         
             
                    }
         
     | 
| 167 | 
         
            +
                    #component-9{margin-top: -19px}
         
     | 
| 168 | 
         
            +
                    .image_duplication{position: absolute; width: 100px; left: 50px}
         
     | 
| 169 | 
         
             
            """
         
     | 
| 170 | 
         | 
| 171 | 
         
             
            block = gr.Blocks(css=css)
         
     | 
| 
         | 
|
| 174 | 
         
             
                [
         
     | 
| 175 | 
         
             
                    'A high tech solarpunk utopia in the Amazon rainforest',
         
     | 
| 176 | 
         
             
                    4,
         
     | 
| 177 | 
         
            +
                    25,
         
     | 
| 178 | 
         
            +
                    9,
         
     | 
| 179 | 
         
             
                    1024,
         
     | 
| 180 | 
         
             
                ],
         
     | 
| 181 | 
         
             
                [
         
     | 
| 182 | 
         
             
                    'A pikachu fine dining with a view to the Eiffel Tower',
         
     | 
| 183 | 
         
             
                    4,
         
     | 
| 184 | 
         
            +
                    25,
         
     | 
| 185 | 
         
            +
                    9,
         
     | 
| 186 | 
         
             
                    1024,
         
     | 
| 187 | 
         
             
                ],
         
     | 
| 188 | 
         
             
                [
         
     | 
| 189 | 
         
             
                    'A mecha robot in a favela in expressionist style',
         
     | 
| 190 | 
         
             
                    4,
         
     | 
| 191 | 
         
            +
                    25,
         
     | 
| 192 | 
         
            +
                    9,
         
     | 
| 193 | 
         
             
                    1024,
         
     | 
| 194 | 
         
             
                ],
         
     | 
| 195 | 
         
             
                [
         
     | 
| 196 | 
         
             
                    'an insect robot preparing a delicious meal',
         
     | 
| 197 | 
         
             
                    4,
         
     | 
| 198 | 
         
            +
                    25,
         
     | 
| 199 | 
         
            +
                    9,
         
     | 
| 200 | 
         
             
                    1024,
         
     | 
| 201 | 
         
             
                ],
         
     | 
| 202 | 
         
             
                [
         
     | 
| 203 | 
         
             
                    "A small cabin on top of a snowy mountain in the style of Disney, artstation",
         
     | 
| 204 | 
         
             
                    4,
         
     | 
| 205 | 
         
            +
                    25,
         
     | 
| 206 | 
         
            +
                    9,
         
     | 
| 207 | 
         
             
                    1024,
         
     | 
| 208 | 
         
             
                ],
         
     | 
| 209 | 
         
             
            ]
         
     | 
| 
         | 
|
| 211 | 
         
             
            with block:
         
     | 
| 212 | 
         
             
                gr.HTML(
         
     | 
| 213 | 
         
             
                    """
         
     | 
| 214 | 
         
            +
                        <div style="text-align: center; margin: 0 auto;">
         
     | 
| 215 | 
         
             
                          <div
         
     | 
| 216 | 
         
             
                            style="
         
     | 
| 217 | 
         
             
                              display: inline-flex;
         
     | 
| 
         | 
|
| 257 | 
         
             
                              Stable Diffusion 2 Demo
         
     | 
| 258 | 
         
             
                            </h1>
         
     | 
| 259 | 
         
             
                          </div>
         
     | 
| 260 | 
         
            +
                          <p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
         
     | 
| 261 | 
         
             
                            Stable Diffusion 2 is the latest text-to-image model from StabilityAI. <a style="text-decoration: underline;" href="https://huggingface.co/spaces/stabilityai/stable-diffusion-1">Access Stable Diffusion 1 Space here</a><br>For faster generation and API
         
     | 
| 262 | 
         
             
                            access you can try
         
     | 
| 263 | 
         
             
                            <a
         
     | 
| 
         | 
|
| 265 | 
         
             
                              style="text-decoration: underline;"
         
     | 
| 266 | 
         
             
                              target="_blank"
         
     | 
| 267 | 
         
             
                              >DreamStudio Beta</a
         
     | 
| 268 | 
         
            +
                            >. To skip the queue you can <a style="display:inline-block;width: 123px;" href="https://huggingface.co/spaces/stabilityai/stable-diffusion?duplicate=true"><img style="width: 113px;margin-top: -13px;position: absolute;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
         
     | 
| 269 | 
         
             
                          </p>
         
     | 
| 270 | 
         
             
                        </div>
         
     | 
| 271 | 
         
             
                    """
         
     | 
| 
         | 
|
| 316 | 
         
             
                            loading_icon = gr.HTML(loading_icon_html)
         
     | 
| 317 | 
         
             
                            share_button = gr.Button("Share to community", elem_id="share-btn")
         
     | 
| 318 | 
         | 
| 319 | 
         
            +
                    ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery], cache_examples=False)
         
     | 
| 320 | 
         
             
                    ex.dataset.headers = [""]
         
     | 
| 321 | 
         | 
| 322 | 
         
             
                    text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery])
         
     | 
| 
         | 
|
| 331 | 
         
             
                    gr.HTML(
         
     | 
| 332 | 
         
             
                        """
         
     | 
| 333 | 
         
             
                            <div class="footer">
         
     | 
| 334 | 
         
            +
                                <p>Model by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a> - Gradio Demo by 🤗 Hugging Face using the <a href="https://github.com/huggingface/diffusers" style="text-decoration: underline;" target="_blank">🧨 diffusers library</a>
         
     | 
| 335 | 
         
             
                                </p>
         
     | 
| 336 | 
         
             
                            </div>
         
     | 
| 337 | 
         
             
                            <div class="acknowledgments">
         
     | 
| 
         | 
|
| 343 | 
         
             
                       """
         
     | 
| 344 | 
         
             
                    )
         
     | 
| 345 | 
         | 
| 346 | 
         
            +
            block.queue(concurrency_count=1, max_size=50).launch(max_threads=150)
         
     | 
    	
        configs/stable-diffusion/v2-inference-v.yaml
    DELETED
    
    | 
         @@ -1,68 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            model:
         
     | 
| 2 | 
         
            -
              base_learning_rate: 1.0e-4
         
     | 
| 3 | 
         
            -
              target: ldm.models.diffusion.ddpm.LatentDiffusion
         
     | 
| 4 | 
         
            -
              params:
         
     | 
| 5 | 
         
            -
                parameterization: "v"
         
     | 
| 6 | 
         
            -
                linear_start: 0.00085
         
     | 
| 7 | 
         
            -
                linear_end: 0.0120
         
     | 
| 8 | 
         
            -
                num_timesteps_cond: 1
         
     | 
| 9 | 
         
            -
                log_every_t: 200
         
     | 
| 10 | 
         
            -
                timesteps: 1000
         
     | 
| 11 | 
         
            -
                first_stage_key: "jpg"
         
     | 
| 12 | 
         
            -
                cond_stage_key: "txt"
         
     | 
| 13 | 
         
            -
                image_size: 64
         
     | 
| 14 | 
         
            -
                channels: 4
         
     | 
| 15 | 
         
            -
                cond_stage_trainable: false
         
     | 
| 16 | 
         
            -
                conditioning_key: crossattn
         
     | 
| 17 | 
         
            -
                monitor: val/loss_simple_ema
         
     | 
| 18 | 
         
            -
                scale_factor: 0.18215
         
     | 
| 19 | 
         
            -
                use_ema: False # we set this to false because this is an inference only config
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                unet_config:
         
     | 
| 22 | 
         
            -
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         
     | 
| 23 | 
         
            -
                  params:
         
     | 
| 24 | 
         
            -
                    use_checkpoint: True
         
     | 
| 25 | 
         
            -
                    use_fp16: True
         
     | 
| 26 | 
         
            -
                    image_size: 32 # unused
         
     | 
| 27 | 
         
            -
                    in_channels: 4
         
     | 
| 28 | 
         
            -
                    out_channels: 4
         
     | 
| 29 | 
         
            -
                    model_channels: 320
         
     | 
| 30 | 
         
            -
                    attention_resolutions: [ 4, 2, 1 ]
         
     | 
| 31 | 
         
            -
                    num_res_blocks: 2
         
     | 
| 32 | 
         
            -
                    channel_mult: [ 1, 2, 4, 4 ]
         
     | 
| 33 | 
         
            -
                    num_head_channels: 64 # need to fix for flash-attn
         
     | 
| 34 | 
         
            -
                    use_spatial_transformer: True
         
     | 
| 35 | 
         
            -
                    use_linear_in_transformer: True
         
     | 
| 36 | 
         
            -
                    transformer_depth: 1
         
     | 
| 37 | 
         
            -
                    context_dim: 1024
         
     | 
| 38 | 
         
            -
                    legacy: False
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
                first_stage_config:
         
     | 
| 41 | 
         
            -
                  target: ldm.models.autoencoder.AutoencoderKL
         
     | 
| 42 | 
         
            -
                  params:
         
     | 
| 43 | 
         
            -
                    embed_dim: 4
         
     | 
| 44 | 
         
            -
                    monitor: val/rec_loss
         
     | 
| 45 | 
         
            -
                    ddconfig:
         
     | 
| 46 | 
         
            -
                      #attn_type: "vanilla-xformers"
         
     | 
| 47 | 
         
            -
                      double_z: true
         
     | 
| 48 | 
         
            -
                      z_channels: 4
         
     | 
| 49 | 
         
            -
                      resolution: 256
         
     | 
| 50 | 
         
            -
                      in_channels: 3
         
     | 
| 51 | 
         
            -
                      out_ch: 3
         
     | 
| 52 | 
         
            -
                      ch: 128
         
     | 
| 53 | 
         
            -
                      ch_mult:
         
     | 
| 54 | 
         
            -
                      - 1
         
     | 
| 55 | 
         
            -
                      - 2
         
     | 
| 56 | 
         
            -
                      - 4
         
     | 
| 57 | 
         
            -
                      - 4
         
     | 
| 58 | 
         
            -
                      num_res_blocks: 2
         
     | 
| 59 | 
         
            -
                      attn_resolutions: []
         
     | 
| 60 | 
         
            -
                      dropout: 0.0
         
     | 
| 61 | 
         
            -
                    lossconfig:
         
     | 
| 62 | 
         
            -
                      target: torch.nn.Identity
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                cond_stage_config:
         
     | 
| 65 | 
         
            -
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         
     | 
| 66 | 
         
            -
                  params:
         
     | 
| 67 | 
         
            -
                    freeze: True
         
     | 
| 68 | 
         
            -
                    layer: "penultimate"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        configs/stable-diffusion/v2-inference.yaml
    DELETED
    
    | 
         @@ -1,67 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            model:
         
     | 
| 2 | 
         
            -
              base_learning_rate: 1.0e-4
         
     | 
| 3 | 
         
            -
              target: ldm.models.diffusion.ddpm.LatentDiffusion
         
     | 
| 4 | 
         
            -
              params:
         
     | 
| 5 | 
         
            -
                linear_start: 0.00085
         
     | 
| 6 | 
         
            -
                linear_end: 0.0120
         
     | 
| 7 | 
         
            -
                num_timesteps_cond: 1
         
     | 
| 8 | 
         
            -
                log_every_t: 200
         
     | 
| 9 | 
         
            -
                timesteps: 1000
         
     | 
| 10 | 
         
            -
                first_stage_key: "jpg"
         
     | 
| 11 | 
         
            -
                cond_stage_key: "txt"
         
     | 
| 12 | 
         
            -
                image_size: 64
         
     | 
| 13 | 
         
            -
                channels: 4
         
     | 
| 14 | 
         
            -
                cond_stage_trainable: false
         
     | 
| 15 | 
         
            -
                conditioning_key: crossattn
         
     | 
| 16 | 
         
            -
                monitor: val/loss_simple_ema
         
     | 
| 17 | 
         
            -
                scale_factor: 0.18215
         
     | 
| 18 | 
         
            -
                use_ema: False # we set this to false because this is an inference only config
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
                unet_config:
         
     | 
| 21 | 
         
            -
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         
     | 
| 22 | 
         
            -
                  params:
         
     | 
| 23 | 
         
            -
                    use_checkpoint: True
         
     | 
| 24 | 
         
            -
                    use_fp16: True
         
     | 
| 25 | 
         
            -
                    image_size: 32 # unused
         
     | 
| 26 | 
         
            -
                    in_channels: 4
         
     | 
| 27 | 
         
            -
                    out_channels: 4
         
     | 
| 28 | 
         
            -
                    model_channels: 320
         
     | 
| 29 | 
         
            -
                    attention_resolutions: [ 4, 2, 1 ]
         
     | 
| 30 | 
         
            -
                    num_res_blocks: 2
         
     | 
| 31 | 
         
            -
                    channel_mult: [ 1, 2, 4, 4 ]
         
     | 
| 32 | 
         
            -
                    num_head_channels: 64 # need to fix for flash-attn
         
     | 
| 33 | 
         
            -
                    use_spatial_transformer: True
         
     | 
| 34 | 
         
            -
                    use_linear_in_transformer: True
         
     | 
| 35 | 
         
            -
                    transformer_depth: 1
         
     | 
| 36 | 
         
            -
                    context_dim: 1024
         
     | 
| 37 | 
         
            -
                    legacy: False
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                first_stage_config:
         
     | 
| 40 | 
         
            -
                  target: ldm.models.autoencoder.AutoencoderKL
         
     | 
| 41 | 
         
            -
                  params:
         
     | 
| 42 | 
         
            -
                    embed_dim: 4
         
     | 
| 43 | 
         
            -
                    monitor: val/rec_loss
         
     | 
| 44 | 
         
            -
                    ddconfig:
         
     | 
| 45 | 
         
            -
                      #attn_type: "vanilla-xformers"
         
     | 
| 46 | 
         
            -
                      double_z: true
         
     | 
| 47 | 
         
            -
                      z_channels: 4
         
     | 
| 48 | 
         
            -
                      resolution: 256
         
     | 
| 49 | 
         
            -
                      in_channels: 3
         
     | 
| 50 | 
         
            -
                      out_ch: 3
         
     | 
| 51 | 
         
            -
                      ch: 128
         
     | 
| 52 | 
         
            -
                      ch_mult:
         
     | 
| 53 | 
         
            -
                      - 1
         
     | 
| 54 | 
         
            -
                      - 2
         
     | 
| 55 | 
         
            -
                      - 4
         
     | 
| 56 | 
         
            -
                      - 4
         
     | 
| 57 | 
         
            -
                      num_res_blocks: 2
         
     | 
| 58 | 
         
            -
                      attn_resolutions: []
         
     | 
| 59 | 
         
            -
                      dropout: 0.0
         
     | 
| 60 | 
         
            -
                    lossconfig:
         
     | 
| 61 | 
         
            -
                      target: torch.nn.Identity
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                cond_stage_config:
         
     | 
| 64 | 
         
            -
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         
     | 
| 65 | 
         
            -
                  params:
         
     | 
| 66 | 
         
            -
                    freeze: True
         
     | 
| 67 | 
         
            -
                    layer: "penultimate"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        configs/stable-diffusion/v2-inpainting-inference.yaml
    DELETED
    
    | 
         @@ -1,158 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            model:
         
     | 
| 2 | 
         
            -
              base_learning_rate: 5.0e-05
         
     | 
| 3 | 
         
            -
              target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
         
     | 
| 4 | 
         
            -
              params:
         
     | 
| 5 | 
         
            -
                linear_start: 0.00085
         
     | 
| 6 | 
         
            -
                linear_end: 0.0120
         
     | 
| 7 | 
         
            -
                num_timesteps_cond: 1
         
     | 
| 8 | 
         
            -
                log_every_t: 200
         
     | 
| 9 | 
         
            -
                timesteps: 1000
         
     | 
| 10 | 
         
            -
                first_stage_key: "jpg"
         
     | 
| 11 | 
         
            -
                cond_stage_key: "txt"
         
     | 
| 12 | 
         
            -
                image_size: 64
         
     | 
| 13 | 
         
            -
                channels: 4
         
     | 
| 14 | 
         
            -
                cond_stage_trainable: false
         
     | 
| 15 | 
         
            -
                conditioning_key: hybrid
         
     | 
| 16 | 
         
            -
                scale_factor: 0.18215
         
     | 
| 17 | 
         
            -
                monitor: val/loss_simple_ema
         
     | 
| 18 | 
         
            -
                finetune_keys: null
         
     | 
| 19 | 
         
            -
                use_ema: False
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                unet_config:
         
     | 
| 22 | 
         
            -
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         
     | 
| 23 | 
         
            -
                  params:
         
     | 
| 24 | 
         
            -
                    use_checkpoint: True
         
     | 
| 25 | 
         
            -
                    image_size: 32 # unused
         
     | 
| 26 | 
         
            -
                    in_channels: 9
         
     | 
| 27 | 
         
            -
                    out_channels: 4
         
     | 
| 28 | 
         
            -
                    model_channels: 320
         
     | 
| 29 | 
         
            -
                    attention_resolutions: [ 4, 2, 1 ]
         
     | 
| 30 | 
         
            -
                    num_res_blocks: 2
         
     | 
| 31 | 
         
            -
                    channel_mult: [ 1, 2, 4, 4 ]
         
     | 
| 32 | 
         
            -
                    num_head_channels: 64 # need to fix for flash-attn
         
     | 
| 33 | 
         
            -
                    use_spatial_transformer: True
         
     | 
| 34 | 
         
            -
                    use_linear_in_transformer: True
         
     | 
| 35 | 
         
            -
                    transformer_depth: 1
         
     | 
| 36 | 
         
            -
                    context_dim: 1024
         
     | 
| 37 | 
         
            -
                    legacy: False
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                first_stage_config:
         
     | 
| 40 | 
         
            -
                  target: ldm.models.autoencoder.AutoencoderKL
         
     | 
| 41 | 
         
            -
                  params:
         
     | 
| 42 | 
         
            -
                    embed_dim: 4
         
     | 
| 43 | 
         
            -
                    monitor: val/rec_loss
         
     | 
| 44 | 
         
            -
                    ddconfig:
         
     | 
| 45 | 
         
            -
                      #attn_type: "vanilla-xformers"
         
     | 
| 46 | 
         
            -
                      double_z: true
         
     | 
| 47 | 
         
            -
                      z_channels: 4
         
     | 
| 48 | 
         
            -
                      resolution: 256
         
     | 
| 49 | 
         
            -
                      in_channels: 3
         
     | 
| 50 | 
         
            -
                      out_ch: 3
         
     | 
| 51 | 
         
            -
                      ch: 128
         
     | 
| 52 | 
         
            -
                      ch_mult:
         
     | 
| 53 | 
         
            -
                        - 1
         
     | 
| 54 | 
         
            -
                        - 2
         
     | 
| 55 | 
         
            -
                        - 4
         
     | 
| 56 | 
         
            -
                        - 4
         
     | 
| 57 | 
         
            -
                      num_res_blocks: 2
         
     | 
| 58 | 
         
            -
                      attn_resolutions: [ ]
         
     | 
| 59 | 
         
            -
                      dropout: 0.0
         
     | 
| 60 | 
         
            -
                    lossconfig:
         
     | 
| 61 | 
         
            -
                      target: torch.nn.Identity
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                cond_stage_config:
         
     | 
| 64 | 
         
            -
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         
     | 
| 65 | 
         
            -
                  params:
         
     | 
| 66 | 
         
            -
                    freeze: True
         
     | 
| 67 | 
         
            -
                    layer: "penultimate"
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
            data:
         
     | 
| 71 | 
         
            -
              target: ldm.data.laion.WebDataModuleFromConfig
         
     | 
| 72 | 
         
            -
              params:
         
     | 
| 73 | 
         
            -
                tar_base: null  # for concat as in LAION-A
         
     | 
| 74 | 
         
            -
                p_unsafe_threshold: 0.1
         
     | 
| 75 | 
         
            -
                filter_word_list: "data/filters.yaml"
         
     | 
| 76 | 
         
            -
                max_pwatermark: 0.45
         
     | 
| 77 | 
         
            -
                batch_size: 8
         
     | 
| 78 | 
         
            -
                num_workers: 6
         
     | 
| 79 | 
         
            -
                multinode: True
         
     | 
| 80 | 
         
            -
                min_size: 512
         
     | 
| 81 | 
         
            -
                train:
         
     | 
| 82 | 
         
            -
                  shards:
         
     | 
| 83 | 
         
            -
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
         
     | 
| 84 | 
         
            -
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
         
     | 
| 85 | 
         
            -
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
         
     | 
| 86 | 
         
            -
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
         
     | 
| 87 | 
         
            -
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -"  #{00000-94333}.tar"
         
     | 
| 88 | 
         
            -
                  shuffle: 10000
         
     | 
| 89 | 
         
            -
                  image_key: jpg
         
     | 
| 90 | 
         
            -
                  image_transforms:
         
     | 
| 91 | 
         
            -
                  - target: torchvision.transforms.Resize
         
     | 
| 92 | 
         
            -
                    params:
         
     | 
| 93 | 
         
            -
                      size: 512
         
     | 
| 94 | 
         
            -
                      interpolation: 3
         
     | 
| 95 | 
         
            -
                  - target: torchvision.transforms.RandomCrop
         
     | 
| 96 | 
         
            -
                    params:
         
     | 
| 97 | 
         
            -
                      size: 512
         
     | 
| 98 | 
         
            -
                  postprocess:
         
     | 
| 99 | 
         
            -
                    target: ldm.data.laion.AddMask
         
     | 
| 100 | 
         
            -
                    params:
         
     | 
| 101 | 
         
            -
                      mode: "512train-large"
         
     | 
| 102 | 
         
            -
                      p_drop: 0.25
         
     | 
| 103 | 
         
            -
                # NOTE use enough shards to avoid empty validation loops in workers
         
     | 
| 104 | 
         
            -
                validation:
         
     | 
| 105 | 
         
            -
                  shards:
         
     | 
| 106 | 
         
            -
                    - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
         
     | 
| 107 | 
         
            -
                  shuffle: 0
         
     | 
| 108 | 
         
            -
                  image_key: jpg
         
     | 
| 109 | 
         
            -
                  image_transforms:
         
     | 
| 110 | 
         
            -
                  - target: torchvision.transforms.Resize
         
     | 
| 111 | 
         
            -
                    params:
         
     | 
| 112 | 
         
            -
                      size: 512
         
     | 
| 113 | 
         
            -
                      interpolation: 3
         
     | 
| 114 | 
         
            -
                  - target: torchvision.transforms.CenterCrop
         
     | 
| 115 | 
         
            -
                    params:
         
     | 
| 116 | 
         
            -
                      size: 512
         
     | 
| 117 | 
         
            -
                  postprocess:
         
     | 
| 118 | 
         
            -
                    target: ldm.data.laion.AddMask
         
     | 
| 119 | 
         
            -
                    params:
         
     | 
| 120 | 
         
            -
                      mode: "512train-large"
         
     | 
| 121 | 
         
            -
                      p_drop: 0.25
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
            lightning:
         
     | 
| 124 | 
         
            -
              find_unused_parameters: True
         
     | 
| 125 | 
         
            -
              modelcheckpoint:
         
     | 
| 126 | 
         
            -
                params:
         
     | 
| 127 | 
         
            -
                  every_n_train_steps: 5000
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
              callbacks:
         
     | 
| 130 | 
         
            -
                metrics_over_trainsteps_checkpoint:
         
     | 
| 131 | 
         
            -
                  params:
         
     | 
| 132 | 
         
            -
                    every_n_train_steps: 10000
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                image_logger:
         
     | 
| 135 | 
         
            -
                  target: main.ImageLogger
         
     | 
| 136 | 
         
            -
                  params:
         
     | 
| 137 | 
         
            -
                    enable_autocast: False
         
     | 
| 138 | 
         
            -
                    disabled: False
         
     | 
| 139 | 
         
            -
                    batch_frequency: 1000
         
     | 
| 140 | 
         
            -
                    max_images: 4
         
     | 
| 141 | 
         
            -
                    increase_log_steps: False
         
     | 
| 142 | 
         
            -
                    log_first_step: False
         
     | 
| 143 | 
         
            -
                    log_images_kwargs:
         
     | 
| 144 | 
         
            -
                      use_ema_scope: False
         
     | 
| 145 | 
         
            -
                      inpaint: False
         
     | 
| 146 | 
         
            -
                      plot_progressive_rows: False
         
     | 
| 147 | 
         
            -
                      plot_diffusion_rows: False
         
     | 
| 148 | 
         
            -
                      N: 4
         
     | 
| 149 | 
         
            -
                      unconditional_guidance_scale: 5.0
         
     | 
| 150 | 
         
            -
                      unconditional_guidance_label: [""]
         
     | 
| 151 | 
         
            -
                      ddim_steps: 50  # todo check these out for depth2img,
         
     | 
| 152 | 
         
            -
                      ddim_eta: 0.0   # todo check these out for depth2img,
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
              trainer:
         
     | 
| 155 | 
         
            -
                benchmark: True
         
     | 
| 156 | 
         
            -
                val_check_interval: 5000000
         
     | 
| 157 | 
         
            -
                num_sanity_val_steps: 0
         
     | 
| 158 | 
         
            -
                accumulate_grad_batches: 1
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        configs/stable-diffusion/v2-midas-inference.yaml
    DELETED
    
    | 
         @@ -1,74 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            model:
         
     | 
| 2 | 
         
            -
              base_learning_rate: 5.0e-07
         
     | 
| 3 | 
         
            -
              target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion
         
     | 
| 4 | 
         
            -
              params:
         
     | 
| 5 | 
         
            -
                linear_start: 0.00085
         
     | 
| 6 | 
         
            -
                linear_end: 0.0120
         
     | 
| 7 | 
         
            -
                num_timesteps_cond: 1
         
     | 
| 8 | 
         
            -
                log_every_t: 200
         
     | 
| 9 | 
         
            -
                timesteps: 1000
         
     | 
| 10 | 
         
            -
                first_stage_key: "jpg"
         
     | 
| 11 | 
         
            -
                cond_stage_key: "txt"
         
     | 
| 12 | 
         
            -
                image_size: 64
         
     | 
| 13 | 
         
            -
                channels: 4
         
     | 
| 14 | 
         
            -
                cond_stage_trainable: false
         
     | 
| 15 | 
         
            -
                conditioning_key: hybrid
         
     | 
| 16 | 
         
            -
                scale_factor: 0.18215
         
     | 
| 17 | 
         
            -
                monitor: val/loss_simple_ema
         
     | 
| 18 | 
         
            -
                finetune_keys: null
         
     | 
| 19 | 
         
            -
                use_ema: False
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                depth_stage_config:
         
     | 
| 22 | 
         
            -
                  target: ldm.modules.midas.api.MiDaSInference
         
     | 
| 23 | 
         
            -
                  params:
         
     | 
| 24 | 
         
            -
                    model_type: "dpt_hybrid"
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
                unet_config:
         
     | 
| 27 | 
         
            -
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         
     | 
| 28 | 
         
            -
                  params:
         
     | 
| 29 | 
         
            -
                    use_checkpoint: True
         
     | 
| 30 | 
         
            -
                    image_size: 32 # unused
         
     | 
| 31 | 
         
            -
                    in_channels: 5
         
     | 
| 32 | 
         
            -
                    out_channels: 4
         
     | 
| 33 | 
         
            -
                    model_channels: 320
         
     | 
| 34 | 
         
            -
                    attention_resolutions: [ 4, 2, 1 ]
         
     | 
| 35 | 
         
            -
                    num_res_blocks: 2
         
     | 
| 36 | 
         
            -
                    channel_mult: [ 1, 2, 4, 4 ]
         
     | 
| 37 | 
         
            -
                    num_head_channels: 64 # need to fix for flash-attn
         
     | 
| 38 | 
         
            -
                    use_spatial_transformer: True
         
     | 
| 39 | 
         
            -
                    use_linear_in_transformer: True
         
     | 
| 40 | 
         
            -
                    transformer_depth: 1
         
     | 
| 41 | 
         
            -
                    context_dim: 1024
         
     | 
| 42 | 
         
            -
                    legacy: False
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
                first_stage_config:
         
     | 
| 45 | 
         
            -
                  target: ldm.models.autoencoder.AutoencoderKL
         
     | 
| 46 | 
         
            -
                  params:
         
     | 
| 47 | 
         
            -
                    embed_dim: 4
         
     | 
| 48 | 
         
            -
                    monitor: val/rec_loss
         
     | 
| 49 | 
         
            -
                    ddconfig:
         
     | 
| 50 | 
         
            -
                      #attn_type: "vanilla-xformers"
         
     | 
| 51 | 
         
            -
                      double_z: true
         
     | 
| 52 | 
         
            -
                      z_channels: 4
         
     | 
| 53 | 
         
            -
                      resolution: 256
         
     | 
| 54 | 
         
            -
                      in_channels: 3
         
     | 
| 55 | 
         
            -
                      out_ch: 3
         
     | 
| 56 | 
         
            -
                      ch: 128
         
     | 
| 57 | 
         
            -
                      ch_mult:
         
     | 
| 58 | 
         
            -
                        - 1
         
     | 
| 59 | 
         
            -
                        - 2
         
     | 
| 60 | 
         
            -
                        - 4
         
     | 
| 61 | 
         
            -
                        - 4
         
     | 
| 62 | 
         
            -
                      num_res_blocks: 2
         
     | 
| 63 | 
         
            -
                      attn_resolutions: [ ]
         
     | 
| 64 | 
         
            -
                      dropout: 0.0
         
     | 
| 65 | 
         
            -
                    lossconfig:
         
     | 
| 66 | 
         
            -
                      target: torch.nn.Identity
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                cond_stage_config:
         
     | 
| 69 | 
         
            -
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         
     | 
| 70 | 
         
            -
                  params:
         
     | 
| 71 | 
         
            -
                    freeze: True
         
     | 
| 72 | 
         
            -
                    layer: "penultimate"
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        configs/stable-diffusion/x4-upscaling.yaml
    DELETED
    
    | 
         @@ -1,76 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            model:
         
     | 
| 2 | 
         
            -
              base_learning_rate: 1.0e-04
         
     | 
| 3 | 
         
            -
              target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
         
     | 
| 4 | 
         
            -
              params:
         
     | 
| 5 | 
         
            -
                parameterization: "v"
         
     | 
| 6 | 
         
            -
                low_scale_key: "lr"
         
     | 
| 7 | 
         
            -
                linear_start: 0.0001
         
     | 
| 8 | 
         
            -
                linear_end: 0.02
         
     | 
| 9 | 
         
            -
                num_timesteps_cond: 1
         
     | 
| 10 | 
         
            -
                log_every_t: 200
         
     | 
| 11 | 
         
            -
                timesteps: 1000
         
     | 
| 12 | 
         
            -
                first_stage_key: "jpg"
         
     | 
| 13 | 
         
            -
                cond_stage_key: "txt"
         
     | 
| 14 | 
         
            -
                image_size: 128
         
     | 
| 15 | 
         
            -
                channels: 4
         
     | 
| 16 | 
         
            -
                cond_stage_trainable: false
         
     | 
| 17 | 
         
            -
                conditioning_key: "hybrid-adm"
         
     | 
| 18 | 
         
            -
                monitor: val/loss_simple_ema
         
     | 
| 19 | 
         
            -
                scale_factor: 0.08333
         
     | 
| 20 | 
         
            -
                use_ema: False
         
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
                low_scale_config:
         
     | 
| 23 | 
         
            -
                  target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
         
     | 
| 24 | 
         
            -
                  params:
         
     | 
| 25 | 
         
            -
                    noise_schedule_config: # image space
         
     | 
| 26 | 
         
            -
                      linear_start: 0.0001
         
     | 
| 27 | 
         
            -
                      linear_end: 0.02
         
     | 
| 28 | 
         
            -
                    max_noise_level: 350
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                unet_config:
         
     | 
| 31 | 
         
            -
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         
     | 
| 32 | 
         
            -
                  params:
         
     | 
| 33 | 
         
            -
                    use_checkpoint: True
         
     | 
| 34 | 
         
            -
                    num_classes: 1000  # timesteps for noise conditioning (here constant, just need one)
         
     | 
| 35 | 
         
            -
                    image_size: 128
         
     | 
| 36 | 
         
            -
                    in_channels: 7
         
     | 
| 37 | 
         
            -
                    out_channels: 4
         
     | 
| 38 | 
         
            -
                    model_channels: 256
         
     | 
| 39 | 
         
            -
                    attention_resolutions: [ 2,4,8]
         
     | 
| 40 | 
         
            -
                    num_res_blocks: 2
         
     | 
| 41 | 
         
            -
                    channel_mult: [ 1, 2, 2, 4]
         
     | 
| 42 | 
         
            -
                    disable_self_attentions: [True, True, True, False]
         
     | 
| 43 | 
         
            -
                    disable_middle_self_attn: False
         
     | 
| 44 | 
         
            -
                    num_heads: 8
         
     | 
| 45 | 
         
            -
                    use_spatial_transformer: True
         
     | 
| 46 | 
         
            -
                    transformer_depth: 1
         
     | 
| 47 | 
         
            -
                    context_dim: 1024
         
     | 
| 48 | 
         
            -
                    legacy: False
         
     | 
| 49 | 
         
            -
                    use_linear_in_transformer: True
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                first_stage_config:
         
     | 
| 52 | 
         
            -
                  target: ldm.models.autoencoder.AutoencoderKL
         
     | 
| 53 | 
         
            -
                  params:
         
     | 
| 54 | 
         
            -
                    embed_dim: 4
         
     | 
| 55 | 
         
            -
                    ddconfig:
         
     | 
| 56 | 
         
            -
                      # attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
         
     | 
| 57 | 
         
            -
                      double_z: True
         
     | 
| 58 | 
         
            -
                      z_channels: 4
         
     | 
| 59 | 
         
            -
                      resolution: 256
         
     | 
| 60 | 
         
            -
                      in_channels: 3
         
     | 
| 61 | 
         
            -
                      out_ch: 3
         
     | 
| 62 | 
         
            -
                      ch: 128
         
     | 
| 63 | 
         
            -
                      ch_mult: [ 1,2,4 ]  # num_down = len(ch_mult)-1
         
     | 
| 64 | 
         
            -
                      num_res_blocks: 2
         
     | 
| 65 | 
         
            -
                      attn_resolutions: [ ]
         
     | 
| 66 | 
         
            -
                      dropout: 0.0
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                    lossconfig:
         
     | 
| 69 | 
         
            -
                      target: torch.nn.Identity
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
                cond_stage_config:
         
     | 
| 72 | 
         
            -
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         
     | 
| 73 | 
         
            -
                  params:
         
     | 
| 74 | 
         
            -
                    freeze: True
         
     | 
| 75 | 
         
            -
                    layer: "penultimate"
         
     | 
| 76 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        environment.yaml
    DELETED
    
    | 
         @@ -1,29 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            name: ldm
         
     | 
| 2 | 
         
            -
            channels:
         
     | 
| 3 | 
         
            -
              - pytorch
         
     | 
| 4 | 
         
            -
              - defaults
         
     | 
| 5 | 
         
            -
            dependencies:
         
     | 
| 6 | 
         
            -
              - python=3.8.5
         
     | 
| 7 | 
         
            -
              - pip=20.3
         
     | 
| 8 | 
         
            -
              - cudatoolkit=11.3
         
     | 
| 9 | 
         
            -
              - pytorch=1.12.1
         
     | 
| 10 | 
         
            -
              - torchvision=0.13.1
         
     | 
| 11 | 
         
            -
              - numpy=1.23.1
         
     | 
| 12 | 
         
            -
              - pip:
         
     | 
| 13 | 
         
            -
                - albumentations==1.3.0
         
     | 
| 14 | 
         
            -
                - opencv-python==4.6.0.66
         
     | 
| 15 | 
         
            -
                - imageio==2.9.0
         
     | 
| 16 | 
         
            -
                - imageio-ffmpeg==0.4.2
         
     | 
| 17 | 
         
            -
                - pytorch-lightning==1.4.2
         
     | 
| 18 | 
         
            -
                - omegaconf==2.1.1
         
     | 
| 19 | 
         
            -
                - test-tube>=0.7.5
         
     | 
| 20 | 
         
            -
                - streamlit==1.12.1
         
     | 
| 21 | 
         
            -
                - einops==0.3.0
         
     | 
| 22 | 
         
            -
                - transformers==4.19.2
         
     | 
| 23 | 
         
            -
                - webdataset==0.2.5
         
     | 
| 24 | 
         
            -
                - kornia==0.6
         
     | 
| 25 | 
         
            -
                - open_clip_torch==2.0.2
         
     | 
| 26 | 
         
            -
                - invisible-watermark>=0.1.5
         
     | 
| 27 | 
         
            -
                - streamlit-drawable-canvas==0.8.0
         
     | 
| 28 | 
         
            -
                - torchmetrics==0.6.0
         
     | 
| 29 | 
         
            -
                - -e .
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/data/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/data/util.py
    DELETED
    
    | 
         @@ -1,24 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            from ldm.modules.midas.api import load_midas_transform
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            class AddMiDaS(object):
         
     | 
| 7 | 
         
            -
                def __init__(self, model_type):
         
     | 
| 8 | 
         
            -
                    super().__init__()
         
     | 
| 9 | 
         
            -
                    self.transform = load_midas_transform(model_type)
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
                def pt2np(self, x):
         
     | 
| 12 | 
         
            -
                    x = ((x + 1.0) * .5).detach().cpu().numpy()
         
     | 
| 13 | 
         
            -
                    return x
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
                def np2pt(self, x):
         
     | 
| 16 | 
         
            -
                    x = torch.from_numpy(x) * 2 - 1.
         
     | 
| 17 | 
         
            -
                    return x
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
                def __call__(self, sample):
         
     | 
| 20 | 
         
            -
                    # sample['jpg'] is tensor hwc in [-1, 1] at this point
         
     | 
| 21 | 
         
            -
                    x = self.pt2np(sample['jpg'])
         
     | 
| 22 | 
         
            -
                    x = self.transform({"image": x})["image"]
         
     | 
| 23 | 
         
            -
                    sample['midas_in'] = x
         
     | 
| 24 | 
         
            -
                    return sample
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/autoencoder.py
    DELETED
    
    | 
         @@ -1,219 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import pytorch_lightning as pl
         
     | 
| 3 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            -
            from contextlib import contextmanager
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            from ldm.modules.diffusionmodules.model import Encoder, Decoder
         
     | 
| 7 | 
         
            -
            from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            from ldm.util import instantiate_from_config
         
     | 
| 10 | 
         
            -
            from ldm.modules.ema import LitEma
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            class AutoencoderKL(pl.LightningModule):
         
     | 
| 14 | 
         
            -
                def __init__(self,
         
     | 
| 15 | 
         
            -
                             ddconfig,
         
     | 
| 16 | 
         
            -
                             lossconfig,
         
     | 
| 17 | 
         
            -
                             embed_dim,
         
     | 
| 18 | 
         
            -
                             ckpt_path=None,
         
     | 
| 19 | 
         
            -
                             ignore_keys=[],
         
     | 
| 20 | 
         
            -
                             image_key="image",
         
     | 
| 21 | 
         
            -
                             colorize_nlabels=None,
         
     | 
| 22 | 
         
            -
                             monitor=None,
         
     | 
| 23 | 
         
            -
                             ema_decay=None,
         
     | 
| 24 | 
         
            -
                             learn_logvar=False
         
     | 
| 25 | 
         
            -
                             ):
         
     | 
| 26 | 
         
            -
                    super().__init__()
         
     | 
| 27 | 
         
            -
                    self.learn_logvar = learn_logvar
         
     | 
| 28 | 
         
            -
                    self.image_key = image_key
         
     | 
| 29 | 
         
            -
                    self.encoder = Encoder(**ddconfig)
         
     | 
| 30 | 
         
            -
                    self.decoder = Decoder(**ddconfig)
         
     | 
| 31 | 
         
            -
                    self.loss = instantiate_from_config(lossconfig)
         
     | 
| 32 | 
         
            -
                    assert ddconfig["double_z"]
         
     | 
| 33 | 
         
            -
                    self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
         
     | 
| 34 | 
         
            -
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 35 | 
         
            -
                    self.embed_dim = embed_dim
         
     | 
| 36 | 
         
            -
                    if colorize_nlabels is not None:
         
     | 
| 37 | 
         
            -
                        assert type(colorize_nlabels)==int
         
     | 
| 38 | 
         
            -
                        self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
         
     | 
| 39 | 
         
            -
                    if monitor is not None:
         
     | 
| 40 | 
         
            -
                        self.monitor = monitor
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                    self.use_ema = ema_decay is not None
         
     | 
| 43 | 
         
            -
                    if self.use_ema:
         
     | 
| 44 | 
         
            -
                        self.ema_decay = ema_decay
         
     | 
| 45 | 
         
            -
                        assert 0. < ema_decay < 1.
         
     | 
| 46 | 
         
            -
                        self.model_ema = LitEma(self, decay=ema_decay)
         
     | 
| 47 | 
         
            -
                        print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                    if ckpt_path is not None:
         
     | 
| 50 | 
         
            -
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                def init_from_ckpt(self, path, ignore_keys=list()):
         
     | 
| 53 | 
         
            -
                    sd = torch.load(path, map_location="cpu")["state_dict"]
         
     | 
| 54 | 
         
            -
                    keys = list(sd.keys())
         
     | 
| 55 | 
         
            -
                    for k in keys:
         
     | 
| 56 | 
         
            -
                        for ik in ignore_keys:
         
     | 
| 57 | 
         
            -
                            if k.startswith(ik):
         
     | 
| 58 | 
         
            -
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 59 | 
         
            -
                                del sd[k]
         
     | 
| 60 | 
         
            -
                    self.load_state_dict(sd, strict=False)
         
     | 
| 61 | 
         
            -
                    print(f"Restored from {path}")
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                @contextmanager
         
     | 
| 64 | 
         
            -
                def ema_scope(self, context=None):
         
     | 
| 65 | 
         
            -
                    if self.use_ema:
         
     | 
| 66 | 
         
            -
                        self.model_ema.store(self.parameters())
         
     | 
| 67 | 
         
            -
                        self.model_ema.copy_to(self)
         
     | 
| 68 | 
         
            -
                        if context is not None:
         
     | 
| 69 | 
         
            -
                            print(f"{context}: Switched to EMA weights")
         
     | 
| 70 | 
         
            -
                    try:
         
     | 
| 71 | 
         
            -
                        yield None
         
     | 
| 72 | 
         
            -
                    finally:
         
     | 
| 73 | 
         
            -
                        if self.use_ema:
         
     | 
| 74 | 
         
            -
                            self.model_ema.restore(self.parameters())
         
     | 
| 75 | 
         
            -
                            if context is not None:
         
     | 
| 76 | 
         
            -
                                print(f"{context}: Restored training weights")
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
                def on_train_batch_end(self, *args, **kwargs):
         
     | 
| 79 | 
         
            -
                    if self.use_ema:
         
     | 
| 80 | 
         
            -
                        self.model_ema(self)
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
                def encode(self, x):
         
     | 
| 83 | 
         
            -
                    h = self.encoder(x)
         
     | 
| 84 | 
         
            -
                    moments = self.quant_conv(h)
         
     | 
| 85 | 
         
            -
                    posterior = DiagonalGaussianDistribution(moments)
         
     | 
| 86 | 
         
            -
                    return posterior
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                def decode(self, z):
         
     | 
| 89 | 
         
            -
                    z = self.post_quant_conv(z)
         
     | 
| 90 | 
         
            -
                    dec = self.decoder(z)
         
     | 
| 91 | 
         
            -
                    return dec
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
                def forward(self, input, sample_posterior=True):
         
     | 
| 94 | 
         
            -
                    posterior = self.encode(input)
         
     | 
| 95 | 
         
            -
                    if sample_posterior:
         
     | 
| 96 | 
         
            -
                        z = posterior.sample()
         
     | 
| 97 | 
         
            -
                    else:
         
     | 
| 98 | 
         
            -
                        z = posterior.mode()
         
     | 
| 99 | 
         
            -
                    dec = self.decode(z)
         
     | 
| 100 | 
         
            -
                    return dec, posterior
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                def get_input(self, batch, k):
         
     | 
| 103 | 
         
            -
                    x = batch[k]
         
     | 
| 104 | 
         
            -
                    if len(x.shape) == 3:
         
     | 
| 105 | 
         
            -
                        x = x[..., None]
         
     | 
| 106 | 
         
            -
                    x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
         
     | 
| 107 | 
         
            -
                    return x
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                def training_step(self, batch, batch_idx, optimizer_idx):
         
     | 
| 110 | 
         
            -
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 111 | 
         
            -
                    reconstructions, posterior = self(inputs)
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
                    if optimizer_idx == 0:
         
     | 
| 114 | 
         
            -
                        # train encoder+decoder+logvar
         
     | 
| 115 | 
         
            -
                        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 116 | 
         
            -
                                                        last_layer=self.get_last_layer(), split="train")
         
     | 
| 117 | 
         
            -
                        self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 118 | 
         
            -
                        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 119 | 
         
            -
                        return aeloss
         
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
                    if optimizer_idx == 1:
         
     | 
| 122 | 
         
            -
                        # train the discriminator
         
     | 
| 123 | 
         
            -
                        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 124 | 
         
            -
                                                            last_layer=self.get_last_layer(), split="train")
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                        self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 127 | 
         
            -
                        self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 128 | 
         
            -
                        return discloss
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
                def validation_step(self, batch, batch_idx):
         
     | 
| 131 | 
         
            -
                    log_dict = self._validation_step(batch, batch_idx)
         
     | 
| 132 | 
         
            -
                    with self.ema_scope():
         
     | 
| 133 | 
         
            -
                        log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
         
     | 
| 134 | 
         
            -
                    return log_dict
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                def _validation_step(self, batch, batch_idx, postfix=""):
         
     | 
| 137 | 
         
            -
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 138 | 
         
            -
                    reconstructions, posterior = self(inputs)
         
     | 
| 139 | 
         
            -
                    aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
         
     | 
| 140 | 
         
            -
                                                    last_layer=self.get_last_layer(), split="val"+postfix)
         
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
                    discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
         
     | 
| 143 | 
         
            -
                                                        last_layer=self.get_last_layer(), split="val"+postfix)
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
                    self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
         
     | 
| 146 | 
         
            -
                    self.log_dict(log_dict_ae)
         
     | 
| 147 | 
         
            -
                    self.log_dict(log_dict_disc)
         
     | 
| 148 | 
         
            -
                    return self.log_dict
         
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
                def configure_optimizers(self):
         
     | 
| 151 | 
         
            -
                    lr = self.learning_rate
         
     | 
| 152 | 
         
            -
                    ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
         
     | 
| 153 | 
         
            -
                        self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
         
     | 
| 154 | 
         
            -
                    if self.learn_logvar:
         
     | 
| 155 | 
         
            -
                        print(f"{self.__class__.__name__}: Learning logvar")
         
     | 
| 156 | 
         
            -
                        ae_params_list.append(self.loss.logvar)
         
     | 
| 157 | 
         
            -
                    opt_ae = torch.optim.Adam(ae_params_list,
         
     | 
| 158 | 
         
            -
                                              lr=lr, betas=(0.5, 0.9))
         
     | 
| 159 | 
         
            -
                    opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
         
     | 
| 160 | 
         
            -
                                                lr=lr, betas=(0.5, 0.9))
         
     | 
| 161 | 
         
            -
                    return [opt_ae, opt_disc], []
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                def get_last_layer(self):
         
     | 
| 164 | 
         
            -
                    return self.decoder.conv_out.weight
         
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
                @torch.no_grad()
         
     | 
| 167 | 
         
            -
                def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
         
     | 
| 168 | 
         
            -
                    log = dict()
         
     | 
| 169 | 
         
            -
                    x = self.get_input(batch, self.image_key)
         
     | 
| 170 | 
         
            -
                    x = x.to(self.device)
         
     | 
| 171 | 
         
            -
                    if not only_inputs:
         
     | 
| 172 | 
         
            -
                        xrec, posterior = self(x)
         
     | 
| 173 | 
         
            -
                        if x.shape[1] > 3:
         
     | 
| 174 | 
         
            -
                            # colorize with random projection
         
     | 
| 175 | 
         
            -
                            assert xrec.shape[1] > 3
         
     | 
| 176 | 
         
            -
                            x = self.to_rgb(x)
         
     | 
| 177 | 
         
            -
                            xrec = self.to_rgb(xrec)
         
     | 
| 178 | 
         
            -
                        log["samples"] = self.decode(torch.randn_like(posterior.sample()))
         
     | 
| 179 | 
         
            -
                        log["reconstructions"] = xrec
         
     | 
| 180 | 
         
            -
                        if log_ema or self.use_ema:
         
     | 
| 181 | 
         
            -
                            with self.ema_scope():
         
     | 
| 182 | 
         
            -
                                xrec_ema, posterior_ema = self(x)
         
     | 
| 183 | 
         
            -
                                if x.shape[1] > 3:
         
     | 
| 184 | 
         
            -
                                    # colorize with random projection
         
     | 
| 185 | 
         
            -
                                    assert xrec_ema.shape[1] > 3
         
     | 
| 186 | 
         
            -
                                    xrec_ema = self.to_rgb(xrec_ema)
         
     | 
| 187 | 
         
            -
                                log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
         
     | 
| 188 | 
         
            -
                                log["reconstructions_ema"] = xrec_ema
         
     | 
| 189 | 
         
            -
                    log["inputs"] = x
         
     | 
| 190 | 
         
            -
                    return log
         
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
                def to_rgb(self, x):
         
     | 
| 193 | 
         
            -
                    assert self.image_key == "segmentation"
         
     | 
| 194 | 
         
            -
                    if not hasattr(self, "colorize"):
         
     | 
| 195 | 
         
            -
                        self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
         
     | 
| 196 | 
         
            -
                    x = F.conv2d(x, weight=self.colorize)
         
     | 
| 197 | 
         
            -
                    x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
         
     | 
| 198 | 
         
            -
                    return x
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
            class IdentityFirstStage(torch.nn.Module):
         
     | 
| 202 | 
         
            -
                def __init__(self, *args, vq_interface=False, **kwargs):
         
     | 
| 203 | 
         
            -
                    self.vq_interface = vq_interface
         
     | 
| 204 | 
         
            -
                    super().__init__()
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
                def encode(self, x, *args, **kwargs):
         
     | 
| 207 | 
         
            -
                    return x
         
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
                def decode(self, x, *args, **kwargs):
         
     | 
| 210 | 
         
            -
                    return x
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                def quantize(self, x, *args, **kwargs):
         
     | 
| 213 | 
         
            -
                    if self.vq_interface:
         
     | 
| 214 | 
         
            -
                        return x, None, [None, None, None]
         
     | 
| 215 | 
         
            -
                    return x
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
                def forward(self, x, *args, **kwargs):
         
     | 
| 218 | 
         
            -
                    return x
         
     | 
| 219 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/models/diffusion/ddim.py
    DELETED
    
    | 
         @@ -1,336 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """SAMPLING ONLY."""
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            import torch
         
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            from tqdm import tqdm
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            class DDIMSampler(object):
         
     | 
| 11 | 
         
            -
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 12 | 
         
            -
                    super().__init__()
         
     | 
| 13 | 
         
            -
                    self.model = model
         
     | 
| 14 | 
         
            -
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 15 | 
         
            -
                    self.schedule = schedule
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
                def register_buffer(self, name, attr):
         
     | 
| 18 | 
         
            -
                    if type(attr) == torch.Tensor:
         
     | 
| 19 | 
         
            -
                        if attr.device != torch.device("cuda"):
         
     | 
| 20 | 
         
            -
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 21 | 
         
            -
                    setattr(self, name, attr)
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         
     | 
| 24 | 
         
            -
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         
     | 
| 25 | 
         
            -
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         
     | 
| 26 | 
         
            -
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 27 | 
         
            -
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 28 | 
         
            -
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                    self.register_buffer('betas', to_torch(self.model.betas))
         
     | 
| 31 | 
         
            -
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 32 | 
         
            -
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 35 | 
         
            -
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         
     | 
| 36 | 
         
            -
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         
     | 
| 37 | 
         
            -
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         
     | 
| 38 | 
         
            -
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         
     | 
| 39 | 
         
            -
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                    # ddim sampling parameters
         
     | 
| 42 | 
         
            -
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         
     | 
| 43 | 
         
            -
                                                                                               ddim_timesteps=self.ddim_timesteps,
         
     | 
| 44 | 
         
            -
                                                                                               eta=ddim_eta,verbose=verbose)
         
     | 
| 45 | 
         
            -
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         
     | 
| 46 | 
         
            -
                    self.register_buffer('ddim_alphas', ddim_alphas)
         
     | 
| 47 | 
         
            -
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         
     | 
| 48 | 
         
            -
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         
     | 
| 49 | 
         
            -
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 50 | 
         
            -
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         
     | 
| 51 | 
         
            -
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         
     | 
| 52 | 
         
            -
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         
     | 
| 53 | 
         
            -
             
     | 
| 54 | 
         
            -
                @torch.no_grad()
         
     | 
| 55 | 
         
            -
                def sample(self,
         
     | 
| 56 | 
         
            -
                           S,
         
     | 
| 57 | 
         
            -
                           batch_size,
         
     | 
| 58 | 
         
            -
                           shape,
         
     | 
| 59 | 
         
            -
                           conditioning=None,
         
     | 
| 60 | 
         
            -
                           callback=None,
         
     | 
| 61 | 
         
            -
                           normals_sequence=None,
         
     | 
| 62 | 
         
            -
                           img_callback=None,
         
     | 
| 63 | 
         
            -
                           quantize_x0=False,
         
     | 
| 64 | 
         
            -
                           eta=0.,
         
     | 
| 65 | 
         
            -
                           mask=None,
         
     | 
| 66 | 
         
            -
                           x0=None,
         
     | 
| 67 | 
         
            -
                           temperature=1.,
         
     | 
| 68 | 
         
            -
                           noise_dropout=0.,
         
     | 
| 69 | 
         
            -
                           score_corrector=None,
         
     | 
| 70 | 
         
            -
                           corrector_kwargs=None,
         
     | 
| 71 | 
         
            -
                           verbose=True,
         
     | 
| 72 | 
         
            -
                           x_T=None,
         
     | 
| 73 | 
         
            -
                           log_every_t=100,
         
     | 
| 74 | 
         
            -
                           unconditional_guidance_scale=1.,
         
     | 
| 75 | 
         
            -
                           unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 76 | 
         
            -
                           dynamic_threshold=None,
         
     | 
| 77 | 
         
            -
                           ucg_schedule=None,
         
     | 
| 78 | 
         
            -
                           **kwargs
         
     | 
| 79 | 
         
            -
                           ):
         
     | 
| 80 | 
         
            -
                    if conditioning is not None:
         
     | 
| 81 | 
         
            -
                        if isinstance(conditioning, dict):
         
     | 
| 82 | 
         
            -
                            ctmp = conditioning[list(conditioning.keys())[0]]
         
     | 
| 83 | 
         
            -
                            while isinstance(ctmp, list): ctmp = ctmp[0]
         
     | 
| 84 | 
         
            -
                            cbs = ctmp.shape[0]
         
     | 
| 85 | 
         
            -
                            if cbs != batch_size:
         
     | 
| 86 | 
         
            -
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                        elif isinstance(conditioning, list):
         
     | 
| 89 | 
         
            -
                            for ctmp in conditioning:
         
     | 
| 90 | 
         
            -
                                if ctmp.shape[0] != batch_size:
         
     | 
| 91 | 
         
            -
                                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
                        else:
         
     | 
| 94 | 
         
            -
                            if conditioning.shape[0] != batch_size:
         
     | 
| 95 | 
         
            -
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         
     | 
| 98 | 
         
            -
                    # sampling
         
     | 
| 99 | 
         
            -
                    C, H, W = shape
         
     | 
| 100 | 
         
            -
                    size = (batch_size, C, H, W)
         
     | 
| 101 | 
         
            -
                    print(f'Data shape for DDIM sampling is {size}, eta {eta}')
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
                    samples, intermediates = self.ddim_sampling(conditioning, size,
         
     | 
| 104 | 
         
            -
                                                                callback=callback,
         
     | 
| 105 | 
         
            -
                                                                img_callback=img_callback,
         
     | 
| 106 | 
         
            -
                                                                quantize_denoised=quantize_x0,
         
     | 
| 107 | 
         
            -
                                                                mask=mask, x0=x0,
         
     | 
| 108 | 
         
            -
                                                                ddim_use_original_steps=False,
         
     | 
| 109 | 
         
            -
                                                                noise_dropout=noise_dropout,
         
     | 
| 110 | 
         
            -
                                                                temperature=temperature,
         
     | 
| 111 | 
         
            -
                                                                score_corrector=score_corrector,
         
     | 
| 112 | 
         
            -
                                                                corrector_kwargs=corrector_kwargs,
         
     | 
| 113 | 
         
            -
                                                                x_T=x_T,
         
     | 
| 114 | 
         
            -
                                                                log_every_t=log_every_t,
         
     | 
| 115 | 
         
            -
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 116 | 
         
            -
                                                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 117 | 
         
            -
                                                                dynamic_threshold=dynamic_threshold,
         
     | 
| 118 | 
         
            -
                                                                ucg_schedule=ucg_schedule
         
     | 
| 119 | 
         
            -
                                                                )
         
     | 
| 120 | 
         
            -
                    return samples, intermediates
         
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
                @torch.no_grad()
         
     | 
| 123 | 
         
            -
                def ddim_sampling(self, cond, shape,
         
     | 
| 124 | 
         
            -
                                  x_T=None, ddim_use_original_steps=False,
         
     | 
| 125 | 
         
            -
                                  callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 126 | 
         
            -
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         
     | 
| 127 | 
         
            -
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 128 | 
         
            -
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
         
     | 
| 129 | 
         
            -
                                  ucg_schedule=None):
         
     | 
| 130 | 
         
            -
                    device = self.model.betas.device
         
     | 
| 131 | 
         
            -
                    b = shape[0]
         
     | 
| 132 | 
         
            -
                    if x_T is None:
         
     | 
| 133 | 
         
            -
                        img = torch.randn(shape, device=device)
         
     | 
| 134 | 
         
            -
                    else:
         
     | 
| 135 | 
         
            -
                        img = x_T
         
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
                    if timesteps is None:
         
     | 
| 138 | 
         
            -
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         
     | 
| 139 | 
         
            -
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 140 | 
         
            -
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         
     | 
| 141 | 
         
            -
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         
     | 
| 144 | 
         
            -
                    time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
         
     | 
| 145 | 
         
            -
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 146 | 
         
            -
                    print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 147 | 
         
            -
             
     | 
| 148 | 
         
            -
                    iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
         
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
                    for i, step in enumerate(iterator):
         
     | 
| 151 | 
         
            -
                        index = total_steps - i - 1
         
     | 
| 152 | 
         
            -
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
                        if mask is not None:
         
     | 
| 155 | 
         
            -
                            assert x0 is not None
         
     | 
| 156 | 
         
            -
                            img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
         
     | 
| 157 | 
         
            -
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 158 | 
         
            -
             
     | 
| 159 | 
         
            -
                        if ucg_schedule is not None:
         
     | 
| 160 | 
         
            -
                            assert len(ucg_schedule) == len(time_range)
         
     | 
| 161 | 
         
            -
                            unconditional_guidance_scale = ucg_schedule[i]
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                        outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         
     | 
| 164 | 
         
            -
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         
     | 
| 165 | 
         
            -
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         
     | 
| 166 | 
         
            -
                                                  corrector_kwargs=corrector_kwargs,
         
     | 
| 167 | 
         
            -
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 168 | 
         
            -
                                                  unconditional_conditioning=unconditional_conditioning,
         
     | 
| 169 | 
         
            -
                                                  dynamic_threshold=dynamic_threshold)
         
     | 
| 170 | 
         
            -
                        img, pred_x0 = outs
         
     | 
| 171 | 
         
            -
                        if callback: callback(i)
         
     | 
| 172 | 
         
            -
                        if img_callback: img_callback(pred_x0, i)
         
     | 
| 173 | 
         
            -
             
     | 
| 174 | 
         
            -
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 175 | 
         
            -
                            intermediates['x_inter'].append(img)
         
     | 
| 176 | 
         
            -
                            intermediates['pred_x0'].append(pred_x0)
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
                    return img, intermediates
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                @torch.no_grad()
         
     | 
| 181 | 
         
            -
                def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         
     | 
| 182 | 
         
            -
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 183 | 
         
            -
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,
         
     | 
| 184 | 
         
            -
                                  dynamic_threshold=None):
         
     | 
| 185 | 
         
            -
                    b, *_, device = *x.shape, x.device
         
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
                    if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         
     | 
| 188 | 
         
            -
                        model_output = self.model.apply_model(x, t, c)
         
     | 
| 189 | 
         
            -
                    else:
         
     | 
| 190 | 
         
            -
                        x_in = torch.cat([x] * 2)
         
     | 
| 191 | 
         
            -
                        t_in = torch.cat([t] * 2)
         
     | 
| 192 | 
         
            -
                        if isinstance(c, dict):
         
     | 
| 193 | 
         
            -
                            assert isinstance(unconditional_conditioning, dict)
         
     | 
| 194 | 
         
            -
                            c_in = dict()
         
     | 
| 195 | 
         
            -
                            for k in c:
         
     | 
| 196 | 
         
            -
                                if isinstance(c[k], list):
         
     | 
| 197 | 
         
            -
                                    c_in[k] = [torch.cat([
         
     | 
| 198 | 
         
            -
                                        unconditional_conditioning[k][i],
         
     | 
| 199 | 
         
            -
                                        c[k][i]]) for i in range(len(c[k]))]
         
     | 
| 200 | 
         
            -
                                else:
         
     | 
| 201 | 
         
            -
                                    c_in[k] = torch.cat([
         
     | 
| 202 | 
         
            -
                                            unconditional_conditioning[k],
         
     | 
| 203 | 
         
            -
                                            c[k]])
         
     | 
| 204 | 
         
            -
                        elif isinstance(c, list):
         
     | 
| 205 | 
         
            -
                            c_in = list()
         
     | 
| 206 | 
         
            -
                            assert isinstance(unconditional_conditioning, list)
         
     | 
| 207 | 
         
            -
                            for i in range(len(c)):
         
     | 
| 208 | 
         
            -
                                c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
         
     | 
| 209 | 
         
            -
                        else:
         
     | 
| 210 | 
         
            -
                            c_in = torch.cat([unconditional_conditioning, c])
         
     | 
| 211 | 
         
            -
                        model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         
     | 
| 212 | 
         
            -
                        model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
         
     | 
| 213 | 
         
            -
             
     | 
| 214 | 
         
            -
                    if self.model.parameterization == "v":
         
     | 
| 215 | 
         
            -
                        e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
         
     | 
| 216 | 
         
            -
                    else:
         
     | 
| 217 | 
         
            -
                        e_t = model_output
         
     | 
| 218 | 
         
            -
             
     | 
| 219 | 
         
            -
                    if score_corrector is not None:
         
     | 
| 220 | 
         
            -
                        assert self.model.parameterization == "eps", 'not implemented'
         
     | 
| 221 | 
         
            -
                        e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         
     | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 224 | 
         
            -
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         
     | 
| 225 | 
         
            -
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         
     | 
| 226 | 
         
            -
                    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         
     | 
| 227 | 
         
            -
                    # select parameters corresponding to the currently considered timestep
         
     | 
| 228 | 
         
            -
                    a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         
     | 
| 229 | 
         
            -
                    a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         
     | 
| 230 | 
         
            -
                    sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         
     | 
| 231 | 
         
            -
                    sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
         
     | 
| 232 | 
         
            -
             
     | 
| 233 | 
         
            -
                    # current prediction for x_0
         
     | 
| 234 | 
         
            -
                    if self.model.parameterization != "v":
         
     | 
| 235 | 
         
            -
                        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 236 | 
         
            -
                    else:
         
     | 
| 237 | 
         
            -
                        pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
         
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
                    if quantize_denoised:
         
     | 
| 240 | 
         
            -
                        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
                    if dynamic_threshold is not None:
         
     | 
| 243 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 244 | 
         
            -
             
     | 
| 245 | 
         
            -
                    # direction pointing to x_t
         
     | 
| 246 | 
         
            -
                    dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 247 | 
         
            -
                    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 248 | 
         
            -
                    if noise_dropout > 0.:
         
     | 
| 249 | 
         
            -
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 250 | 
         
            -
                    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         
     | 
| 251 | 
         
            -
                    return x_prev, pred_x0
         
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
                @torch.no_grad()
         
     | 
| 254 | 
         
            -
                def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
         
     | 
| 255 | 
         
            -
                           unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
         
     | 
| 256 | 
         
            -
                    num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
                    assert t_enc <= num_reference_steps
         
     | 
| 259 | 
         
            -
                    num_steps = t_enc
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
                    if use_original_steps:
         
     | 
| 262 | 
         
            -
                        alphas_next = self.alphas_cumprod[:num_steps]
         
     | 
| 263 | 
         
            -
                        alphas = self.alphas_cumprod_prev[:num_steps]
         
     | 
| 264 | 
         
            -
                    else:
         
     | 
| 265 | 
         
            -
                        alphas_next = self.ddim_alphas[:num_steps]
         
     | 
| 266 | 
         
            -
                        alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
         
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
                    x_next = x0
         
     | 
| 269 | 
         
            -
                    intermediates = []
         
     | 
| 270 | 
         
            -
                    inter_steps = []
         
     | 
| 271 | 
         
            -
                    for i in tqdm(range(num_steps), desc='Encoding Image'):
         
     | 
| 272 | 
         
            -
                        t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
         
     | 
| 273 | 
         
            -
                        if unconditional_guidance_scale == 1.:
         
     | 
| 274 | 
         
            -
                            noise_pred = self.model.apply_model(x_next, t, c)
         
     | 
| 275 | 
         
            -
                        else:
         
     | 
| 276 | 
         
            -
                            assert unconditional_conditioning is not None
         
     | 
| 277 | 
         
            -
                            e_t_uncond, noise_pred = torch.chunk(
         
     | 
| 278 | 
         
            -
                                self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
         
     | 
| 279 | 
         
            -
                                                       torch.cat((unconditional_conditioning, c))), 2)
         
     | 
| 280 | 
         
            -
                            noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
         
     | 
| 281 | 
         
            -
             
     | 
| 282 | 
         
            -
                        xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
         
     | 
| 283 | 
         
            -
                        weighted_noise_pred = alphas_next[i].sqrt() * (
         
     | 
| 284 | 
         
            -
                                (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
         
     | 
| 285 | 
         
            -
                        x_next = xt_weighted + weighted_noise_pred
         
     | 
| 286 | 
         
            -
                        if return_intermediates and i % (
         
     | 
| 287 | 
         
            -
                                num_steps // return_intermediates) == 0 and i < num_steps - 1:
         
     | 
| 288 | 
         
            -
                            intermediates.append(x_next)
         
     | 
| 289 | 
         
            -
                            inter_steps.append(i)
         
     | 
| 290 | 
         
            -
                        elif return_intermediates and i >= num_steps - 2:
         
     | 
| 291 | 
         
            -
                            intermediates.append(x_next)
         
     | 
| 292 | 
         
            -
                            inter_steps.append(i)
         
     | 
| 293 | 
         
            -
                        if callback: callback(i)
         
     | 
| 294 | 
         
            -
             
     | 
| 295 | 
         
            -
                    out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
         
     | 
| 296 | 
         
            -
                    if return_intermediates:
         
     | 
| 297 | 
         
            -
                        out.update({'intermediates': intermediates})
         
     | 
| 298 | 
         
            -
                    return x_next, out
         
     | 
| 299 | 
         
            -
             
     | 
| 300 | 
         
            -
                @torch.no_grad()
         
     | 
| 301 | 
         
            -
                def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
         
     | 
| 302 | 
         
            -
                    # fast, but does not allow for exact reconstruction
         
     | 
| 303 | 
         
            -
                    # t serves as an index to gather the correct alphas
         
     | 
| 304 | 
         
            -
                    if use_original_steps:
         
     | 
| 305 | 
         
            -
                        sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
         
     | 
| 306 | 
         
            -
                        sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
         
     | 
| 307 | 
         
            -
                    else:
         
     | 
| 308 | 
         
            -
                        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
         
     | 
| 309 | 
         
            -
                        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
         
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
                    if noise is None:
         
     | 
| 312 | 
         
            -
                        noise = torch.randn_like(x0)
         
     | 
| 313 | 
         
            -
                    return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
         
     | 
| 314 | 
         
            -
                            extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
         
     | 
| 315 | 
         
            -
             
     | 
| 316 | 
         
            -
                @torch.no_grad()
         
     | 
| 317 | 
         
            -
                def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
         
     | 
| 318 | 
         
            -
                           use_original_steps=False, callback=None):
         
     | 
| 319 | 
         
            -
             
     | 
| 320 | 
         
            -
                    timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
         
     | 
| 321 | 
         
            -
                    timesteps = timesteps[:t_start]
         
     | 
| 322 | 
         
            -
             
     | 
| 323 | 
         
            -
                    time_range = np.flip(timesteps)
         
     | 
| 324 | 
         
            -
                    total_steps = timesteps.shape[0]
         
     | 
| 325 | 
         
            -
                    print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
                    iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
         
     | 
| 328 | 
         
            -
                    x_dec = x_latent
         
     | 
| 329 | 
         
            -
                    for i, step in enumerate(iterator):
         
     | 
| 330 | 
         
            -
                        index = total_steps - i - 1
         
     | 
| 331 | 
         
            -
                        ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
         
     | 
| 332 | 
         
            -
                        x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
         
     | 
| 333 | 
         
            -
                                                      unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 334 | 
         
            -
                                                      unconditional_conditioning=unconditional_conditioning)
         
     | 
| 335 | 
         
            -
                        if callback: callback(i)
         
     | 
| 336 | 
         
            -
                    return x_dec
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/ddpm.py
    DELETED
    
    | 
         @@ -1,1796 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """
         
     | 
| 2 | 
         
            -
            wild mixture of
         
     | 
| 3 | 
         
            -
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 4 | 
         
            -
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         
     | 
| 5 | 
         
            -
            https://github.com/CompVis/taming-transformers
         
     | 
| 6 | 
         
            -
            -- merci
         
     | 
| 7 | 
         
            -
            """
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            import torch
         
     | 
| 10 | 
         
            -
            import torch.nn as nn
         
     | 
| 11 | 
         
            -
            import numpy as np
         
     | 
| 12 | 
         
            -
            import pytorch_lightning as pl
         
     | 
| 13 | 
         
            -
            from torch.optim.lr_scheduler import LambdaLR
         
     | 
| 14 | 
         
            -
            from einops import rearrange, repeat
         
     | 
| 15 | 
         
            -
            from contextlib import contextmanager, nullcontext
         
     | 
| 16 | 
         
            -
            from functools import partial
         
     | 
| 17 | 
         
            -
            import itertools
         
     | 
| 18 | 
         
            -
            from tqdm import tqdm
         
     | 
| 19 | 
         
            -
            from torchvision.utils import make_grid
         
     | 
| 20 | 
         
            -
            from pytorch_lightning.utilities.distributed import rank_zero_only
         
     | 
| 21 | 
         
            -
            from omegaconf import ListConfig
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
            from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
         
     | 
| 24 | 
         
            -
            from ldm.modules.ema import LitEma
         
     | 
| 25 | 
         
            -
            from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
         
     | 
| 26 | 
         
            -
            from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
         
     | 
| 27 | 
         
            -
            from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
         
     | 
| 28 | 
         
            -
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            __conditioning_keys__ = {'concat': 'c_concat',
         
     | 
| 32 | 
         
            -
                                     'crossattn': 'c_crossattn',
         
     | 
| 33 | 
         
            -
                                     'adm': 'y'}
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
            def disabled_train(self, mode=True):
         
     | 
| 37 | 
         
            -
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 38 | 
         
            -
                does not change anymore."""
         
     | 
| 39 | 
         
            -
                return self
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            def uniform_on_device(r1, r2, shape, device):
         
     | 
| 43 | 
         
            -
                return (r1 - r2) * torch.rand(*shape, device=device) + r2
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            class DDPM(pl.LightningModule):
         
     | 
| 47 | 
         
            -
                # classic DDPM with Gaussian diffusion, in image space
         
     | 
| 48 | 
         
            -
                def __init__(self,
         
     | 
| 49 | 
         
            -
                             unet_config,
         
     | 
| 50 | 
         
            -
                             timesteps=1000,
         
     | 
| 51 | 
         
            -
                             beta_schedule="linear",
         
     | 
| 52 | 
         
            -
                             loss_type="l2",
         
     | 
| 53 | 
         
            -
                             ckpt_path=None,
         
     | 
| 54 | 
         
            -
                             ignore_keys=[],
         
     | 
| 55 | 
         
            -
                             load_only_unet=False,
         
     | 
| 56 | 
         
            -
                             monitor="val/loss",
         
     | 
| 57 | 
         
            -
                             use_ema=True,
         
     | 
| 58 | 
         
            -
                             first_stage_key="image",
         
     | 
| 59 | 
         
            -
                             image_size=256,
         
     | 
| 60 | 
         
            -
                             channels=3,
         
     | 
| 61 | 
         
            -
                             log_every_t=100,
         
     | 
| 62 | 
         
            -
                             clip_denoised=True,
         
     | 
| 63 | 
         
            -
                             linear_start=1e-4,
         
     | 
| 64 | 
         
            -
                             linear_end=2e-2,
         
     | 
| 65 | 
         
            -
                             cosine_s=8e-3,
         
     | 
| 66 | 
         
            -
                             given_betas=None,
         
     | 
| 67 | 
         
            -
                             original_elbo_weight=0.,
         
     | 
| 68 | 
         
            -
                             v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
         
     | 
| 69 | 
         
            -
                             l_simple_weight=1.,
         
     | 
| 70 | 
         
            -
                             conditioning_key=None,
         
     | 
| 71 | 
         
            -
                             parameterization="eps",  # all assuming fixed variance schedules
         
     | 
| 72 | 
         
            -
                             scheduler_config=None,
         
     | 
| 73 | 
         
            -
                             use_positional_encodings=False,
         
     | 
| 74 | 
         
            -
                             learn_logvar=False,
         
     | 
| 75 | 
         
            -
                             logvar_init=0.,
         
     | 
| 76 | 
         
            -
                             make_it_fit=False,
         
     | 
| 77 | 
         
            -
                             ucg_training=None,
         
     | 
| 78 | 
         
            -
                             reset_ema=False,
         
     | 
| 79 | 
         
            -
                             reset_num_ema_updates=False,
         
     | 
| 80 | 
         
            -
                             ):
         
     | 
| 81 | 
         
            -
                    super().__init__()
         
     | 
| 82 | 
         
            -
                    assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
         
     | 
| 83 | 
         
            -
                    self.parameterization = parameterization
         
     | 
| 84 | 
         
            -
                    print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
         
     | 
| 85 | 
         
            -
                    self.cond_stage_model = None
         
     | 
| 86 | 
         
            -
                    self.clip_denoised = clip_denoised
         
     | 
| 87 | 
         
            -
                    self.log_every_t = log_every_t
         
     | 
| 88 | 
         
            -
                    self.first_stage_key = first_stage_key
         
     | 
| 89 | 
         
            -
                    self.image_size = image_size  # try conv?
         
     | 
| 90 | 
         
            -
                    self.channels = channels
         
     | 
| 91 | 
         
            -
                    self.use_positional_encodings = use_positional_encodings
         
     | 
| 92 | 
         
            -
                    self.model = DiffusionWrapper(unet_config, conditioning_key)
         
     | 
| 93 | 
         
            -
                    count_params(self.model, verbose=True)
         
     | 
| 94 | 
         
            -
                    self.use_ema = use_ema
         
     | 
| 95 | 
         
            -
                    if self.use_ema:
         
     | 
| 96 | 
         
            -
                        self.model_ema = LitEma(self.model)
         
     | 
| 97 | 
         
            -
                        print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
                    self.use_scheduler = scheduler_config is not None
         
     | 
| 100 | 
         
            -
                    if self.use_scheduler:
         
     | 
| 101 | 
         
            -
                        self.scheduler_config = scheduler_config
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
                    self.v_posterior = v_posterior
         
     | 
| 104 | 
         
            -
                    self.original_elbo_weight = original_elbo_weight
         
     | 
| 105 | 
         
            -
                    self.l_simple_weight = l_simple_weight
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                    if monitor is not None:
         
     | 
| 108 | 
         
            -
                        self.monitor = monitor
         
     | 
| 109 | 
         
            -
                    self.make_it_fit = make_it_fit
         
     | 
| 110 | 
         
            -
                    if reset_ema: assert exists(ckpt_path)
         
     | 
| 111 | 
         
            -
                    if ckpt_path is not None:
         
     | 
| 112 | 
         
            -
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
         
     | 
| 113 | 
         
            -
                        if reset_ema:
         
     | 
| 114 | 
         
            -
                            assert self.use_ema
         
     | 
| 115 | 
         
            -
                            print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
         
     | 
| 116 | 
         
            -
                            self.model_ema = LitEma(self.model)
         
     | 
| 117 | 
         
            -
                    if reset_num_ema_updates:
         
     | 
| 118 | 
         
            -
                        print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
         
     | 
| 119 | 
         
            -
                        assert self.use_ema
         
     | 
| 120 | 
         
            -
                        self.model_ema.reset_num_updates()
         
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
                    self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
         
     | 
| 123 | 
         
            -
                                           linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                    self.loss_type = loss_type
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
                    self.learn_logvar = learn_logvar
         
     | 
| 128 | 
         
            -
                    self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
         
     | 
| 129 | 
         
            -
                    if self.learn_logvar:
         
     | 
| 130 | 
         
            -
                        self.logvar = nn.Parameter(self.logvar, requires_grad=True)
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                    self.ucg_training = ucg_training or dict()
         
     | 
| 133 | 
         
            -
                    if self.ucg_training:
         
     | 
| 134 | 
         
            -
                        self.ucg_prng = np.random.RandomState()
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 137 | 
         
            -
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 138 | 
         
            -
                    if exists(given_betas):
         
     | 
| 139 | 
         
            -
                        betas = given_betas
         
     | 
| 140 | 
         
            -
                    else:
         
     | 
| 141 | 
         
            -
                        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
         
     | 
| 142 | 
         
            -
                                                   cosine_s=cosine_s)
         
     | 
| 143 | 
         
            -
                    alphas = 1. - betas
         
     | 
| 144 | 
         
            -
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         
     | 
| 145 | 
         
            -
                    alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
                    timesteps, = betas.shape
         
     | 
| 148 | 
         
            -
                    self.num_timesteps = int(timesteps)
         
     | 
| 149 | 
         
            -
                    self.linear_start = linear_start
         
     | 
| 150 | 
         
            -
                    self.linear_end = linear_end
         
     | 
| 151 | 
         
            -
                    assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 154 | 
         
            -
             
     | 
| 155 | 
         
            -
                    self.register_buffer('betas', to_torch(betas))
         
     | 
| 156 | 
         
            -
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 157 | 
         
            -
                    self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
         
     | 
| 158 | 
         
            -
             
     | 
| 159 | 
         
            -
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 160 | 
         
            -
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 161 | 
         
            -
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 162 | 
         
            -
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
         
     | 
| 163 | 
         
            -
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
         
     | 
| 164 | 
         
            -
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
         
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
                    # calculations for posterior q(x_{t-1} | x_t, x_0)
         
     | 
| 167 | 
         
            -
                    posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
         
     | 
| 168 | 
         
            -
                            1. - alphas_cumprod) + self.v_posterior * betas
         
     | 
| 169 | 
         
            -
                    # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
         
     | 
| 170 | 
         
            -
                    self.register_buffer('posterior_variance', to_torch(posterior_variance))
         
     | 
| 171 | 
         
            -
                    # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
         
     | 
| 172 | 
         
            -
                    self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
         
     | 
| 173 | 
         
            -
                    self.register_buffer('posterior_mean_coef1', to_torch(
         
     | 
| 174 | 
         
            -
                        betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
         
     | 
| 175 | 
         
            -
                    self.register_buffer('posterior_mean_coef2', to_torch(
         
     | 
| 176 | 
         
            -
                        (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
                    if self.parameterization == "eps":
         
     | 
| 179 | 
         
            -
                        lvlb_weights = self.betas ** 2 / (
         
     | 
| 180 | 
         
            -
                                2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
         
     | 
| 181 | 
         
            -
                    elif self.parameterization == "x0":
         
     | 
| 182 | 
         
            -
                        lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
         
     | 
| 183 | 
         
            -
                    elif self.parameterization == "v":
         
     | 
| 184 | 
         
            -
                        lvlb_weights = torch.ones_like(self.betas ** 2 / (
         
     | 
| 185 | 
         
            -
                                2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
         
     | 
| 186 | 
         
            -
                    else:
         
     | 
| 187 | 
         
            -
                        raise NotImplementedError("mu not supported")
         
     | 
| 188 | 
         
            -
                    # TODO how to choose this term
         
     | 
| 189 | 
         
            -
                    lvlb_weights[0] = lvlb_weights[1]
         
     | 
| 190 | 
         
            -
                    self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
         
     | 
| 191 | 
         
            -
                    assert not torch.isnan(self.lvlb_weights).all()
         
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
                @contextmanager
         
     | 
| 194 | 
         
            -
                def ema_scope(self, context=None):
         
     | 
| 195 | 
         
            -
                    if self.use_ema:
         
     | 
| 196 | 
         
            -
                        self.model_ema.store(self.model.parameters())
         
     | 
| 197 | 
         
            -
                        self.model_ema.copy_to(self.model)
         
     | 
| 198 | 
         
            -
                        if context is not None:
         
     | 
| 199 | 
         
            -
                            print(f"{context}: Switched to EMA weights")
         
     | 
| 200 | 
         
            -
                    try:
         
     | 
| 201 | 
         
            -
                        yield None
         
     | 
| 202 | 
         
            -
                    finally:
         
     | 
| 203 | 
         
            -
                        if self.use_ema:
         
     | 
| 204 | 
         
            -
                            self.model_ema.restore(self.model.parameters())
         
     | 
| 205 | 
         
            -
                            if context is not None:
         
     | 
| 206 | 
         
            -
                                print(f"{context}: Restored training weights")
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
                @torch.no_grad()
         
     | 
| 209 | 
         
            -
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         
     | 
| 210 | 
         
            -
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 211 | 
         
            -
                    if "state_dict" in list(sd.keys()):
         
     | 
| 212 | 
         
            -
                        sd = sd["state_dict"]
         
     | 
| 213 | 
         
            -
                    keys = list(sd.keys())
         
     | 
| 214 | 
         
            -
                    for k in keys:
         
     | 
| 215 | 
         
            -
                        for ik in ignore_keys:
         
     | 
| 216 | 
         
            -
                            if k.startswith(ik):
         
     | 
| 217 | 
         
            -
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 218 | 
         
            -
                                del sd[k]
         
     | 
| 219 | 
         
            -
                    if self.make_it_fit:
         
     | 
| 220 | 
         
            -
                        n_params = len([name for name, _ in
         
     | 
| 221 | 
         
            -
                                        itertools.chain(self.named_parameters(),
         
     | 
| 222 | 
         
            -
                                                        self.named_buffers())])
         
     | 
| 223 | 
         
            -
                        for name, param in tqdm(
         
     | 
| 224 | 
         
            -
                                itertools.chain(self.named_parameters(),
         
     | 
| 225 | 
         
            -
                                                self.named_buffers()),
         
     | 
| 226 | 
         
            -
                                desc="Fitting old weights to new weights",
         
     | 
| 227 | 
         
            -
                                total=n_params
         
     | 
| 228 | 
         
            -
                        ):
         
     | 
| 229 | 
         
            -
                            if not name in sd:
         
     | 
| 230 | 
         
            -
                                continue
         
     | 
| 231 | 
         
            -
                            old_shape = sd[name].shape
         
     | 
| 232 | 
         
            -
                            new_shape = param.shape
         
     | 
| 233 | 
         
            -
                            assert len(old_shape) == len(new_shape)
         
     | 
| 234 | 
         
            -
                            if len(new_shape) > 2:
         
     | 
| 235 | 
         
            -
                                # we only modify first two axes
         
     | 
| 236 | 
         
            -
                                assert new_shape[2:] == old_shape[2:]
         
     | 
| 237 | 
         
            -
                            # assumes first axis corresponds to output dim
         
     | 
| 238 | 
         
            -
                            if not new_shape == old_shape:
         
     | 
| 239 | 
         
            -
                                new_param = param.clone()
         
     | 
| 240 | 
         
            -
                                old_param = sd[name]
         
     | 
| 241 | 
         
            -
                                if len(new_shape) == 1:
         
     | 
| 242 | 
         
            -
                                    for i in range(new_param.shape[0]):
         
     | 
| 243 | 
         
            -
                                        new_param[i] = old_param[i % old_shape[0]]
         
     | 
| 244 | 
         
            -
                                elif len(new_shape) >= 2:
         
     | 
| 245 | 
         
            -
                                    for i in range(new_param.shape[0]):
         
     | 
| 246 | 
         
            -
                                        for j in range(new_param.shape[1]):
         
     | 
| 247 | 
         
            -
                                            new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
         
     | 
| 248 | 
         
            -
             
     | 
| 249 | 
         
            -
                                    n_used_old = torch.ones(old_shape[1])
         
     | 
| 250 | 
         
            -
                                    for j in range(new_param.shape[1]):
         
     | 
| 251 | 
         
            -
                                        n_used_old[j % old_shape[1]] += 1
         
     | 
| 252 | 
         
            -
                                    n_used_new = torch.zeros(new_shape[1])
         
     | 
| 253 | 
         
            -
                                    for j in range(new_param.shape[1]):
         
     | 
| 254 | 
         
            -
                                        n_used_new[j] = n_used_old[j % old_shape[1]]
         
     | 
| 255 | 
         
            -
             
     | 
| 256 | 
         
            -
                                    n_used_new = n_used_new[None, :]
         
     | 
| 257 | 
         
            -
                                    while len(n_used_new.shape) < len(new_shape):
         
     | 
| 258 | 
         
            -
                                        n_used_new = n_used_new.unsqueeze(-1)
         
     | 
| 259 | 
         
            -
                                    new_param /= n_used_new
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
                                sd[name] = new_param
         
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         
     | 
| 264 | 
         
            -
                        sd, strict=False)
         
     | 
| 265 | 
         
            -
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 266 | 
         
            -
                    if len(missing) > 0:
         
     | 
| 267 | 
         
            -
                        print(f"Missing Keys:\n {missing}")
         
     | 
| 268 | 
         
            -
                    if len(unexpected) > 0:
         
     | 
| 269 | 
         
            -
                        print(f"\nUnexpected Keys:\n {unexpected}")
         
     | 
| 270 | 
         
            -
             
     | 
| 271 | 
         
            -
                def q_mean_variance(self, x_start, t):
         
     | 
| 272 | 
         
            -
                    """
         
     | 
| 273 | 
         
            -
                    Get the distribution q(x_t | x_0).
         
     | 
| 274 | 
         
            -
                    :param x_start: the [N x C x ...] tensor of noiseless inputs.
         
     | 
| 275 | 
         
            -
                    :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
         
     | 
| 276 | 
         
            -
                    :return: A tuple (mean, variance, log_variance), all of x_start's shape.
         
     | 
| 277 | 
         
            -
                    """
         
     | 
| 278 | 
         
            -
                    mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
         
     | 
| 279 | 
         
            -
                    variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
         
     | 
| 280 | 
         
            -
                    log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
         
     | 
| 281 | 
         
            -
                    return mean, variance, log_variance
         
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
                def predict_start_from_noise(self, x_t, t, noise):
         
     | 
| 284 | 
         
            -
                    return (
         
     | 
| 285 | 
         
            -
                            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
         
     | 
| 286 | 
         
            -
                            extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
         
     | 
| 287 | 
         
            -
                    )
         
     | 
| 288 | 
         
            -
             
     | 
| 289 | 
         
            -
                def predict_start_from_z_and_v(self, x_t, t, v):
         
     | 
| 290 | 
         
            -
                    # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 291 | 
         
            -
                    # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 292 | 
         
            -
                    return (
         
     | 
| 293 | 
         
            -
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
         
     | 
| 294 | 
         
            -
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
         
     | 
| 295 | 
         
            -
                    )
         
     | 
| 296 | 
         
            -
             
     | 
| 297 | 
         
            -
                def predict_eps_from_z_and_v(self, x_t, t, v):
         
     | 
| 298 | 
         
            -
                    return (
         
     | 
| 299 | 
         
            -
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
         
     | 
| 300 | 
         
            -
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
         
     | 
| 301 | 
         
            -
                    )
         
     | 
| 302 | 
         
            -
             
     | 
| 303 | 
         
            -
                def q_posterior(self, x_start, x_t, t):
         
     | 
| 304 | 
         
            -
                    posterior_mean = (
         
     | 
| 305 | 
         
            -
                            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
         
     | 
| 306 | 
         
            -
                            extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
         
     | 
| 307 | 
         
            -
                    )
         
     | 
| 308 | 
         
            -
                    posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
         
     | 
| 309 | 
         
            -
                    posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
         
     | 
| 310 | 
         
            -
                    return posterior_mean, posterior_variance, posterior_log_variance_clipped
         
     | 
| 311 | 
         
            -
             
     | 
| 312 | 
         
            -
                def p_mean_variance(self, x, t, clip_denoised: bool):
         
     | 
| 313 | 
         
            -
                    model_out = self.model(x, t)
         
     | 
| 314 | 
         
            -
                    if self.parameterization == "eps":
         
     | 
| 315 | 
         
            -
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 316 | 
         
            -
                    elif self.parameterization == "x0":
         
     | 
| 317 | 
         
            -
                        x_recon = model_out
         
     | 
| 318 | 
         
            -
                    if clip_denoised:
         
     | 
| 319 | 
         
            -
                        x_recon.clamp_(-1., 1.)
         
     | 
| 320 | 
         
            -
             
     | 
| 321 | 
         
            -
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 322 | 
         
            -
                    return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 323 | 
         
            -
             
     | 
| 324 | 
         
            -
                @torch.no_grad()
         
     | 
| 325 | 
         
            -
                def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
         
     | 
| 326 | 
         
            -
                    b, *_, device = *x.shape, x.device
         
     | 
| 327 | 
         
            -
                    model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
         
     | 
| 328 | 
         
            -
                    noise = noise_like(x.shape, device, repeat_noise)
         
     | 
| 329 | 
         
            -
                    # no noise when t == 0
         
     | 
| 330 | 
         
            -
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 331 | 
         
            -
                    return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 332 | 
         
            -
             
     | 
| 333 | 
         
            -
                @torch.no_grad()
         
     | 
| 334 | 
         
            -
                def p_sample_loop(self, shape, return_intermediates=False):
         
     | 
| 335 | 
         
            -
                    device = self.betas.device
         
     | 
| 336 | 
         
            -
                    b = shape[0]
         
     | 
| 337 | 
         
            -
                    img = torch.randn(shape, device=device)
         
     | 
| 338 | 
         
            -
                    intermediates = [img]
         
     | 
| 339 | 
         
            -
                    for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
         
     | 
| 340 | 
         
            -
                        img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
         
     | 
| 341 | 
         
            -
                                            clip_denoised=self.clip_denoised)
         
     | 
| 342 | 
         
            -
                        if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
         
     | 
| 343 | 
         
            -
                            intermediates.append(img)
         
     | 
| 344 | 
         
            -
                    if return_intermediates:
         
     | 
| 345 | 
         
            -
                        return img, intermediates
         
     | 
| 346 | 
         
            -
                    return img
         
     | 
| 347 | 
         
            -
             
     | 
| 348 | 
         
            -
                @torch.no_grad()
         
     | 
| 349 | 
         
            -
                def sample(self, batch_size=16, return_intermediates=False):
         
     | 
| 350 | 
         
            -
                    image_size = self.image_size
         
     | 
| 351 | 
         
            -
                    channels = self.channels
         
     | 
| 352 | 
         
            -
                    return self.p_sample_loop((batch_size, channels, image_size, image_size),
         
     | 
| 353 | 
         
            -
                                              return_intermediates=return_intermediates)
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                def q_sample(self, x_start, t, noise=None):
         
     | 
| 356 | 
         
            -
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 357 | 
         
            -
                    return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
         
     | 
| 358 | 
         
            -
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
         
     | 
| 359 | 
         
            -
             
     | 
| 360 | 
         
            -
                def get_v(self, x, noise, t):
         
     | 
| 361 | 
         
            -
                    return (
         
     | 
| 362 | 
         
            -
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
         
     | 
| 363 | 
         
            -
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
         
     | 
| 364 | 
         
            -
                    )
         
     | 
| 365 | 
         
            -
             
     | 
| 366 | 
         
            -
                def get_loss(self, pred, target, mean=True):
         
     | 
| 367 | 
         
            -
                    if self.loss_type == 'l1':
         
     | 
| 368 | 
         
            -
                        loss = (target - pred).abs()
         
     | 
| 369 | 
         
            -
                        if mean:
         
     | 
| 370 | 
         
            -
                            loss = loss.mean()
         
     | 
| 371 | 
         
            -
                    elif self.loss_type == 'l2':
         
     | 
| 372 | 
         
            -
                        if mean:
         
     | 
| 373 | 
         
            -
                            loss = torch.nn.functional.mse_loss(target, pred)
         
     | 
| 374 | 
         
            -
                        else:
         
     | 
| 375 | 
         
            -
                            loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
         
     | 
| 376 | 
         
            -
                    else:
         
     | 
| 377 | 
         
            -
                        raise NotImplementedError("unknown loss type '{loss_type}'")
         
     | 
| 378 | 
         
            -
             
     | 
| 379 | 
         
            -
                    return loss
         
     | 
| 380 | 
         
            -
             
     | 
| 381 | 
         
            -
                def p_losses(self, x_start, t, noise=None):
         
     | 
| 382 | 
         
            -
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 383 | 
         
            -
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 384 | 
         
            -
                    model_out = self.model(x_noisy, t)
         
     | 
| 385 | 
         
            -
             
     | 
| 386 | 
         
            -
                    loss_dict = {}
         
     | 
| 387 | 
         
            -
                    if self.parameterization == "eps":
         
     | 
| 388 | 
         
            -
                        target = noise
         
     | 
| 389 | 
         
            -
                    elif self.parameterization == "x0":
         
     | 
| 390 | 
         
            -
                        target = x_start
         
     | 
| 391 | 
         
            -
                    elif self.parameterization == "v":
         
     | 
| 392 | 
         
            -
                        target = self.get_v(x_start, noise, t)
         
     | 
| 393 | 
         
            -
                    else:
         
     | 
| 394 | 
         
            -
                        raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
         
     | 
| 395 | 
         
            -
             
     | 
| 396 | 
         
            -
                    loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
         
     | 
| 397 | 
         
            -
             
     | 
| 398 | 
         
            -
                    log_prefix = 'train' if self.training else 'val'
         
     | 
| 399 | 
         
            -
             
     | 
| 400 | 
         
            -
                    loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
         
     | 
| 401 | 
         
            -
                    loss_simple = loss.mean() * self.l_simple_weight
         
     | 
| 402 | 
         
            -
             
     | 
| 403 | 
         
            -
                    loss_vlb = (self.lvlb_weights[t] * loss).mean()
         
     | 
| 404 | 
         
            -
                    loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
         
     | 
| 405 | 
         
            -
             
     | 
| 406 | 
         
            -
                    loss = loss_simple + self.original_elbo_weight * loss_vlb
         
     | 
| 407 | 
         
            -
             
     | 
| 408 | 
         
            -
                    loss_dict.update({f'{log_prefix}/loss': loss})
         
     | 
| 409 | 
         
            -
             
     | 
| 410 | 
         
            -
                    return loss, loss_dict
         
     | 
| 411 | 
         
            -
             
     | 
| 412 | 
         
            -
                def forward(self, x, *args, **kwargs):
         
     | 
| 413 | 
         
            -
                    # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
         
     | 
| 414 | 
         
            -
                    # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
         
     | 
| 415 | 
         
            -
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 416 | 
         
            -
                    return self.p_losses(x, t, *args, **kwargs)
         
     | 
| 417 | 
         
            -
             
     | 
| 418 | 
         
            -
                def get_input(self, batch, k):
         
     | 
| 419 | 
         
            -
                    x = batch[k]
         
     | 
| 420 | 
         
            -
                    if len(x.shape) == 3:
         
     | 
| 421 | 
         
            -
                        x = x[..., None]
         
     | 
| 422 | 
         
            -
                    x = rearrange(x, 'b h w c -> b c h w')
         
     | 
| 423 | 
         
            -
                    x = x.to(memory_format=torch.contiguous_format).float()
         
     | 
| 424 | 
         
            -
                    return x
         
     | 
| 425 | 
         
            -
             
     | 
| 426 | 
         
            -
                def shared_step(self, batch):
         
     | 
| 427 | 
         
            -
                    x = self.get_input(batch, self.first_stage_key)
         
     | 
| 428 | 
         
            -
                    loss, loss_dict = self(x)
         
     | 
| 429 | 
         
            -
                    return loss, loss_dict
         
     | 
| 430 | 
         
            -
             
     | 
| 431 | 
         
            -
                def training_step(self, batch, batch_idx):
         
     | 
| 432 | 
         
            -
                    for k in self.ucg_training:
         
     | 
| 433 | 
         
            -
                        p = self.ucg_training[k]["p"]
         
     | 
| 434 | 
         
            -
                        val = self.ucg_training[k]["val"]
         
     | 
| 435 | 
         
            -
                        if val is None:
         
     | 
| 436 | 
         
            -
                            val = ""
         
     | 
| 437 | 
         
            -
                        for i in range(len(batch[k])):
         
     | 
| 438 | 
         
            -
                            if self.ucg_prng.choice(2, p=[1 - p, p]):
         
     | 
| 439 | 
         
            -
                                batch[k][i] = val
         
     | 
| 440 | 
         
            -
             
     | 
| 441 | 
         
            -
                    loss, loss_dict = self.shared_step(batch)
         
     | 
| 442 | 
         
            -
             
     | 
| 443 | 
         
            -
                    self.log_dict(loss_dict, prog_bar=True,
         
     | 
| 444 | 
         
            -
                                  logger=True, on_step=True, on_epoch=True)
         
     | 
| 445 | 
         
            -
             
     | 
| 446 | 
         
            -
                    self.log("global_step", self.global_step,
         
     | 
| 447 | 
         
            -
                             prog_bar=True, logger=True, on_step=True, on_epoch=False)
         
     | 
| 448 | 
         
            -
             
     | 
| 449 | 
         
            -
                    if self.use_scheduler:
         
     | 
| 450 | 
         
            -
                        lr = self.optimizers().param_groups[0]['lr']
         
     | 
| 451 | 
         
            -
                        self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
         
     | 
| 452 | 
         
            -
             
     | 
| 453 | 
         
            -
                    return loss
         
     | 
| 454 | 
         
            -
             
     | 
| 455 | 
         
            -
                @torch.no_grad()
         
     | 
| 456 | 
         
            -
                def validation_step(self, batch, batch_idx):
         
     | 
| 457 | 
         
            -
                    _, loss_dict_no_ema = self.shared_step(batch)
         
     | 
| 458 | 
         
            -
                    with self.ema_scope():
         
     | 
| 459 | 
         
            -
                        _, loss_dict_ema = self.shared_step(batch)
         
     | 
| 460 | 
         
            -
                        loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
         
     | 
| 461 | 
         
            -
                    self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
         
     | 
| 462 | 
         
            -
                    self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
         
     | 
| 463 | 
         
            -
             
     | 
| 464 | 
         
            -
                def on_train_batch_end(self, *args, **kwargs):
         
     | 
| 465 | 
         
            -
                    if self.use_ema:
         
     | 
| 466 | 
         
            -
                        self.model_ema(self.model)
         
     | 
| 467 | 
         
            -
             
     | 
| 468 | 
         
            -
                def _get_rows_from_list(self, samples):
         
     | 
| 469 | 
         
            -
                    n_imgs_per_row = len(samples)
         
     | 
| 470 | 
         
            -
                    denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
         
     | 
| 471 | 
         
            -
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 472 | 
         
            -
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 473 | 
         
            -
                    return denoise_grid
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
            -
                @torch.no_grad()
         
     | 
| 476 | 
         
            -
                def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
         
     | 
| 477 | 
         
            -
                    log = dict()
         
     | 
| 478 | 
         
            -
                    x = self.get_input(batch, self.first_stage_key)
         
     | 
| 479 | 
         
            -
                    N = min(x.shape[0], N)
         
     | 
| 480 | 
         
            -
                    n_row = min(x.shape[0], n_row)
         
     | 
| 481 | 
         
            -
                    x = x.to(self.device)[:N]
         
     | 
| 482 | 
         
            -
                    log["inputs"] = x
         
     | 
| 483 | 
         
            -
             
     | 
| 484 | 
         
            -
                    # get diffusion row
         
     | 
| 485 | 
         
            -
                    diffusion_row = list()
         
     | 
| 486 | 
         
            -
                    x_start = x[:n_row]
         
     | 
| 487 | 
         
            -
             
     | 
| 488 | 
         
            -
                    for t in range(self.num_timesteps):
         
     | 
| 489 | 
         
            -
                        if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 490 | 
         
            -
                            t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 491 | 
         
            -
                            t = t.to(self.device).long()
         
     | 
| 492 | 
         
            -
                            noise = torch.randn_like(x_start)
         
     | 
| 493 | 
         
            -
                            x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 494 | 
         
            -
                            diffusion_row.append(x_noisy)
         
     | 
| 495 | 
         
            -
             
     | 
| 496 | 
         
            -
                    log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
         
     | 
| 497 | 
         
            -
             
     | 
| 498 | 
         
            -
                    if sample:
         
     | 
| 499 | 
         
            -
                        # get denoise row
         
     | 
| 500 | 
         
            -
                        with self.ema_scope("Plotting"):
         
     | 
| 501 | 
         
            -
                            samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
         
     | 
| 502 | 
         
            -
             
     | 
| 503 | 
         
            -
                        log["samples"] = samples
         
     | 
| 504 | 
         
            -
                        log["denoise_row"] = self._get_rows_from_list(denoise_row)
         
     | 
| 505 | 
         
            -
             
     | 
| 506 | 
         
            -
                    if return_keys:
         
     | 
| 507 | 
         
            -
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 508 | 
         
            -
                            return log
         
     | 
| 509 | 
         
            -
                        else:
         
     | 
| 510 | 
         
            -
                            return {key: log[key] for key in return_keys}
         
     | 
| 511 | 
         
            -
                    return log
         
     | 
| 512 | 
         
            -
             
     | 
| 513 | 
         
            -
                def configure_optimizers(self):
         
     | 
| 514 | 
         
            -
                    lr = self.learning_rate
         
     | 
| 515 | 
         
            -
                    params = list(self.model.parameters())
         
     | 
| 516 | 
         
            -
                    if self.learn_logvar:
         
     | 
| 517 | 
         
            -
                        params = params + [self.logvar]
         
     | 
| 518 | 
         
            -
                    opt = torch.optim.AdamW(params, lr=lr)
         
     | 
| 519 | 
         
            -
                    return opt
         
     | 
| 520 | 
         
            -
             
     | 
| 521 | 
         
            -
             
     | 
| 522 | 
         
            -
            class LatentDiffusion(DDPM):
         
     | 
| 523 | 
         
            -
                """main class"""
         
     | 
| 524 | 
         
            -
             
     | 
| 525 | 
         
            -
                def __init__(self,
         
     | 
| 526 | 
         
            -
                             first_stage_config,
         
     | 
| 527 | 
         
            -
                             cond_stage_config,
         
     | 
| 528 | 
         
            -
                             num_timesteps_cond=None,
         
     | 
| 529 | 
         
            -
                             cond_stage_key="image",
         
     | 
| 530 | 
         
            -
                             cond_stage_trainable=False,
         
     | 
| 531 | 
         
            -
                             concat_mode=True,
         
     | 
| 532 | 
         
            -
                             cond_stage_forward=None,
         
     | 
| 533 | 
         
            -
                             conditioning_key=None,
         
     | 
| 534 | 
         
            -
                             scale_factor=1.0,
         
     | 
| 535 | 
         
            -
                             scale_by_std=False,
         
     | 
| 536 | 
         
            -
                             force_null_conditioning=False,
         
     | 
| 537 | 
         
            -
                             *args, **kwargs):
         
     | 
| 538 | 
         
            -
                    self.force_null_conditioning = force_null_conditioning
         
     | 
| 539 | 
         
            -
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         
     | 
| 540 | 
         
            -
                    self.scale_by_std = scale_by_std
         
     | 
| 541 | 
         
            -
                    assert self.num_timesteps_cond <= kwargs['timesteps']
         
     | 
| 542 | 
         
            -
                    # for backwards compatibility after implementation of DiffusionWrapper
         
     | 
| 543 | 
         
            -
                    if conditioning_key is None:
         
     | 
| 544 | 
         
            -
                        conditioning_key = 'concat' if concat_mode else 'crossattn'
         
     | 
| 545 | 
         
            -
                    if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
         
     | 
| 546 | 
         
            -
                        conditioning_key = None
         
     | 
| 547 | 
         
            -
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 548 | 
         
            -
                    reset_ema = kwargs.pop("reset_ema", False)
         
     | 
| 549 | 
         
            -
                    reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
         
     | 
| 550 | 
         
            -
                    ignore_keys = kwargs.pop("ignore_keys", [])
         
     | 
| 551 | 
         
            -
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         
     | 
| 552 | 
         
            -
                    self.concat_mode = concat_mode
         
     | 
| 553 | 
         
            -
                    self.cond_stage_trainable = cond_stage_trainable
         
     | 
| 554 | 
         
            -
                    self.cond_stage_key = cond_stage_key
         
     | 
| 555 | 
         
            -
                    try:
         
     | 
| 556 | 
         
            -
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         
     | 
| 557 | 
         
            -
                    except:
         
     | 
| 558 | 
         
            -
                        self.num_downs = 0
         
     | 
| 559 | 
         
            -
                    if not scale_by_std:
         
     | 
| 560 | 
         
            -
                        self.scale_factor = scale_factor
         
     | 
| 561 | 
         
            -
                    else:
         
     | 
| 562 | 
         
            -
                        self.register_buffer('scale_factor', torch.tensor(scale_factor))
         
     | 
| 563 | 
         
            -
                    self.instantiate_first_stage(first_stage_config)
         
     | 
| 564 | 
         
            -
                    self.instantiate_cond_stage(cond_stage_config)
         
     | 
| 565 | 
         
            -
                    self.cond_stage_forward = cond_stage_forward
         
     | 
| 566 | 
         
            -
                    self.clip_denoised = False
         
     | 
| 567 | 
         
            -
                    self.bbox_tokenizer = None
         
     | 
| 568 | 
         
            -
             
     | 
| 569 | 
         
            -
                    self.restarted_from_ckpt = False
         
     | 
| 570 | 
         
            -
                    if ckpt_path is not None:
         
     | 
| 571 | 
         
            -
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         
     | 
| 572 | 
         
            -
                        self.restarted_from_ckpt = True
         
     | 
| 573 | 
         
            -
                        if reset_ema:
         
     | 
| 574 | 
         
            -
                            assert self.use_ema
         
     | 
| 575 | 
         
            -
                            print(
         
     | 
| 576 | 
         
            -
                                f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
         
     | 
| 577 | 
         
            -
                            self.model_ema = LitEma(self.model)
         
     | 
| 578 | 
         
            -
                    if reset_num_ema_updates:
         
     | 
| 579 | 
         
            -
                        print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
         
     | 
| 580 | 
         
            -
                        assert self.use_ema
         
     | 
| 581 | 
         
            -
                        self.model_ema.reset_num_updates()
         
     | 
| 582 | 
         
            -
             
     | 
| 583 | 
         
            -
                def make_cond_schedule(self, ):
         
     | 
| 584 | 
         
            -
                    self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
         
     | 
| 585 | 
         
            -
                    ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
         
     | 
| 586 | 
         
            -
                    self.cond_ids[:self.num_timesteps_cond] = ids
         
     | 
| 587 | 
         
            -
             
     | 
| 588 | 
         
            -
                @rank_zero_only
         
     | 
| 589 | 
         
            -
                @torch.no_grad()
         
     | 
| 590 | 
         
            -
                def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
         
     | 
| 591 | 
         
            -
                    # only for very first batch
         
     | 
| 592 | 
         
            -
                    if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
         
     | 
| 593 | 
         
            -
                        assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
         
     | 
| 594 | 
         
            -
                        # set rescale weight to 1./std of encodings
         
     | 
| 595 | 
         
            -
                        print("### USING STD-RESCALING ###")
         
     | 
| 596 | 
         
            -
                        x = super().get_input(batch, self.first_stage_key)
         
     | 
| 597 | 
         
            -
                        x = x.to(self.device)
         
     | 
| 598 | 
         
            -
                        encoder_posterior = self.encode_first_stage(x)
         
     | 
| 599 | 
         
            -
                        z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 600 | 
         
            -
                        del self.scale_factor
         
     | 
| 601 | 
         
            -
                        self.register_buffer('scale_factor', 1. / z.flatten().std())
         
     | 
| 602 | 
         
            -
                        print(f"setting self.scale_factor to {self.scale_factor}")
         
     | 
| 603 | 
         
            -
                        print("### USING STD-RESCALING ###")
         
     | 
| 604 | 
         
            -
             
     | 
| 605 | 
         
            -
                def register_schedule(self,
         
     | 
| 606 | 
         
            -
                                      given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 607 | 
         
            -
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 608 | 
         
            -
                    super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
         
     | 
| 609 | 
         
            -
             
     | 
| 610 | 
         
            -
                    self.shorten_cond_schedule = self.num_timesteps_cond > 1
         
     | 
| 611 | 
         
            -
                    if self.shorten_cond_schedule:
         
     | 
| 612 | 
         
            -
                        self.make_cond_schedule()
         
     | 
| 613 | 
         
            -
             
     | 
| 614 | 
         
            -
                def instantiate_first_stage(self, config):
         
     | 
| 615 | 
         
            -
                    model = instantiate_from_config(config)
         
     | 
| 616 | 
         
            -
                    self.first_stage_model = model.eval()
         
     | 
| 617 | 
         
            -
                    self.first_stage_model.train = disabled_train
         
     | 
| 618 | 
         
            -
                    for param in self.first_stage_model.parameters():
         
     | 
| 619 | 
         
            -
                        param.requires_grad = False
         
     | 
| 620 | 
         
            -
             
     | 
| 621 | 
         
            -
                def instantiate_cond_stage(self, config):
         
     | 
| 622 | 
         
            -
                    if not self.cond_stage_trainable:
         
     | 
| 623 | 
         
            -
                        if config == "__is_first_stage__":
         
     | 
| 624 | 
         
            -
                            print("Using first stage also as cond stage.")
         
     | 
| 625 | 
         
            -
                            self.cond_stage_model = self.first_stage_model
         
     | 
| 626 | 
         
            -
                        elif config == "__is_unconditional__":
         
     | 
| 627 | 
         
            -
                            print(f"Training {self.__class__.__name__} as an unconditional model.")
         
     | 
| 628 | 
         
            -
                            self.cond_stage_model = None
         
     | 
| 629 | 
         
            -
                            # self.be_unconditional = True
         
     | 
| 630 | 
         
            -
                        else:
         
     | 
| 631 | 
         
            -
                            model = instantiate_from_config(config)
         
     | 
| 632 | 
         
            -
                            self.cond_stage_model = model.eval()
         
     | 
| 633 | 
         
            -
                            self.cond_stage_model.train = disabled_train
         
     | 
| 634 | 
         
            -
                            for param in self.cond_stage_model.parameters():
         
     | 
| 635 | 
         
            -
                                param.requires_grad = False
         
     | 
| 636 | 
         
            -
                    else:
         
     | 
| 637 | 
         
            -
                        assert config != '__is_first_stage__'
         
     | 
| 638 | 
         
            -
                        assert config != '__is_unconditional__'
         
     | 
| 639 | 
         
            -
                        model = instantiate_from_config(config)
         
     | 
| 640 | 
         
            -
                        self.cond_stage_model = model
         
     | 
| 641 | 
         
            -
             
     | 
| 642 | 
         
            -
                def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
         
     | 
| 643 | 
         
            -
                    denoise_row = []
         
     | 
| 644 | 
         
            -
                    for zd in tqdm(samples, desc=desc):
         
     | 
| 645 | 
         
            -
                        denoise_row.append(self.decode_first_stage(zd.to(self.device),
         
     | 
| 646 | 
         
            -
                                                                   force_not_quantize=force_no_decoder_quantization))
         
     | 
| 647 | 
         
            -
                    n_imgs_per_row = len(denoise_row)
         
     | 
| 648 | 
         
            -
                    denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
         
     | 
| 649 | 
         
            -
                    denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
         
     | 
| 650 | 
         
            -
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 651 | 
         
            -
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 652 | 
         
            -
                    return denoise_grid
         
     | 
| 653 | 
         
            -
             
     | 
| 654 | 
         
            -
                def get_first_stage_encoding(self, encoder_posterior):
         
     | 
| 655 | 
         
            -
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 656 | 
         
            -
                        z = encoder_posterior.sample()
         
     | 
| 657 | 
         
            -
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 658 | 
         
            -
                        z = encoder_posterior
         
     | 
| 659 | 
         
            -
                    else:
         
     | 
| 660 | 
         
            -
                        raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
         
     | 
| 661 | 
         
            -
                    return self.scale_factor * z
         
     | 
| 662 | 
         
            -
             
     | 
| 663 | 
         
            -
                def get_learned_conditioning(self, c):
         
     | 
| 664 | 
         
            -
                    if self.cond_stage_forward is None:
         
     | 
| 665 | 
         
            -
                        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
         
     | 
| 666 | 
         
            -
                            c = self.cond_stage_model.encode(c)
         
     | 
| 667 | 
         
            -
                            if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 668 | 
         
            -
                                c = c.mode()
         
     | 
| 669 | 
         
            -
                        else:
         
     | 
| 670 | 
         
            -
                            c = self.cond_stage_model(c)
         
     | 
| 671 | 
         
            -
                    else:
         
     | 
| 672 | 
         
            -
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         
     | 
| 673 | 
         
            -
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         
     | 
| 674 | 
         
            -
                    return c
         
     | 
| 675 | 
         
            -
             
     | 
| 676 | 
         
            -
                def meshgrid(self, h, w):
         
     | 
| 677 | 
         
            -
                    y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
         
     | 
| 678 | 
         
            -
                    x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
         
     | 
| 679 | 
         
            -
             
     | 
| 680 | 
         
            -
                    arr = torch.cat([y, x], dim=-1)
         
     | 
| 681 | 
         
            -
                    return arr
         
     | 
| 682 | 
         
            -
             
     | 
| 683 | 
         
            -
                def delta_border(self, h, w):
         
     | 
| 684 | 
         
            -
                    """
         
     | 
| 685 | 
         
            -
                    :param h: height
         
     | 
| 686 | 
         
            -
                    :param w: width
         
     | 
| 687 | 
         
            -
                    :return: normalized distance to image border,
         
     | 
| 688 | 
         
            -
                     wtith min distance = 0 at border and max dist = 0.5 at image center
         
     | 
| 689 | 
         
            -
                    """
         
     | 
| 690 | 
         
            -
                    lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
         
     | 
| 691 | 
         
            -
                    arr = self.meshgrid(h, w) / lower_right_corner
         
     | 
| 692 | 
         
            -
                    dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
         
     | 
| 693 | 
         
            -
                    dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
         
     | 
| 694 | 
         
            -
                    edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
         
     | 
| 695 | 
         
            -
                    return edge_dist
         
     | 
| 696 | 
         
            -
             
     | 
| 697 | 
         
            -
                def get_weighting(self, h, w, Ly, Lx, device):
         
     | 
| 698 | 
         
            -
                    weighting = self.delta_border(h, w)
         
     | 
| 699 | 
         
            -
                    weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
         
     | 
| 700 | 
         
            -
                                           self.split_input_params["clip_max_weight"], )
         
     | 
| 701 | 
         
            -
                    weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
         
     | 
| 702 | 
         
            -
             
     | 
| 703 | 
         
            -
                    if self.split_input_params["tie_braker"]:
         
     | 
| 704 | 
         
            -
                        L_weighting = self.delta_border(Ly, Lx)
         
     | 
| 705 | 
         
            -
                        L_weighting = torch.clip(L_weighting,
         
     | 
| 706 | 
         
            -
                                                 self.split_input_params["clip_min_tie_weight"],
         
     | 
| 707 | 
         
            -
                                                 self.split_input_params["clip_max_tie_weight"])
         
     | 
| 708 | 
         
            -
             
     | 
| 709 | 
         
            -
                        L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
         
     | 
| 710 | 
         
            -
                        weighting = weighting * L_weighting
         
     | 
| 711 | 
         
            -
                    return weighting
         
     | 
| 712 | 
         
            -
             
     | 
| 713 | 
         
            -
                def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
         
     | 
| 714 | 
         
            -
                    """
         
     | 
| 715 | 
         
            -
                    :param x: img of size (bs, c, h, w)
         
     | 
| 716 | 
         
            -
                    :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
         
     | 
| 717 | 
         
            -
                    """
         
     | 
| 718 | 
         
            -
                    bs, nc, h, w = x.shape
         
     | 
| 719 | 
         
            -
             
     | 
| 720 | 
         
            -
                    # number of crops in image
         
     | 
| 721 | 
         
            -
                    Ly = (h - kernel_size[0]) // stride[0] + 1
         
     | 
| 722 | 
         
            -
                    Lx = (w - kernel_size[1]) // stride[1] + 1
         
     | 
| 723 | 
         
            -
             
     | 
| 724 | 
         
            -
                    if uf == 1 and df == 1:
         
     | 
| 725 | 
         
            -
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 726 | 
         
            -
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 727 | 
         
            -
             
     | 
| 728 | 
         
            -
                        fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
         
     | 
| 729 | 
         
            -
             
     | 
| 730 | 
         
            -
                        weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
         
     | 
| 731 | 
         
            -
                        normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
         
     | 
| 732 | 
         
            -
                        weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
         
     | 
| 733 | 
         
            -
             
     | 
| 734 | 
         
            -
                    elif uf > 1 and df == 1:
         
     | 
| 735 | 
         
            -
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 736 | 
         
            -
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 737 | 
         
            -
             
     | 
| 738 | 
         
            -
                        fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
         
     | 
| 739 | 
         
            -
                                            dilation=1, padding=0,
         
     | 
| 740 | 
         
            -
                                            stride=(stride[0] * uf, stride[1] * uf))
         
     | 
| 741 | 
         
            -
                        fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
         
     | 
| 742 | 
         
            -
             
     | 
| 743 | 
         
            -
                        weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 744 | 
         
            -
                        normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
         
     | 
| 745 | 
         
            -
                        weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
         
     | 
| 746 | 
         
            -
             
     | 
| 747 | 
         
            -
                    elif df > 1 and uf == 1:
         
     | 
| 748 | 
         
            -
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         
     | 
| 749 | 
         
            -
                        unfold = torch.nn.Unfold(**fold_params)
         
     | 
| 750 | 
         
            -
             
     | 
| 751 | 
         
            -
                        fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
         
     | 
| 752 | 
         
            -
                                            dilation=1, padding=0,
         
     | 
| 753 | 
         
            -
                                            stride=(stride[0] // df, stride[1] // df))
         
     | 
| 754 | 
         
            -
                        fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
         
     | 
| 755 | 
         
            -
             
     | 
| 756 | 
         
            -
                        weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
         
     | 
| 757 | 
         
            -
                        normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
         
     | 
| 758 | 
         
            -
                        weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
         
     | 
| 759 | 
         
            -
             
     | 
| 760 | 
         
            -
                    else:
         
     | 
| 761 | 
         
            -
                        raise NotImplementedError
         
     | 
| 762 | 
         
            -
             
     | 
| 763 | 
         
            -
                    return fold, unfold, normalization, weighting
         
     | 
| 764 | 
         
            -
             
     | 
| 765 | 
         
            -
                @torch.no_grad()
         
     | 
| 766 | 
         
            -
                def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
         
     | 
| 767 | 
         
            -
                              cond_key=None, return_original_cond=False, bs=None, return_x=False):
         
     | 
| 768 | 
         
            -
                    x = super().get_input(batch, k)
         
     | 
| 769 | 
         
            -
                    if bs is not None:
         
     | 
| 770 | 
         
            -
                        x = x[:bs]
         
     | 
| 771 | 
         
            -
                    x = x.to(self.device)
         
     | 
| 772 | 
         
            -
                    encoder_posterior = self.encode_first_stage(x)
         
     | 
| 773 | 
         
            -
                    z = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 774 | 
         
            -
             
     | 
| 775 | 
         
            -
                    if self.model.conditioning_key is not None and not self.force_null_conditioning:
         
     | 
| 776 | 
         
            -
                        if cond_key is None:
         
     | 
| 777 | 
         
            -
                            cond_key = self.cond_stage_key
         
     | 
| 778 | 
         
            -
                        if cond_key != self.first_stage_key:
         
     | 
| 779 | 
         
            -
                            if cond_key in ['caption', 'coordinates_bbox', "txt"]:
         
     | 
| 780 | 
         
            -
                                xc = batch[cond_key]
         
     | 
| 781 | 
         
            -
                            elif cond_key in ['class_label', 'cls']:
         
     | 
| 782 | 
         
            -
                                xc = batch
         
     | 
| 783 | 
         
            -
                            else:
         
     | 
| 784 | 
         
            -
                                xc = super().get_input(batch, cond_key).to(self.device)
         
     | 
| 785 | 
         
            -
                        else:
         
     | 
| 786 | 
         
            -
                            xc = x
         
     | 
| 787 | 
         
            -
                        if not self.cond_stage_trainable or force_c_encode:
         
     | 
| 788 | 
         
            -
                            if isinstance(xc, dict) or isinstance(xc, list):
         
     | 
| 789 | 
         
            -
                                c = self.get_learned_conditioning(xc)
         
     | 
| 790 | 
         
            -
                            else:
         
     | 
| 791 | 
         
            -
                                c = self.get_learned_conditioning(xc.to(self.device))
         
     | 
| 792 | 
         
            -
                        else:
         
     | 
| 793 | 
         
            -
                            c = xc
         
     | 
| 794 | 
         
            -
                        if bs is not None:
         
     | 
| 795 | 
         
            -
                            c = c[:bs]
         
     | 
| 796 | 
         
            -
             
     | 
| 797 | 
         
            -
                        if self.use_positional_encodings:
         
     | 
| 798 | 
         
            -
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 799 | 
         
            -
                            ckey = __conditioning_keys__[self.model.conditioning_key]
         
     | 
| 800 | 
         
            -
                            c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 801 | 
         
            -
             
     | 
| 802 | 
         
            -
                    else:
         
     | 
| 803 | 
         
            -
                        c = None
         
     | 
| 804 | 
         
            -
                        xc = None
         
     | 
| 805 | 
         
            -
                        if self.use_positional_encodings:
         
     | 
| 806 | 
         
            -
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         
     | 
| 807 | 
         
            -
                            c = {'pos_x': pos_x, 'pos_y': pos_y}
         
     | 
| 808 | 
         
            -
                    out = [z, c]
         
     | 
| 809 | 
         
            -
                    if return_first_stage_outputs:
         
     | 
| 810 | 
         
            -
                        xrec = self.decode_first_stage(z)
         
     | 
| 811 | 
         
            -
                        out.extend([x, xrec])
         
     | 
| 812 | 
         
            -
                    if return_x:
         
     | 
| 813 | 
         
            -
                        out.extend([x])
         
     | 
| 814 | 
         
            -
                    if return_original_cond:
         
     | 
| 815 | 
         
            -
                        out.append(xc)
         
     | 
| 816 | 
         
            -
                    return out
         
     | 
| 817 | 
         
            -
             
     | 
| 818 | 
         
            -
                @torch.no_grad()
         
     | 
| 819 | 
         
            -
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         
     | 
| 820 | 
         
            -
                    if predict_cids:
         
     | 
| 821 | 
         
            -
                        if z.dim() == 4:
         
     | 
| 822 | 
         
            -
                            z = torch.argmax(z.exp(), dim=1).long()
         
     | 
| 823 | 
         
            -
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         
     | 
| 824 | 
         
            -
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         
     | 
| 825 | 
         
            -
             
     | 
| 826 | 
         
            -
                    z = 1. / self.scale_factor * z
         
     | 
| 827 | 
         
            -
                    return self.first_stage_model.decode(z)
         
     | 
| 828 | 
         
            -
             
     | 
| 829 | 
         
            -
                @torch.no_grad()
         
     | 
| 830 | 
         
            -
                def encode_first_stage(self, x):
         
     | 
| 831 | 
         
            -
                    return self.first_stage_model.encode(x)
         
     | 
| 832 | 
         
            -
             
     | 
| 833 | 
         
            -
                def shared_step(self, batch, **kwargs):
         
     | 
| 834 | 
         
            -
                    x, c = self.get_input(batch, self.first_stage_key)
         
     | 
| 835 | 
         
            -
                    loss = self(x, c)
         
     | 
| 836 | 
         
            -
                    return loss
         
     | 
| 837 | 
         
            -
             
     | 
| 838 | 
         
            -
                def forward(self, x, c, *args, **kwargs):
         
     | 
| 839 | 
         
            -
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 840 | 
         
            -
                    if self.model.conditioning_key is not None:
         
     | 
| 841 | 
         
            -
                        assert c is not None
         
     | 
| 842 | 
         
            -
                        if self.cond_stage_trainable:
         
     | 
| 843 | 
         
            -
                            c = self.get_learned_conditioning(c)
         
     | 
| 844 | 
         
            -
                        if self.shorten_cond_schedule:  # TODO: drop this option
         
     | 
| 845 | 
         
            -
                            tc = self.cond_ids[t].to(self.device)
         
     | 
| 846 | 
         
            -
                            c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
         
     | 
| 847 | 
         
            -
                    return self.p_losses(x, c, t, *args, **kwargs)
         
     | 
| 848 | 
         
            -
             
     | 
| 849 | 
         
            -
                def apply_model(self, x_noisy, t, cond, return_ids=False):
         
     | 
| 850 | 
         
            -
                    if isinstance(cond, dict):
         
     | 
| 851 | 
         
            -
                        # hybrid case, cond is expected to be a dict
         
     | 
| 852 | 
         
            -
                        pass
         
     | 
| 853 | 
         
            -
                    else:
         
     | 
| 854 | 
         
            -
                        if not isinstance(cond, list):
         
     | 
| 855 | 
         
            -
                            cond = [cond]
         
     | 
| 856 | 
         
            -
                        key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
         
     | 
| 857 | 
         
            -
                        cond = {key: cond}
         
     | 
| 858 | 
         
            -
             
     | 
| 859 | 
         
            -
                    x_recon = self.model(x_noisy, t, **cond)
         
     | 
| 860 | 
         
            -
             
     | 
| 861 | 
         
            -
                    if isinstance(x_recon, tuple) and not return_ids:
         
     | 
| 862 | 
         
            -
                        return x_recon[0]
         
     | 
| 863 | 
         
            -
                    else:
         
     | 
| 864 | 
         
            -
                        return x_recon
         
     | 
| 865 | 
         
            -
             
     | 
| 866 | 
         
            -
                def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
         
     | 
| 867 | 
         
            -
                    return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
         
     | 
| 868 | 
         
            -
                           extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
         
     | 
| 869 | 
         
            -
             
     | 
| 870 | 
         
            -
                def _prior_bpd(self, x_start):
         
     | 
| 871 | 
         
            -
                    """
         
     | 
| 872 | 
         
            -
                    Get the prior KL term for the variational lower-bound, measured in
         
     | 
| 873 | 
         
            -
                    bits-per-dim.
         
     | 
| 874 | 
         
            -
                    This term can't be optimized, as it only depends on the encoder.
         
     | 
| 875 | 
         
            -
                    :param x_start: the [N x C x ...] tensor of inputs.
         
     | 
| 876 | 
         
            -
                    :return: a batch of [N] KL values (in bits), one per batch element.
         
     | 
| 877 | 
         
            -
                    """
         
     | 
| 878 | 
         
            -
                    batch_size = x_start.shape[0]
         
     | 
| 879 | 
         
            -
                    t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
         
     | 
| 880 | 
         
            -
                    qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
         
     | 
| 881 | 
         
            -
                    kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
         
     | 
| 882 | 
         
            -
                    return mean_flat(kl_prior) / np.log(2.0)
         
     | 
| 883 | 
         
            -
             
     | 
| 884 | 
         
            -
                def p_losses(self, x_start, cond, t, noise=None):
         
     | 
| 885 | 
         
            -
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 886 | 
         
            -
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 887 | 
         
            -
                    model_output = self.apply_model(x_noisy, t, cond)
         
     | 
| 888 | 
         
            -
             
     | 
| 889 | 
         
            -
                    loss_dict = {}
         
     | 
| 890 | 
         
            -
                    prefix = 'train' if self.training else 'val'
         
     | 
| 891 | 
         
            -
             
     | 
| 892 | 
         
            -
                    if self.parameterization == "x0":
         
     | 
| 893 | 
         
            -
                        target = x_start
         
     | 
| 894 | 
         
            -
                    elif self.parameterization == "eps":
         
     | 
| 895 | 
         
            -
                        target = noise
         
     | 
| 896 | 
         
            -
                    elif self.parameterization == "v":
         
     | 
| 897 | 
         
            -
                        target = self.get_v(x_start, noise, t)
         
     | 
| 898 | 
         
            -
                    else:
         
     | 
| 899 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 900 | 
         
            -
             
     | 
| 901 | 
         
            -
                    loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
         
     | 
| 902 | 
         
            -
                    loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
         
     | 
| 903 | 
         
            -
             
     | 
| 904 | 
         
            -
                    logvar_t = self.logvar[t].to(self.device)
         
     | 
| 905 | 
         
            -
                    loss = loss_simple / torch.exp(logvar_t) + logvar_t
         
     | 
| 906 | 
         
            -
                    # loss = loss_simple / torch.exp(self.logvar) + self.logvar
         
     | 
| 907 | 
         
            -
                    if self.learn_logvar:
         
     | 
| 908 | 
         
            -
                        loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
         
     | 
| 909 | 
         
            -
                        loss_dict.update({'logvar': self.logvar.data.mean()})
         
     | 
| 910 | 
         
            -
             
     | 
| 911 | 
         
            -
                    loss = self.l_simple_weight * loss.mean()
         
     | 
| 912 | 
         
            -
             
     | 
| 913 | 
         
            -
                    loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
         
     | 
| 914 | 
         
            -
                    loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
         
     | 
| 915 | 
         
            -
                    loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
         
     | 
| 916 | 
         
            -
                    loss += (self.original_elbo_weight * loss_vlb)
         
     | 
| 917 | 
         
            -
                    loss_dict.update({f'{prefix}/loss': loss})
         
     | 
| 918 | 
         
            -
             
     | 
| 919 | 
         
            -
                    return loss, loss_dict
         
     | 
| 920 | 
         
            -
             
     | 
| 921 | 
         
            -
                def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
         
     | 
| 922 | 
         
            -
                                    return_x0=False, score_corrector=None, corrector_kwargs=None):
         
     | 
| 923 | 
         
            -
                    t_in = t
         
     | 
| 924 | 
         
            -
                    model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
         
     | 
| 925 | 
         
            -
             
     | 
| 926 | 
         
            -
                    if score_corrector is not None:
         
     | 
| 927 | 
         
            -
                        assert self.parameterization == "eps"
         
     | 
| 928 | 
         
            -
                        model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
         
     | 
| 929 | 
         
            -
             
     | 
| 930 | 
         
            -
                    if return_codebook_ids:
         
     | 
| 931 | 
         
            -
                        model_out, logits = model_out
         
     | 
| 932 | 
         
            -
             
     | 
| 933 | 
         
            -
                    if self.parameterization == "eps":
         
     | 
| 934 | 
         
            -
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 935 | 
         
            -
                    elif self.parameterization == "x0":
         
     | 
| 936 | 
         
            -
                        x_recon = model_out
         
     | 
| 937 | 
         
            -
                    else:
         
     | 
| 938 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 939 | 
         
            -
             
     | 
| 940 | 
         
            -
                    if clip_denoised:
         
     | 
| 941 | 
         
            -
                        x_recon.clamp_(-1., 1.)
         
     | 
| 942 | 
         
            -
                    if quantize_denoised:
         
     | 
| 943 | 
         
            -
                        x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
         
     | 
| 944 | 
         
            -
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 945 | 
         
            -
                    if return_codebook_ids:
         
     | 
| 946 | 
         
            -
                        return model_mean, posterior_variance, posterior_log_variance, logits
         
     | 
| 947 | 
         
            -
                    elif return_x0:
         
     | 
| 948 | 
         
            -
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         
     | 
| 949 | 
         
            -
                    else:
         
     | 
| 950 | 
         
            -
                        return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 951 | 
         
            -
             
     | 
| 952 | 
         
            -
                @torch.no_grad()
         
     | 
| 953 | 
         
            -
                def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
         
     | 
| 954 | 
         
            -
                             return_codebook_ids=False, quantize_denoised=False, return_x0=False,
         
     | 
| 955 | 
         
            -
                             temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
         
     | 
| 956 | 
         
            -
                    b, *_, device = *x.shape, x.device
         
     | 
| 957 | 
         
            -
                    outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
         
     | 
| 958 | 
         
            -
                                                   return_codebook_ids=return_codebook_ids,
         
     | 
| 959 | 
         
            -
                                                   quantize_denoised=quantize_denoised,
         
     | 
| 960 | 
         
            -
                                                   return_x0=return_x0,
         
     | 
| 961 | 
         
            -
                                                   score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 962 | 
         
            -
                    if return_codebook_ids:
         
     | 
| 963 | 
         
            -
                        raise DeprecationWarning("Support dropped.")
         
     | 
| 964 | 
         
            -
                        model_mean, _, model_log_variance, logits = outputs
         
     | 
| 965 | 
         
            -
                    elif return_x0:
         
     | 
| 966 | 
         
            -
                        model_mean, _, model_log_variance, x0 = outputs
         
     | 
| 967 | 
         
            -
                    else:
         
     | 
| 968 | 
         
            -
                        model_mean, _, model_log_variance = outputs
         
     | 
| 969 | 
         
            -
             
     | 
| 970 | 
         
            -
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 971 | 
         
            -
                    if noise_dropout > 0.:
         
     | 
| 972 | 
         
            -
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 973 | 
         
            -
                    # no noise when t == 0
         
     | 
| 974 | 
         
            -
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 975 | 
         
            -
             
     | 
| 976 | 
         
            -
                    if return_codebook_ids:
         
     | 
| 977 | 
         
            -
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
         
     | 
| 978 | 
         
            -
                    if return_x0:
         
     | 
| 979 | 
         
            -
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
         
     | 
| 980 | 
         
            -
                    else:
         
     | 
| 981 | 
         
            -
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 982 | 
         
            -
             
     | 
| 983 | 
         
            -
                @torch.no_grad()
         
     | 
| 984 | 
         
            -
                def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
         
     | 
| 985 | 
         
            -
                                          img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
         
     | 
| 986 | 
         
            -
                                          score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
         
     | 
| 987 | 
         
            -
                                          log_every_t=None):
         
     | 
| 988 | 
         
            -
                    if not log_every_t:
         
     | 
| 989 | 
         
            -
                        log_every_t = self.log_every_t
         
     | 
| 990 | 
         
            -
                    timesteps = self.num_timesteps
         
     | 
| 991 | 
         
            -
                    if batch_size is not None:
         
     | 
| 992 | 
         
            -
                        b = batch_size if batch_size is not None else shape[0]
         
     | 
| 993 | 
         
            -
                        shape = [batch_size] + list(shape)
         
     | 
| 994 | 
         
            -
                    else:
         
     | 
| 995 | 
         
            -
                        b = batch_size = shape[0]
         
     | 
| 996 | 
         
            -
                    if x_T is None:
         
     | 
| 997 | 
         
            -
                        img = torch.randn(shape, device=self.device)
         
     | 
| 998 | 
         
            -
                    else:
         
     | 
| 999 | 
         
            -
                        img = x_T
         
     | 
| 1000 | 
         
            -
                    intermediates = []
         
     | 
| 1001 | 
         
            -
                    if cond is not None:
         
     | 
| 1002 | 
         
            -
                        if isinstance(cond, dict):
         
     | 
| 1003 | 
         
            -
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 1004 | 
         
            -
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 1005 | 
         
            -
                        else:
         
     | 
| 1006 | 
         
            -
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 1007 | 
         
            -
             
     | 
| 1008 | 
         
            -
                    if start_T is not None:
         
     | 
| 1009 | 
         
            -
                        timesteps = min(timesteps, start_T)
         
     | 
| 1010 | 
         
            -
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
         
     | 
| 1011 | 
         
            -
                                    total=timesteps) if verbose else reversed(
         
     | 
| 1012 | 
         
            -
                        range(0, timesteps))
         
     | 
| 1013 | 
         
            -
                    if type(temperature) == float:
         
     | 
| 1014 | 
         
            -
                        temperature = [temperature] * timesteps
         
     | 
| 1015 | 
         
            -
             
     | 
| 1016 | 
         
            -
                    for i in iterator:
         
     | 
| 1017 | 
         
            -
                        ts = torch.full((b,), i, device=self.device, dtype=torch.long)
         
     | 
| 1018 | 
         
            -
                        if self.shorten_cond_schedule:
         
     | 
| 1019 | 
         
            -
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 1020 | 
         
            -
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 1021 | 
         
            -
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 1022 | 
         
            -
             
     | 
| 1023 | 
         
            -
                        img, x0_partial = self.p_sample(img, cond, ts,
         
     | 
| 1024 | 
         
            -
                                                        clip_denoised=self.clip_denoised,
         
     | 
| 1025 | 
         
            -
                                                        quantize_denoised=quantize_denoised, return_x0=True,
         
     | 
| 1026 | 
         
            -
                                                        temperature=temperature[i], noise_dropout=noise_dropout,
         
     | 
| 1027 | 
         
            -
                                                        score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         
     | 
| 1028 | 
         
            -
                        if mask is not None:
         
     | 
| 1029 | 
         
            -
                            assert x0 is not None
         
     | 
| 1030 | 
         
            -
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 1031 | 
         
            -
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 1032 | 
         
            -
             
     | 
| 1033 | 
         
            -
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 1034 | 
         
            -
                            intermediates.append(x0_partial)
         
     | 
| 1035 | 
         
            -
                        if callback: callback(i)
         
     | 
| 1036 | 
         
            -
                        if img_callback: img_callback(img, i)
         
     | 
| 1037 | 
         
            -
                    return img, intermediates
         
     | 
| 1038 | 
         
            -
             
     | 
| 1039 | 
         
            -
                @torch.no_grad()
         
     | 
| 1040 | 
         
            -
                def p_sample_loop(self, cond, shape, return_intermediates=False,
         
     | 
| 1041 | 
         
            -
                                  x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 1042 | 
         
            -
                                  mask=None, x0=None, img_callback=None, start_T=None,
         
     | 
| 1043 | 
         
            -
                                  log_every_t=None):
         
     | 
| 1044 | 
         
            -
             
     | 
| 1045 | 
         
            -
                    if not log_every_t:
         
     | 
| 1046 | 
         
            -
                        log_every_t = self.log_every_t
         
     | 
| 1047 | 
         
            -
                    device = self.betas.device
         
     | 
| 1048 | 
         
            -
                    b = shape[0]
         
     | 
| 1049 | 
         
            -
                    if x_T is None:
         
     | 
| 1050 | 
         
            -
                        img = torch.randn(shape, device=device)
         
     | 
| 1051 | 
         
            -
                    else:
         
     | 
| 1052 | 
         
            -
                        img = x_T
         
     | 
| 1053 | 
         
            -
             
     | 
| 1054 | 
         
            -
                    intermediates = [img]
         
     | 
| 1055 | 
         
            -
                    if timesteps is None:
         
     | 
| 1056 | 
         
            -
                        timesteps = self.num_timesteps
         
     | 
| 1057 | 
         
            -
             
     | 
| 1058 | 
         
            -
                    if start_T is not None:
         
     | 
| 1059 | 
         
            -
                        timesteps = min(timesteps, start_T)
         
     | 
| 1060 | 
         
            -
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
         
     | 
| 1061 | 
         
            -
                        range(0, timesteps))
         
     | 
| 1062 | 
         
            -
             
     | 
| 1063 | 
         
            -
                    if mask is not None:
         
     | 
| 1064 | 
         
            -
                        assert x0 is not None
         
     | 
| 1065 | 
         
            -
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         
     | 
| 1066 | 
         
            -
             
     | 
| 1067 | 
         
            -
                    for i in iterator:
         
     | 
| 1068 | 
         
            -
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         
     | 
| 1069 | 
         
            -
                        if self.shorten_cond_schedule:
         
     | 
| 1070 | 
         
            -
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 1071 | 
         
            -
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 1072 | 
         
            -
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 1073 | 
         
            -
             
     | 
| 1074 | 
         
            -
                        img = self.p_sample(img, cond, ts,
         
     | 
| 1075 | 
         
            -
                                            clip_denoised=self.clip_denoised,
         
     | 
| 1076 | 
         
            -
                                            quantize_denoised=quantize_denoised)
         
     | 
| 1077 | 
         
            -
                        if mask is not None:
         
     | 
| 1078 | 
         
            -
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 1079 | 
         
            -
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 1080 | 
         
            -
             
     | 
| 1081 | 
         
            -
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 1082 | 
         
            -
                            intermediates.append(img)
         
     | 
| 1083 | 
         
            -
                        if callback: callback(i)
         
     | 
| 1084 | 
         
            -
                        if img_callback: img_callback(img, i)
         
     | 
| 1085 | 
         
            -
             
     | 
| 1086 | 
         
            -
                    if return_intermediates:
         
     | 
| 1087 | 
         
            -
                        return img, intermediates
         
     | 
| 1088 | 
         
            -
                    return img
         
     | 
| 1089 | 
         
            -
             
     | 
| 1090 | 
         
            -
                @torch.no_grad()
         
     | 
| 1091 | 
         
            -
                def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
         
     | 
| 1092 | 
         
            -
                           verbose=True, timesteps=None, quantize_denoised=False,
         
     | 
| 1093 | 
         
            -
                           mask=None, x0=None, shape=None, **kwargs):
         
     | 
| 1094 | 
         
            -
                    if shape is None:
         
     | 
| 1095 | 
         
            -
                        shape = (batch_size, self.channels, self.image_size, self.image_size)
         
     | 
| 1096 | 
         
            -
                    if cond is not None:
         
     | 
| 1097 | 
         
            -
                        if isinstance(cond, dict):
         
     | 
| 1098 | 
         
            -
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         
     | 
| 1099 | 
         
            -
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         
     | 
| 1100 | 
         
            -
                        else:
         
     | 
| 1101 | 
         
            -
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         
     | 
| 1102 | 
         
            -
                    return self.p_sample_loop(cond,
         
     | 
| 1103 | 
         
            -
                                              shape,
         
     | 
| 1104 | 
         
            -
                                              return_intermediates=return_intermediates, x_T=x_T,
         
     | 
| 1105 | 
         
            -
                                              verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
         
     | 
| 1106 | 
         
            -
                                              mask=mask, x0=x0)
         
     | 
| 1107 | 
         
            -
             
     | 
| 1108 | 
         
            -
                @torch.no_grad()
         
     | 
| 1109 | 
         
            -
                def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
         
     | 
| 1110 | 
         
            -
                    if ddim:
         
     | 
| 1111 | 
         
            -
                        ddim_sampler = DDIMSampler(self)
         
     | 
| 1112 | 
         
            -
                        shape = (self.channels, self.image_size, self.image_size)
         
     | 
| 1113 | 
         
            -
                        samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
         
     | 
| 1114 | 
         
            -
                                                                     shape, cond, verbose=False, **kwargs)
         
     | 
| 1115 | 
         
            -
             
     | 
| 1116 | 
         
            -
                    else:
         
     | 
| 1117 | 
         
            -
                        samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
         
     | 
| 1118 | 
         
            -
                                                             return_intermediates=True, **kwargs)
         
     | 
| 1119 | 
         
            -
             
     | 
| 1120 | 
         
            -
                    return samples, intermediates
         
     | 
| 1121 | 
         
            -
             
     | 
| 1122 | 
         
            -
                @torch.no_grad()
         
     | 
| 1123 | 
         
            -
                def get_unconditional_conditioning(self, batch_size, null_label=None):
         
     | 
| 1124 | 
         
            -
                    if null_label is not None:
         
     | 
| 1125 | 
         
            -
                        xc = null_label
         
     | 
| 1126 | 
         
            -
                        if isinstance(xc, ListConfig):
         
     | 
| 1127 | 
         
            -
                            xc = list(xc)
         
     | 
| 1128 | 
         
            -
                        if isinstance(xc, dict) or isinstance(xc, list):
         
     | 
| 1129 | 
         
            -
                            c = self.get_learned_conditioning(xc)
         
     | 
| 1130 | 
         
            -
                        else:
         
     | 
| 1131 | 
         
            -
                            if hasattr(xc, "to"):
         
     | 
| 1132 | 
         
            -
                                xc = xc.to(self.device)
         
     | 
| 1133 | 
         
            -
                            c = self.get_learned_conditioning(xc)
         
     | 
| 1134 | 
         
            -
                    else:
         
     | 
| 1135 | 
         
            -
                        if self.cond_stage_key in ["class_label", "cls"]:
         
     | 
| 1136 | 
         
            -
                            xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
         
     | 
| 1137 | 
         
            -
                            return self.get_learned_conditioning(xc)
         
     | 
| 1138 | 
         
            -
                        else:
         
     | 
| 1139 | 
         
            -
                            raise NotImplementedError("todo")
         
     | 
| 1140 | 
         
            -
                    if isinstance(c, list):  # in case the encoder gives us a list
         
     | 
| 1141 | 
         
            -
                        for i in range(len(c)):
         
     | 
| 1142 | 
         
            -
                            c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
         
     | 
| 1143 | 
         
            -
                    else:
         
     | 
| 1144 | 
         
            -
                        c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
         
     | 
| 1145 | 
         
            -
                    return c
         
     | 
| 1146 | 
         
            -
             
     | 
| 1147 | 
         
            -
                @torch.no_grad()
         
     | 
| 1148 | 
         
            -
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
         
     | 
| 1149 | 
         
            -
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         
     | 
| 1150 | 
         
            -
                               plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
         
     | 
| 1151 | 
         
            -
                               use_ema_scope=True,
         
     | 
| 1152 | 
         
            -
                               **kwargs):
         
     | 
| 1153 | 
         
            -
                    ema_scope = self.ema_scope if use_ema_scope else nullcontext
         
     | 
| 1154 | 
         
            -
                    use_ddim = ddim_steps is not None
         
     | 
| 1155 | 
         
            -
             
     | 
| 1156 | 
         
            -
                    log = dict()
         
     | 
| 1157 | 
         
            -
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
         
     | 
| 1158 | 
         
            -
                                                       return_first_stage_outputs=True,
         
     | 
| 1159 | 
         
            -
                                                       force_c_encode=True,
         
     | 
| 1160 | 
         
            -
                                                       return_original_cond=True,
         
     | 
| 1161 | 
         
            -
                                                       bs=N)
         
     | 
| 1162 | 
         
            -
                    N = min(x.shape[0], N)
         
     | 
| 1163 | 
         
            -
                    n_row = min(x.shape[0], n_row)
         
     | 
| 1164 | 
         
            -
                    log["inputs"] = x
         
     | 
| 1165 | 
         
            -
                    log["reconstruction"] = xrec
         
     | 
| 1166 | 
         
            -
                    if self.model.conditioning_key is not None:
         
     | 
| 1167 | 
         
            -
                        if hasattr(self.cond_stage_model, "decode"):
         
     | 
| 1168 | 
         
            -
                            xc = self.cond_stage_model.decode(c)
         
     | 
| 1169 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1170 | 
         
            -
                        elif self.cond_stage_key in ["caption", "txt"]:
         
     | 
| 1171 | 
         
            -
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
         
     | 
| 1172 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1173 | 
         
            -
                        elif self.cond_stage_key in ['class_label', "cls"]:
         
     | 
| 1174 | 
         
            -
                            try:
         
     | 
| 1175 | 
         
            -
                                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
         
     | 
| 1176 | 
         
            -
                                log['conditioning'] = xc
         
     | 
| 1177 | 
         
            -
                            except KeyError:
         
     | 
| 1178 | 
         
            -
                                # probably no "human_label" in batch
         
     | 
| 1179 | 
         
            -
                                pass
         
     | 
| 1180 | 
         
            -
                        elif isimage(xc):
         
     | 
| 1181 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1182 | 
         
            -
                        if ismap(xc):
         
     | 
| 1183 | 
         
            -
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 1184 | 
         
            -
             
     | 
| 1185 | 
         
            -
                    if plot_diffusion_rows:
         
     | 
| 1186 | 
         
            -
                        # get diffusion row
         
     | 
| 1187 | 
         
            -
                        diffusion_row = list()
         
     | 
| 1188 | 
         
            -
                        z_start = z[:n_row]
         
     | 
| 1189 | 
         
            -
                        for t in range(self.num_timesteps):
         
     | 
| 1190 | 
         
            -
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 1191 | 
         
            -
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 1192 | 
         
            -
                                t = t.to(self.device).long()
         
     | 
| 1193 | 
         
            -
                                noise = torch.randn_like(z_start)
         
     | 
| 1194 | 
         
            -
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 1195 | 
         
            -
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 1196 | 
         
            -
             
     | 
| 1197 | 
         
            -
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 1198 | 
         
            -
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 1199 | 
         
            -
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 1200 | 
         
            -
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 1201 | 
         
            -
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 1202 | 
         
            -
             
     | 
| 1203 | 
         
            -
                    if sample:
         
     | 
| 1204 | 
         
            -
                        # get denoise row
         
     | 
| 1205 | 
         
            -
                        with ema_scope("Sampling"):
         
     | 
| 1206 | 
         
            -
                            samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         
     | 
| 1207 | 
         
            -
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         
     | 
| 1208 | 
         
            -
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 1209 | 
         
            -
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 1210 | 
         
            -
                        log["samples"] = x_samples
         
     | 
| 1211 | 
         
            -
                        if plot_denoise_rows:
         
     | 
| 1212 | 
         
            -
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 1213 | 
         
            -
                            log["denoise_row"] = denoise_grid
         
     | 
| 1214 | 
         
            -
             
     | 
| 1215 | 
         
            -
                        if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
         
     | 
| 1216 | 
         
            -
                                self.first_stage_model, IdentityFirstStage):
         
     | 
| 1217 | 
         
            -
                            # also display when quantizing x0 while sampling
         
     | 
| 1218 | 
         
            -
                            with ema_scope("Plotting Quantized Denoised"):
         
     | 
| 1219 | 
         
            -
                                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         
     | 
| 1220 | 
         
            -
                                                                         ddim_steps=ddim_steps, eta=ddim_eta,
         
     | 
| 1221 | 
         
            -
                                                                         quantize_denoised=True)
         
     | 
| 1222 | 
         
            -
                                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
         
     | 
| 1223 | 
         
            -
                                #                                      quantize_denoised=True)
         
     | 
| 1224 | 
         
            -
                            x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1225 | 
         
            -
                            log["samples_x0_quantized"] = x_samples
         
     | 
| 1226 | 
         
            -
             
     | 
| 1227 | 
         
            -
                    if unconditional_guidance_scale > 1.0:
         
     | 
| 1228 | 
         
            -
                        uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         
     | 
| 1229 | 
         
            -
                        if self.model.conditioning_key == "crossattn-adm":
         
     | 
| 1230 | 
         
            -
                            uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
         
     | 
| 1231 | 
         
            -
                        with ema_scope("Sampling with classifier-free guidance"):
         
     | 
| 1232 | 
         
            -
                            samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         
     | 
| 1233 | 
         
            -
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         
     | 
| 1234 | 
         
            -
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 1235 | 
         
            -
                                                             unconditional_conditioning=uc,
         
     | 
| 1236 | 
         
            -
                                                             )
         
     | 
| 1237 | 
         
            -
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         
     | 
| 1238 | 
         
            -
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         
     | 
| 1239 | 
         
            -
             
     | 
| 1240 | 
         
            -
                    if inpaint:
         
     | 
| 1241 | 
         
            -
                        # make a simple center square
         
     | 
| 1242 | 
         
            -
                        b, h, w = z.shape[0], z.shape[2], z.shape[3]
         
     | 
| 1243 | 
         
            -
                        mask = torch.ones(N, h, w).to(self.device)
         
     | 
| 1244 | 
         
            -
                        # zeros will be filled in
         
     | 
| 1245 | 
         
            -
                        mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
         
     | 
| 1246 | 
         
            -
                        mask = mask[:, None, ...]
         
     | 
| 1247 | 
         
            -
                        with ema_scope("Plotting Inpaint"):
         
     | 
| 1248 | 
         
            -
                            samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
         
     | 
| 1249 | 
         
            -
                                                         ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1250 | 
         
            -
                        x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1251 | 
         
            -
                        log["samples_inpainting"] = x_samples
         
     | 
| 1252 | 
         
            -
                        log["mask"] = mask
         
     | 
| 1253 | 
         
            -
             
     | 
| 1254 | 
         
            -
                        # outpaint
         
     | 
| 1255 | 
         
            -
                        mask = 1. - mask
         
     | 
| 1256 | 
         
            -
                        with ema_scope("Plotting Outpaint"):
         
     | 
| 1257 | 
         
            -
                            samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
         
     | 
| 1258 | 
         
            -
                                                         ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         
     | 
| 1259 | 
         
            -
                        x_samples = self.decode_first_stage(samples.to(self.device))
         
     | 
| 1260 | 
         
            -
                        log["samples_outpainting"] = x_samples
         
     | 
| 1261 | 
         
            -
             
     | 
| 1262 | 
         
            -
                    if plot_progressive_rows:
         
     | 
| 1263 | 
         
            -
                        with ema_scope("Plotting Progressives"):
         
     | 
| 1264 | 
         
            -
                            img, progressives = self.progressive_denoising(c,
         
     | 
| 1265 | 
         
            -
                                                                           shape=(self.channels, self.image_size, self.image_size),
         
     | 
| 1266 | 
         
            -
                                                                           batch_size=N)
         
     | 
| 1267 | 
         
            -
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         
     | 
| 1268 | 
         
            -
                        log["progressive_row"] = prog_row
         
     | 
| 1269 | 
         
            -
             
     | 
| 1270 | 
         
            -
                    if return_keys:
         
     | 
| 1271 | 
         
            -
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 1272 | 
         
            -
                            return log
         
     | 
| 1273 | 
         
            -
                        else:
         
     | 
| 1274 | 
         
            -
                            return {key: log[key] for key in return_keys}
         
     | 
| 1275 | 
         
            -
                    return log
         
     | 
| 1276 | 
         
            -
             
     | 
| 1277 | 
         
            -
                def configure_optimizers(self):
         
     | 
| 1278 | 
         
            -
                    lr = self.learning_rate
         
     | 
| 1279 | 
         
            -
                    params = list(self.model.parameters())
         
     | 
| 1280 | 
         
            -
                    if self.cond_stage_trainable:
         
     | 
| 1281 | 
         
            -
                        print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
         
     | 
| 1282 | 
         
            -
                        params = params + list(self.cond_stage_model.parameters())
         
     | 
| 1283 | 
         
            -
                    if self.learn_logvar:
         
     | 
| 1284 | 
         
            -
                        print('Diffusion model optimizing logvar')
         
     | 
| 1285 | 
         
            -
                        params.append(self.logvar)
         
     | 
| 1286 | 
         
            -
                    opt = torch.optim.AdamW(params, lr=lr)
         
     | 
| 1287 | 
         
            -
                    if self.use_scheduler:
         
     | 
| 1288 | 
         
            -
                        assert 'target' in self.scheduler_config
         
     | 
| 1289 | 
         
            -
                        scheduler = instantiate_from_config(self.scheduler_config)
         
     | 
| 1290 | 
         
            -
             
     | 
| 1291 | 
         
            -
                        print("Setting up LambdaLR scheduler...")
         
     | 
| 1292 | 
         
            -
                        scheduler = [
         
     | 
| 1293 | 
         
            -
                            {
         
     | 
| 1294 | 
         
            -
                                'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
         
     | 
| 1295 | 
         
            -
                                'interval': 'step',
         
     | 
| 1296 | 
         
            -
                                'frequency': 1
         
     | 
| 1297 | 
         
            -
                            }]
         
     | 
| 1298 | 
         
            -
                        return [opt], scheduler
         
     | 
| 1299 | 
         
            -
                    return opt
         
     | 
| 1300 | 
         
            -
             
     | 
| 1301 | 
         
            -
                @torch.no_grad()
         
     | 
| 1302 | 
         
            -
                def to_rgb(self, x):
         
     | 
| 1303 | 
         
            -
                    x = x.float()
         
     | 
| 1304 | 
         
            -
                    if not hasattr(self, "colorize"):
         
     | 
| 1305 | 
         
            -
                        self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
         
     | 
| 1306 | 
         
            -
                    x = nn.functional.conv2d(x, weight=self.colorize)
         
     | 
| 1307 | 
         
            -
                    x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
         
     | 
| 1308 | 
         
            -
                    return x
         
     | 
| 1309 | 
         
            -
             
     | 
| 1310 | 
         
            -
             
     | 
| 1311 | 
         
            -
            class DiffusionWrapper(pl.LightningModule):
         
     | 
| 1312 | 
         
            -
                def __init__(self, diff_model_config, conditioning_key):
         
     | 
| 1313 | 
         
            -
                    super().__init__()
         
     | 
| 1314 | 
         
            -
                    self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
         
     | 
| 1315 | 
         
            -
                    self.diffusion_model = instantiate_from_config(diff_model_config)
         
     | 
| 1316 | 
         
            -
                    self.conditioning_key = conditioning_key
         
     | 
| 1317 | 
         
            -
                    assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
         
     | 
| 1318 | 
         
            -
             
     | 
| 1319 | 
         
            -
                def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
         
     | 
| 1320 | 
         
            -
                    if self.conditioning_key is None:
         
     | 
| 1321 | 
         
            -
                        out = self.diffusion_model(x, t)
         
     | 
| 1322 | 
         
            -
                    elif self.conditioning_key == 'concat':
         
     | 
| 1323 | 
         
            -
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 1324 | 
         
            -
                        out = self.diffusion_model(xc, t)
         
     | 
| 1325 | 
         
            -
                    elif self.conditioning_key == 'crossattn':
         
     | 
| 1326 | 
         
            -
                        if not self.sequential_cross_attn:
         
     | 
| 1327 | 
         
            -
                            cc = torch.cat(c_crossattn, 1)
         
     | 
| 1328 | 
         
            -
                        else:
         
     | 
| 1329 | 
         
            -
                            cc = c_crossattn
         
     | 
| 1330 | 
         
            -
                        out = self.diffusion_model(x, t, context=cc)
         
     | 
| 1331 | 
         
            -
                    elif self.conditioning_key == 'hybrid':
         
     | 
| 1332 | 
         
            -
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 1333 | 
         
            -
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 1334 | 
         
            -
                        out = self.diffusion_model(xc, t, context=cc)
         
     | 
| 1335 | 
         
            -
                    elif self.conditioning_key == 'hybrid-adm':
         
     | 
| 1336 | 
         
            -
                        assert c_adm is not None
         
     | 
| 1337 | 
         
            -
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 1338 | 
         
            -
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 1339 | 
         
            -
                        out = self.diffusion_model(xc, t, context=cc, y=c_adm)
         
     | 
| 1340 | 
         
            -
                    elif self.conditioning_key == 'crossattn-adm':
         
     | 
| 1341 | 
         
            -
                        assert c_adm is not None
         
     | 
| 1342 | 
         
            -
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 1343 | 
         
            -
                        out = self.diffusion_model(x, t, context=cc, y=c_adm)
         
     | 
| 1344 | 
         
            -
                    elif self.conditioning_key == 'adm':
         
     | 
| 1345 | 
         
            -
                        cc = c_crossattn[0]
         
     | 
| 1346 | 
         
            -
                        out = self.diffusion_model(x, t, y=cc)
         
     | 
| 1347 | 
         
            -
                    else:
         
     | 
| 1348 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 1349 | 
         
            -
             
     | 
| 1350 | 
         
            -
                    return out
         
     | 
| 1351 | 
         
            -
             
     | 
| 1352 | 
         
            -
             
     | 
| 1353 | 
         
            -
            class LatentUpscaleDiffusion(LatentDiffusion):
         
     | 
| 1354 | 
         
            -
                def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
         
     | 
| 1355 | 
         
            -
                    super().__init__(*args, **kwargs)
         
     | 
| 1356 | 
         
            -
                    # assumes that neither the cond_stage nor the low_scale_model contain trainable params
         
     | 
| 1357 | 
         
            -
                    assert not self.cond_stage_trainable
         
     | 
| 1358 | 
         
            -
                    self.instantiate_low_stage(low_scale_config)
         
     | 
| 1359 | 
         
            -
                    self.low_scale_key = low_scale_key
         
     | 
| 1360 | 
         
            -
                    self.noise_level_key = noise_level_key
         
     | 
| 1361 | 
         
            -
             
     | 
| 1362 | 
         
            -
                def instantiate_low_stage(self, config):
         
     | 
| 1363 | 
         
            -
                    model = instantiate_from_config(config)
         
     | 
| 1364 | 
         
            -
                    self.low_scale_model = model.eval()
         
     | 
| 1365 | 
         
            -
                    self.low_scale_model.train = disabled_train
         
     | 
| 1366 | 
         
            -
                    for param in self.low_scale_model.parameters():
         
     | 
| 1367 | 
         
            -
                        param.requires_grad = False
         
     | 
| 1368 | 
         
            -
             
     | 
| 1369 | 
         
            -
                @torch.no_grad()
         
     | 
| 1370 | 
         
            -
                def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
         
     | 
| 1371 | 
         
            -
                    if not log_mode:
         
     | 
| 1372 | 
         
            -
                        z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
         
     | 
| 1373 | 
         
            -
                    else:
         
     | 
| 1374 | 
         
            -
                        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         
     | 
| 1375 | 
         
            -
                                                              force_c_encode=True, return_original_cond=True, bs=bs)
         
     | 
| 1376 | 
         
            -
                    x_low = batch[self.low_scale_key][:bs]
         
     | 
| 1377 | 
         
            -
                    x_low = rearrange(x_low, 'b h w c -> b c h w')
         
     | 
| 1378 | 
         
            -
                    x_low = x_low.to(memory_format=torch.contiguous_format).float()
         
     | 
| 1379 | 
         
            -
                    zx, noise_level = self.low_scale_model(x_low)
         
     | 
| 1380 | 
         
            -
                    if self.noise_level_key is not None:
         
     | 
| 1381 | 
         
            -
                        # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
         
     | 
| 1382 | 
         
            -
                        raise NotImplementedError('TODO')
         
     | 
| 1383 | 
         
            -
             
     | 
| 1384 | 
         
            -
                    all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
         
     | 
| 1385 | 
         
            -
                    if log_mode:
         
     | 
| 1386 | 
         
            -
                        # TODO: maybe disable if too expensive
         
     | 
| 1387 | 
         
            -
                        x_low_rec = self.low_scale_model.decode(zx)
         
     | 
| 1388 | 
         
            -
                        return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
         
     | 
| 1389 | 
         
            -
                    return z, all_conds
         
     | 
| 1390 | 
         
            -
             
     | 
| 1391 | 
         
            -
                @torch.no_grad()
         
     | 
| 1392 | 
         
            -
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         
     | 
| 1393 | 
         
            -
                               plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
         
     | 
| 1394 | 
         
            -
                               unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
         
     | 
| 1395 | 
         
            -
                               **kwargs):
         
     | 
| 1396 | 
         
            -
                    ema_scope = self.ema_scope if use_ema_scope else nullcontext
         
     | 
| 1397 | 
         
            -
                    use_ddim = ddim_steps is not None
         
     | 
| 1398 | 
         
            -
             
     | 
| 1399 | 
         
            -
                    log = dict()
         
     | 
| 1400 | 
         
            -
                    z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
         
     | 
| 1401 | 
         
            -
                                                                                      log_mode=True)
         
     | 
| 1402 | 
         
            -
                    N = min(x.shape[0], N)
         
     | 
| 1403 | 
         
            -
                    n_row = min(x.shape[0], n_row)
         
     | 
| 1404 | 
         
            -
                    log["inputs"] = x
         
     | 
| 1405 | 
         
            -
                    log["reconstruction"] = xrec
         
     | 
| 1406 | 
         
            -
                    log["x_lr"] = x_low
         
     | 
| 1407 | 
         
            -
                    log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
         
     | 
| 1408 | 
         
            -
                    if self.model.conditioning_key is not None:
         
     | 
| 1409 | 
         
            -
                        if hasattr(self.cond_stage_model, "decode"):
         
     | 
| 1410 | 
         
            -
                            xc = self.cond_stage_model.decode(c)
         
     | 
| 1411 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1412 | 
         
            -
                        elif self.cond_stage_key in ["caption", "txt"]:
         
     | 
| 1413 | 
         
            -
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
         
     | 
| 1414 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1415 | 
         
            -
                        elif self.cond_stage_key in ['class_label', 'cls']:
         
     | 
| 1416 | 
         
            -
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
         
     | 
| 1417 | 
         
            -
                            log['conditioning'] = xc
         
     | 
| 1418 | 
         
            -
                        elif isimage(xc):
         
     | 
| 1419 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1420 | 
         
            -
                        if ismap(xc):
         
     | 
| 1421 | 
         
            -
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 1422 | 
         
            -
             
     | 
| 1423 | 
         
            -
                    if plot_diffusion_rows:
         
     | 
| 1424 | 
         
            -
                        # get diffusion row
         
     | 
| 1425 | 
         
            -
                        diffusion_row = list()
         
     | 
| 1426 | 
         
            -
                        z_start = z[:n_row]
         
     | 
| 1427 | 
         
            -
                        for t in range(self.num_timesteps):
         
     | 
| 1428 | 
         
            -
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 1429 | 
         
            -
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 1430 | 
         
            -
                                t = t.to(self.device).long()
         
     | 
| 1431 | 
         
            -
                                noise = torch.randn_like(z_start)
         
     | 
| 1432 | 
         
            -
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 1433 | 
         
            -
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 1434 | 
         
            -
             
     | 
| 1435 | 
         
            -
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 1436 | 
         
            -
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 1437 | 
         
            -
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 1438 | 
         
            -
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 1439 | 
         
            -
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 1440 | 
         
            -
             
     | 
| 1441 | 
         
            -
                    if sample:
         
     | 
| 1442 | 
         
            -
                        # get denoise row
         
     | 
| 1443 | 
         
            -
                        with ema_scope("Sampling"):
         
     | 
| 1444 | 
         
            -
                            samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         
     | 
| 1445 | 
         
            -
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         
     | 
| 1446 | 
         
            -
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 1447 | 
         
            -
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 1448 | 
         
            -
                        log["samples"] = x_samples
         
     | 
| 1449 | 
         
            -
                        if plot_denoise_rows:
         
     | 
| 1450 | 
         
            -
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 1451 | 
         
            -
                            log["denoise_row"] = denoise_grid
         
     | 
| 1452 | 
         
            -
             
     | 
| 1453 | 
         
            -
                    if unconditional_guidance_scale > 1.0:
         
     | 
| 1454 | 
         
            -
                        uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         
     | 
| 1455 | 
         
            -
                        # TODO explore better "unconditional" choices for the other keys
         
     | 
| 1456 | 
         
            -
                        # maybe guide away from empty text label and highest noise level and maximally degraded zx?
         
     | 
| 1457 | 
         
            -
                        uc = dict()
         
     | 
| 1458 | 
         
            -
                        for k in c:
         
     | 
| 1459 | 
         
            -
                            if k == "c_crossattn":
         
     | 
| 1460 | 
         
            -
                                assert isinstance(c[k], list) and len(c[k]) == 1
         
     | 
| 1461 | 
         
            -
                                uc[k] = [uc_tmp]
         
     | 
| 1462 | 
         
            -
                            elif k == "c_adm":  # todo: only run with text-based guidance?
         
     | 
| 1463 | 
         
            -
                                assert isinstance(c[k], torch.Tensor)
         
     | 
| 1464 | 
         
            -
                                #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
         
     | 
| 1465 | 
         
            -
                                uc[k] = c[k]
         
     | 
| 1466 | 
         
            -
                            elif isinstance(c[k], list):
         
     | 
| 1467 | 
         
            -
                                uc[k] = [c[k][i] for i in range(len(c[k]))]
         
     | 
| 1468 | 
         
            -
                            else:
         
     | 
| 1469 | 
         
            -
                                uc[k] = c[k]
         
     | 
| 1470 | 
         
            -
             
     | 
| 1471 | 
         
            -
                        with ema_scope("Sampling with classifier-free guidance"):
         
     | 
| 1472 | 
         
            -
                            samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         
     | 
| 1473 | 
         
            -
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         
     | 
| 1474 | 
         
            -
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 1475 | 
         
            -
                                                             unconditional_conditioning=uc,
         
     | 
| 1476 | 
         
            -
                                                             )
         
     | 
| 1477 | 
         
            -
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         
     | 
| 1478 | 
         
            -
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         
     | 
| 1479 | 
         
            -
             
     | 
| 1480 | 
         
            -
                    if plot_progressive_rows:
         
     | 
| 1481 | 
         
            -
                        with ema_scope("Plotting Progressives"):
         
     | 
| 1482 | 
         
            -
                            img, progressives = self.progressive_denoising(c,
         
     | 
| 1483 | 
         
            -
                                                                           shape=(self.channels, self.image_size, self.image_size),
         
     | 
| 1484 | 
         
            -
                                                                           batch_size=N)
         
     | 
| 1485 | 
         
            -
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         
     | 
| 1486 | 
         
            -
                        log["progressive_row"] = prog_row
         
     | 
| 1487 | 
         
            -
             
     | 
| 1488 | 
         
            -
                    return log
         
     | 
| 1489 | 
         
            -
             
     | 
| 1490 | 
         
            -
             
     | 
| 1491 | 
         
            -
            class LatentFinetuneDiffusion(LatentDiffusion):
         
     | 
| 1492 | 
         
            -
                """
         
     | 
| 1493 | 
         
            -
                     Basis for different finetunas, such as inpainting or depth2image
         
     | 
| 1494 | 
         
            -
                     To disable finetuning mode, set finetune_keys to None
         
     | 
| 1495 | 
         
            -
                """
         
     | 
| 1496 | 
         
            -
             
     | 
| 1497 | 
         
            -
                def __init__(self,
         
     | 
| 1498 | 
         
            -
                             concat_keys: tuple,
         
     | 
| 1499 | 
         
            -
                             finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
         
     | 
| 1500 | 
         
            -
                                            "model_ema.diffusion_modelinput_blocks00weight"
         
     | 
| 1501 | 
         
            -
                                            ),
         
     | 
| 1502 | 
         
            -
                             keep_finetune_dims=4,
         
     | 
| 1503 | 
         
            -
                             # if model was trained without concat mode before and we would like to keep these channels
         
     | 
| 1504 | 
         
            -
                             c_concat_log_start=None,  # to log reconstruction of c_concat codes
         
     | 
| 1505 | 
         
            -
                             c_concat_log_end=None,
         
     | 
| 1506 | 
         
            -
                             *args, **kwargs
         
     | 
| 1507 | 
         
            -
                             ):
         
     | 
| 1508 | 
         
            -
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 1509 | 
         
            -
                    ignore_keys = kwargs.pop("ignore_keys", list())
         
     | 
| 1510 | 
         
            -
                    super().__init__(*args, **kwargs)
         
     | 
| 1511 | 
         
            -
                    self.finetune_keys = finetune_keys
         
     | 
| 1512 | 
         
            -
                    self.concat_keys = concat_keys
         
     | 
| 1513 | 
         
            -
                    self.keep_dims = keep_finetune_dims
         
     | 
| 1514 | 
         
            -
                    self.c_concat_log_start = c_concat_log_start
         
     | 
| 1515 | 
         
            -
                    self.c_concat_log_end = c_concat_log_end
         
     | 
| 1516 | 
         
            -
                    if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
         
     | 
| 1517 | 
         
            -
                    if exists(ckpt_path):
         
     | 
| 1518 | 
         
            -
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         
     | 
| 1519 | 
         
            -
             
     | 
| 1520 | 
         
            -
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         
     | 
| 1521 | 
         
            -
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 1522 | 
         
            -
                    if "state_dict" in list(sd.keys()):
         
     | 
| 1523 | 
         
            -
                        sd = sd["state_dict"]
         
     | 
| 1524 | 
         
            -
                    keys = list(sd.keys())
         
     | 
| 1525 | 
         
            -
                    for k in keys:
         
     | 
| 1526 | 
         
            -
                        for ik in ignore_keys:
         
     | 
| 1527 | 
         
            -
                            if k.startswith(ik):
         
     | 
| 1528 | 
         
            -
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 1529 | 
         
            -
                                del sd[k]
         
     | 
| 1530 | 
         
            -
             
     | 
| 1531 | 
         
            -
                        # make it explicit, finetune by including extra input channels
         
     | 
| 1532 | 
         
            -
                        if exists(self.finetune_keys) and k in self.finetune_keys:
         
     | 
| 1533 | 
         
            -
                            new_entry = None
         
     | 
| 1534 | 
         
            -
                            for name, param in self.named_parameters():
         
     | 
| 1535 | 
         
            -
                                if name in self.finetune_keys:
         
     | 
| 1536 | 
         
            -
                                    print(
         
     | 
| 1537 | 
         
            -
                                        f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
         
     | 
| 1538 | 
         
            -
                                    new_entry = torch.zeros_like(param)  # zero init
         
     | 
| 1539 | 
         
            -
                            assert exists(new_entry), 'did not find matching parameter to modify'
         
     | 
| 1540 | 
         
            -
                            new_entry[:, :self.keep_dims, ...] = sd[k]
         
     | 
| 1541 | 
         
            -
                            sd[k] = new_entry
         
     | 
| 1542 | 
         
            -
             
     | 
| 1543 | 
         
            -
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         
     | 
| 1544 | 
         
            -
                        sd, strict=False)
         
     | 
| 1545 | 
         
            -
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 1546 | 
         
            -
                    if len(missing) > 0:
         
     | 
| 1547 | 
         
            -
                        print(f"Missing Keys: {missing}")
         
     | 
| 1548 | 
         
            -
                    if len(unexpected) > 0:
         
     | 
| 1549 | 
         
            -
                        print(f"Unexpected Keys: {unexpected}")
         
     | 
| 1550 | 
         
            -
             
     | 
| 1551 | 
         
            -
                @torch.no_grad()
         
     | 
| 1552 | 
         
            -
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         
     | 
| 1553 | 
         
            -
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         
     | 
| 1554 | 
         
            -
                               plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
         
     | 
| 1555 | 
         
            -
                               use_ema_scope=True,
         
     | 
| 1556 | 
         
            -
                               **kwargs):
         
     | 
| 1557 | 
         
            -
                    ema_scope = self.ema_scope if use_ema_scope else nullcontext
         
     | 
| 1558 | 
         
            -
                    use_ddim = ddim_steps is not None
         
     | 
| 1559 | 
         
            -
             
     | 
| 1560 | 
         
            -
                    log = dict()
         
     | 
| 1561 | 
         
            -
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
         
     | 
| 1562 | 
         
            -
                    c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
         
     | 
| 1563 | 
         
            -
                    N = min(x.shape[0], N)
         
     | 
| 1564 | 
         
            -
                    n_row = min(x.shape[0], n_row)
         
     | 
| 1565 | 
         
            -
                    log["inputs"] = x
         
     | 
| 1566 | 
         
            -
                    log["reconstruction"] = xrec
         
     | 
| 1567 | 
         
            -
                    if self.model.conditioning_key is not None:
         
     | 
| 1568 | 
         
            -
                        if hasattr(self.cond_stage_model, "decode"):
         
     | 
| 1569 | 
         
            -
                            xc = self.cond_stage_model.decode(c)
         
     | 
| 1570 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1571 | 
         
            -
                        elif self.cond_stage_key in ["caption", "txt"]:
         
     | 
| 1572 | 
         
            -
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
         
     | 
| 1573 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1574 | 
         
            -
                        elif self.cond_stage_key in ['class_label', 'cls']:
         
     | 
| 1575 | 
         
            -
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
         
     | 
| 1576 | 
         
            -
                            log['conditioning'] = xc
         
     | 
| 1577 | 
         
            -
                        elif isimage(xc):
         
     | 
| 1578 | 
         
            -
                            log["conditioning"] = xc
         
     | 
| 1579 | 
         
            -
                        if ismap(xc):
         
     | 
| 1580 | 
         
            -
                            log["original_conditioning"] = self.to_rgb(xc)
         
     | 
| 1581 | 
         
            -
             
     | 
| 1582 | 
         
            -
                    if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
         
     | 
| 1583 | 
         
            -
                        log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
         
     | 
| 1584 | 
         
            -
             
     | 
| 1585 | 
         
            -
                    if plot_diffusion_rows:
         
     | 
| 1586 | 
         
            -
                        # get diffusion row
         
     | 
| 1587 | 
         
            -
                        diffusion_row = list()
         
     | 
| 1588 | 
         
            -
                        z_start = z[:n_row]
         
     | 
| 1589 | 
         
            -
                        for t in range(self.num_timesteps):
         
     | 
| 1590 | 
         
            -
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 1591 | 
         
            -
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 1592 | 
         
            -
                                t = t.to(self.device).long()
         
     | 
| 1593 | 
         
            -
                                noise = torch.randn_like(z_start)
         
     | 
| 1594 | 
         
            -
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         
     | 
| 1595 | 
         
            -
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         
     | 
| 1596 | 
         
            -
             
     | 
| 1597 | 
         
            -
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         
     | 
| 1598 | 
         
            -
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         
     | 
| 1599 | 
         
            -
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 1600 | 
         
            -
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         
     | 
| 1601 | 
         
            -
                        log["diffusion_row"] = diffusion_grid
         
     | 
| 1602 | 
         
            -
             
     | 
| 1603 | 
         
            -
                    if sample:
         
     | 
| 1604 | 
         
            -
                        # get denoise row
         
     | 
| 1605 | 
         
            -
                        with ema_scope("Sampling"):
         
     | 
| 1606 | 
         
            -
                            samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
         
     | 
| 1607 | 
         
            -
                                                                     batch_size=N, ddim=use_ddim,
         
     | 
| 1608 | 
         
            -
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         
     | 
| 1609 | 
         
            -
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         
     | 
| 1610 | 
         
            -
                        x_samples = self.decode_first_stage(samples)
         
     | 
| 1611 | 
         
            -
                        log["samples"] = x_samples
         
     | 
| 1612 | 
         
            -
                        if plot_denoise_rows:
         
     | 
| 1613 | 
         
            -
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         
     | 
| 1614 | 
         
            -
                            log["denoise_row"] = denoise_grid
         
     | 
| 1615 | 
         
            -
             
     | 
| 1616 | 
         
            -
                    if unconditional_guidance_scale > 1.0:
         
     | 
| 1617 | 
         
            -
                        uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         
     | 
| 1618 | 
         
            -
                        uc_cat = c_cat
         
     | 
| 1619 | 
         
            -
                        uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
         
     | 
| 1620 | 
         
            -
                        with ema_scope("Sampling with classifier-free guidance"):
         
     | 
| 1621 | 
         
            -
                            samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
         
     | 
| 1622 | 
         
            -
                                                             batch_size=N, ddim=use_ddim,
         
     | 
| 1623 | 
         
            -
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         
     | 
| 1624 | 
         
            -
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 1625 | 
         
            -
                                                             unconditional_conditioning=uc_full,
         
     | 
| 1626 | 
         
            -
                                                             )
         
     | 
| 1627 | 
         
            -
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         
     | 
| 1628 | 
         
            -
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         
     | 
| 1629 | 
         
            -
             
     | 
| 1630 | 
         
            -
                    return log
         
     | 
| 1631 | 
         
            -
             
     | 
| 1632 | 
         
            -
             
     | 
| 1633 | 
         
            -
            class LatentInpaintDiffusion(LatentFinetuneDiffusion):
         
     | 
| 1634 | 
         
            -
                """
         
     | 
| 1635 | 
         
            -
                can either run as pure inpainting model (only concat mode) or with mixed conditionings,
         
     | 
| 1636 | 
         
            -
                e.g. mask as concat and text via cross-attn.
         
     | 
| 1637 | 
         
            -
                To disable finetuning mode, set finetune_keys to None
         
     | 
| 1638 | 
         
            -
                 """
         
     | 
| 1639 | 
         
            -
             
     | 
| 1640 | 
         
            -
                def __init__(self,
         
     | 
| 1641 | 
         
            -
                             concat_keys=("mask", "masked_image"),
         
     | 
| 1642 | 
         
            -
                             masked_image_key="masked_image",
         
     | 
| 1643 | 
         
            -
                             *args, **kwargs
         
     | 
| 1644 | 
         
            -
                             ):
         
     | 
| 1645 | 
         
            -
                    super().__init__(concat_keys, *args, **kwargs)
         
     | 
| 1646 | 
         
            -
                    self.masked_image_key = masked_image_key
         
     | 
| 1647 | 
         
            -
                    assert self.masked_image_key in concat_keys
         
     | 
| 1648 | 
         
            -
             
     | 
| 1649 | 
         
            -
                @torch.no_grad()
         
     | 
| 1650 | 
         
            -
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         
     | 
| 1651 | 
         
            -
                    # note: restricted to non-trainable encoders currently
         
     | 
| 1652 | 
         
            -
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
         
     | 
| 1653 | 
         
            -
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         
     | 
| 1654 | 
         
            -
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         
     | 
| 1655 | 
         
            -
             
     | 
| 1656 | 
         
            -
                    assert exists(self.concat_keys)
         
     | 
| 1657 | 
         
            -
                    c_cat = list()
         
     | 
| 1658 | 
         
            -
                    for ck in self.concat_keys:
         
     | 
| 1659 | 
         
            -
                        cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
         
     | 
| 1660 | 
         
            -
                        if bs is not None:
         
     | 
| 1661 | 
         
            -
                            cc = cc[:bs]
         
     | 
| 1662 | 
         
            -
                            cc = cc.to(self.device)
         
     | 
| 1663 | 
         
            -
                        bchw = z.shape
         
     | 
| 1664 | 
         
            -
                        if ck != self.masked_image_key:
         
     | 
| 1665 | 
         
            -
                            cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
         
     | 
| 1666 | 
         
            -
                        else:
         
     | 
| 1667 | 
         
            -
                            cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
         
     | 
| 1668 | 
         
            -
                        c_cat.append(cc)
         
     | 
| 1669 | 
         
            -
                    c_cat = torch.cat(c_cat, dim=1)
         
     | 
| 1670 | 
         
            -
                    all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         
     | 
| 1671 | 
         
            -
                    if return_first_stage_outputs:
         
     | 
| 1672 | 
         
            -
                        return z, all_conds, x, xrec, xc
         
     | 
| 1673 | 
         
            -
                    return z, all_conds
         
     | 
| 1674 | 
         
            -
             
     | 
| 1675 | 
         
            -
                @torch.no_grad()
         
     | 
| 1676 | 
         
            -
                def log_images(self, *args, **kwargs):
         
     | 
| 1677 | 
         
            -
                    log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
         
     | 
| 1678 | 
         
            -
                    log["masked_image"] = rearrange(args[0]["masked_image"],
         
     | 
| 1679 | 
         
            -
                                                    'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
         
     | 
| 1680 | 
         
            -
                    return log
         
     | 
| 1681 | 
         
            -
             
     | 
| 1682 | 
         
            -
             
     | 
| 1683 | 
         
            -
            class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
         
     | 
| 1684 | 
         
            -
                """
         
     | 
| 1685 | 
         
            -
                condition on monocular depth estimation
         
     | 
| 1686 | 
         
            -
                """
         
     | 
| 1687 | 
         
            -
             
     | 
| 1688 | 
         
            -
                def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
         
     | 
| 1689 | 
         
            -
                    super().__init__(concat_keys=concat_keys, *args, **kwargs)
         
     | 
| 1690 | 
         
            -
                    self.depth_model = instantiate_from_config(depth_stage_config)
         
     | 
| 1691 | 
         
            -
                    self.depth_stage_key = concat_keys[0]
         
     | 
| 1692 | 
         
            -
             
     | 
| 1693 | 
         
            -
                @torch.no_grad()
         
     | 
| 1694 | 
         
            -
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         
     | 
| 1695 | 
         
            -
                    # note: restricted to non-trainable encoders currently
         
     | 
| 1696 | 
         
            -
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
         
     | 
| 1697 | 
         
            -
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         
     | 
| 1698 | 
         
            -
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         
     | 
| 1699 | 
         
            -
             
     | 
| 1700 | 
         
            -
                    assert exists(self.concat_keys)
         
     | 
| 1701 | 
         
            -
                    assert len(self.concat_keys) == 1
         
     | 
| 1702 | 
         
            -
                    c_cat = list()
         
     | 
| 1703 | 
         
            -
                    for ck in self.concat_keys:
         
     | 
| 1704 | 
         
            -
                        cc = batch[ck]
         
     | 
| 1705 | 
         
            -
                        if bs is not None:
         
     | 
| 1706 | 
         
            -
                            cc = cc[:bs]
         
     | 
| 1707 | 
         
            -
                            cc = cc.to(self.device)
         
     | 
| 1708 | 
         
            -
                        cc = self.depth_model(cc)
         
     | 
| 1709 | 
         
            -
                        cc = torch.nn.functional.interpolate(
         
     | 
| 1710 | 
         
            -
                            cc,
         
     | 
| 1711 | 
         
            -
                            size=z.shape[2:],
         
     | 
| 1712 | 
         
            -
                            mode="bicubic",
         
     | 
| 1713 | 
         
            -
                            align_corners=False,
         
     | 
| 1714 | 
         
            -
                        )
         
     | 
| 1715 | 
         
            -
                        # TODO: think about this. ideally rescale by some global values
         
     | 
| 1716 | 
         
            -
                        depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
         
     | 
| 1717 | 
         
            -
                                                                                                       keepdim=True)
         
     | 
| 1718 | 
         
            -
                        cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
         
     | 
| 1719 | 
         
            -
                        c_cat.append(cc)
         
     | 
| 1720 | 
         
            -
                    c_cat = torch.cat(c_cat, dim=1)
         
     | 
| 1721 | 
         
            -
                    all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         
     | 
| 1722 | 
         
            -
                    if return_first_stage_outputs:
         
     | 
| 1723 | 
         
            -
                        return z, all_conds, x, xrec, xc
         
     | 
| 1724 | 
         
            -
                    return z, all_conds
         
     | 
| 1725 | 
         
            -
             
     | 
| 1726 | 
         
            -
                @torch.no_grad()
         
     | 
| 1727 | 
         
            -
                def log_images(self, *args, **kwargs):
         
     | 
| 1728 | 
         
            -
                    log = super().log_images(*args, **kwargs)
         
     | 
| 1729 | 
         
            -
                    depth = self.depth_model(args[0][self.depth_stage_key])
         
     | 
| 1730 | 
         
            -
                    depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
         
     | 
| 1731 | 
         
            -
                                           torch.amax(depth, dim=[1, 2, 3], keepdim=True)
         
     | 
| 1732 | 
         
            -
                    log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
         
     | 
| 1733 | 
         
            -
                    return log
         
     | 
| 1734 | 
         
            -
             
     | 
| 1735 | 
         
            -
             
     | 
| 1736 | 
         
            -
            class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
         
     | 
| 1737 | 
         
            -
                """
         
     | 
| 1738 | 
         
            -
                    condition on low-res image (and optionally on some spatial noise augmentation)
         
     | 
| 1739 | 
         
            -
                """
         
     | 
| 1740 | 
         
            -
                def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
         
     | 
| 1741 | 
         
            -
                             low_scale_config=None, low_scale_key=None, *args, **kwargs):
         
     | 
| 1742 | 
         
            -
                    super().__init__(concat_keys=concat_keys, *args, **kwargs)
         
     | 
| 1743 | 
         
            -
                    self.reshuffle_patch_size = reshuffle_patch_size
         
     | 
| 1744 | 
         
            -
                    self.low_scale_model = None
         
     | 
| 1745 | 
         
            -
                    if low_scale_config is not None:
         
     | 
| 1746 | 
         
            -
                        print("Initializing a low-scale model")
         
     | 
| 1747 | 
         
            -
                        assert exists(low_scale_key)
         
     | 
| 1748 | 
         
            -
                        self.instantiate_low_stage(low_scale_config)
         
     | 
| 1749 | 
         
            -
                        self.low_scale_key = low_scale_key
         
     | 
| 1750 | 
         
            -
             
     | 
| 1751 | 
         
            -
                def instantiate_low_stage(self, config):
         
     | 
| 1752 | 
         
            -
                    model = instantiate_from_config(config)
         
     | 
| 1753 | 
         
            -
                    self.low_scale_model = model.eval()
         
     | 
| 1754 | 
         
            -
                    self.low_scale_model.train = disabled_train
         
     | 
| 1755 | 
         
            -
                    for param in self.low_scale_model.parameters():
         
     | 
| 1756 | 
         
            -
                        param.requires_grad = False
         
     | 
| 1757 | 
         
            -
             
     | 
| 1758 | 
         
            -
                @torch.no_grad()
         
     | 
| 1759 | 
         
            -
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         
     | 
| 1760 | 
         
            -
                    # note: restricted to non-trainable encoders currently
         
     | 
| 1761 | 
         
            -
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
         
     | 
| 1762 | 
         
            -
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         
     | 
| 1763 | 
         
            -
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         
     | 
| 1764 | 
         
            -
             
     | 
| 1765 | 
         
            -
                    assert exists(self.concat_keys)
         
     | 
| 1766 | 
         
            -
                    assert len(self.concat_keys) == 1
         
     | 
| 1767 | 
         
            -
                    # optionally make spatial noise_level here
         
     | 
| 1768 | 
         
            -
                    c_cat = list()
         
     | 
| 1769 | 
         
            -
                    noise_level = None
         
     | 
| 1770 | 
         
            -
                    for ck in self.concat_keys:
         
     | 
| 1771 | 
         
            -
                        cc = batch[ck]
         
     | 
| 1772 | 
         
            -
                        cc = rearrange(cc, 'b h w c -> b c h w')
         
     | 
| 1773 | 
         
            -
                        if exists(self.reshuffle_patch_size):
         
     | 
| 1774 | 
         
            -
                            assert isinstance(self.reshuffle_patch_size, int)
         
     | 
| 1775 | 
         
            -
                            cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
         
     | 
| 1776 | 
         
            -
                                           p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
         
     | 
| 1777 | 
         
            -
                        if bs is not None:
         
     | 
| 1778 | 
         
            -
                            cc = cc[:bs]
         
     | 
| 1779 | 
         
            -
                            cc = cc.to(self.device)
         
     | 
| 1780 | 
         
            -
                        if exists(self.low_scale_model) and ck == self.low_scale_key:
         
     | 
| 1781 | 
         
            -
                            cc, noise_level = self.low_scale_model(cc)
         
     | 
| 1782 | 
         
            -
                        c_cat.append(cc)
         
     | 
| 1783 | 
         
            -
                    c_cat = torch.cat(c_cat, dim=1)
         
     | 
| 1784 | 
         
            -
                    if exists(noise_level):
         
     | 
| 1785 | 
         
            -
                        all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
         
     | 
| 1786 | 
         
            -
                    else:
         
     | 
| 1787 | 
         
            -
                        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         
     | 
| 1788 | 
         
            -
                    if return_first_stage_outputs:
         
     | 
| 1789 | 
         
            -
                        return z, all_conds, x, xrec, xc
         
     | 
| 1790 | 
         
            -
                    return z, all_conds
         
     | 
| 1791 | 
         
            -
             
     | 
| 1792 | 
         
            -
                @torch.no_grad()
         
     | 
| 1793 | 
         
            -
                def log_images(self, *args, **kwargs):
         
     | 
| 1794 | 
         
            -
                    log = super().log_images(*args, **kwargs)
         
     | 
| 1795 | 
         
            -
                    log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
         
     | 
| 1796 | 
         
            -
                    return log
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/dpm_solver/__init__.py
    DELETED
    
    | 
         @@ -1 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from .sampler import DPMSolverSampler
         
     | 
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/dpm_solver/dpm_solver.py
    DELETED
    
    | 
         @@ -1,1154 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 3 | 
         
            -
            import math
         
     | 
| 4 | 
         
            -
            from tqdm import tqdm
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            class NoiseScheduleVP:
         
     | 
| 8 | 
         
            -
                def __init__(
         
     | 
| 9 | 
         
            -
                        self,
         
     | 
| 10 | 
         
            -
                        schedule='discrete',
         
     | 
| 11 | 
         
            -
                        betas=None,
         
     | 
| 12 | 
         
            -
                        alphas_cumprod=None,
         
     | 
| 13 | 
         
            -
                        continuous_beta_0=0.1,
         
     | 
| 14 | 
         
            -
                        continuous_beta_1=20.,
         
     | 
| 15 | 
         
            -
                ):
         
     | 
| 16 | 
         
            -
                    """Create a wrapper class for the forward SDE (VP type).
         
     | 
| 17 | 
         
            -
                    ***
         
     | 
| 18 | 
         
            -
                    Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
         
     | 
| 19 | 
         
            -
                            We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
         
     | 
| 20 | 
         
            -
                    ***
         
     | 
| 21 | 
         
            -
                    The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
         
     | 
| 22 | 
         
            -
                    We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
         
     | 
| 23 | 
         
            -
                    Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
         
     | 
| 24 | 
         
            -
                        log_alpha_t = self.marginal_log_mean_coeff(t)
         
     | 
| 25 | 
         
            -
                        sigma_t = self.marginal_std(t)
         
     | 
| 26 | 
         
            -
                        lambda_t = self.marginal_lambda(t)
         
     | 
| 27 | 
         
            -
                    Moreover, as lambda(t) is an invertible function, we also support its inverse function:
         
     | 
| 28 | 
         
            -
                        t = self.inverse_lambda(lambda_t)
         
     | 
| 29 | 
         
            -
                    ===============================================================
         
     | 
| 30 | 
         
            -
                    We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
         
     | 
| 31 | 
         
            -
                    1. For discrete-time DPMs:
         
     | 
| 32 | 
         
            -
                        For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
         
     | 
| 33 | 
         
            -
                            t_i = (i + 1) / N
         
     | 
| 34 | 
         
            -
                        e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
         
     | 
| 35 | 
         
            -
                        We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
         
     | 
| 36 | 
         
            -
                        Args:
         
     | 
| 37 | 
         
            -
                            betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
         
     | 
| 38 | 
         
            -
                            alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
         
     | 
| 39 | 
         
            -
                        Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
         
     | 
| 40 | 
         
            -
                        **Important**:  Please pay special attention for the args for `alphas_cumprod`:
         
     | 
| 41 | 
         
            -
                            The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
         
     | 
| 42 | 
         
            -
                                q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
         
     | 
| 43 | 
         
            -
                            Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
         
     | 
| 44 | 
         
            -
                                alpha_{t_n} = \sqrt{\hat{alpha_n}},
         
     | 
| 45 | 
         
            -
                            and
         
     | 
| 46 | 
         
            -
                                log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
         
     | 
| 47 | 
         
            -
                    2. For continuous-time DPMs:
         
     | 
| 48 | 
         
            -
                        We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
         
     | 
| 49 | 
         
            -
                        schedule are the default settings in DDPM and improved-DDPM:
         
     | 
| 50 | 
         
            -
                        Args:
         
     | 
| 51 | 
         
            -
                            beta_min: A `float` number. The smallest beta for the linear schedule.
         
     | 
| 52 | 
         
            -
                            beta_max: A `float` number. The largest beta for the linear schedule.
         
     | 
| 53 | 
         
            -
                            cosine_s: A `float` number. The hyperparameter in the cosine schedule.
         
     | 
| 54 | 
         
            -
                            cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
         
     | 
| 55 | 
         
            -
                            T: A `float` number. The ending time of the forward process.
         
     | 
| 56 | 
         
            -
                    ===============================================================
         
     | 
| 57 | 
         
            -
                    Args:
         
     | 
| 58 | 
         
            -
                        schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
         
     | 
| 59 | 
         
            -
                                'linear' or 'cosine' for continuous-time DPMs.
         
     | 
| 60 | 
         
            -
                    Returns:
         
     | 
| 61 | 
         
            -
                        A wrapper object of the forward SDE (VP type).
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
                    ===============================================================
         
     | 
| 64 | 
         
            -
                    Example:
         
     | 
| 65 | 
         
            -
                    # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
         
     | 
| 66 | 
         
            -
                    >>> ns = NoiseScheduleVP('discrete', betas=betas)
         
     | 
| 67 | 
         
            -
                    # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
         
     | 
| 68 | 
         
            -
                    >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
         
     | 
| 69 | 
         
            -
                    # For continuous-time DPMs (VPSDE), linear schedule:
         
     | 
| 70 | 
         
            -
                    >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
         
     | 
| 71 | 
         
            -
                    """
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                    if schedule not in ['discrete', 'linear', 'cosine']:
         
     | 
| 74 | 
         
            -
                        raise ValueError(
         
     | 
| 75 | 
         
            -
                            "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
         
     | 
| 76 | 
         
            -
                                schedule))
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
                    self.schedule = schedule
         
     | 
| 79 | 
         
            -
                    if schedule == 'discrete':
         
     | 
| 80 | 
         
            -
                        if betas is not None:
         
     | 
| 81 | 
         
            -
                            log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
         
     | 
| 82 | 
         
            -
                        else:
         
     | 
| 83 | 
         
            -
                            assert alphas_cumprod is not None
         
     | 
| 84 | 
         
            -
                            log_alphas = 0.5 * torch.log(alphas_cumprod)
         
     | 
| 85 | 
         
            -
                        self.total_N = len(log_alphas)
         
     | 
| 86 | 
         
            -
                        self.T = 1.
         
     | 
| 87 | 
         
            -
                        self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
         
     | 
| 88 | 
         
            -
                        self.log_alpha_array = log_alphas.reshape((1, -1,))
         
     | 
| 89 | 
         
            -
                    else:
         
     | 
| 90 | 
         
            -
                        self.total_N = 1000
         
     | 
| 91 | 
         
            -
                        self.beta_0 = continuous_beta_0
         
     | 
| 92 | 
         
            -
                        self.beta_1 = continuous_beta_1
         
     | 
| 93 | 
         
            -
                        self.cosine_s = 0.008
         
     | 
| 94 | 
         
            -
                        self.cosine_beta_max = 999.
         
     | 
| 95 | 
         
            -
                        self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
         
     | 
| 96 | 
         
            -
                                    1. + self.cosine_s) / math.pi - self.cosine_s
         
     | 
| 97 | 
         
            -
                        self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
         
     | 
| 98 | 
         
            -
                        self.schedule = schedule
         
     | 
| 99 | 
         
            -
                        if schedule == 'cosine':
         
     | 
| 100 | 
         
            -
                            # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
         
     | 
| 101 | 
         
            -
                            # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
         
     | 
| 102 | 
         
            -
                            self.T = 0.9946
         
     | 
| 103 | 
         
            -
                        else:
         
     | 
| 104 | 
         
            -
                            self.T = 1.
         
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
                def marginal_log_mean_coeff(self, t):
         
     | 
| 107 | 
         
            -
                    """
         
     | 
| 108 | 
         
            -
                    Compute log(alpha_t) of a given continuous-time label t in [0, T].
         
     | 
| 109 | 
         
            -
                    """
         
     | 
| 110 | 
         
            -
                    if self.schedule == 'discrete':
         
     | 
| 111 | 
         
            -
                        return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
         
     | 
| 112 | 
         
            -
                                              self.log_alpha_array.to(t.device)).reshape((-1))
         
     | 
| 113 | 
         
            -
                    elif self.schedule == 'linear':
         
     | 
| 114 | 
         
            -
                        return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
         
     | 
| 115 | 
         
            -
                    elif self.schedule == 'cosine':
         
     | 
| 116 | 
         
            -
                        log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
         
     | 
| 117 | 
         
            -
                        log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
         
     | 
| 118 | 
         
            -
                        return log_alpha_t
         
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
                def marginal_alpha(self, t):
         
     | 
| 121 | 
         
            -
                    """
         
     | 
| 122 | 
         
            -
                    Compute alpha_t of a given continuous-time label t in [0, T].
         
     | 
| 123 | 
         
            -
                    """
         
     | 
| 124 | 
         
            -
                    return torch.exp(self.marginal_log_mean_coeff(t))
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                def marginal_std(self, t):
         
     | 
| 127 | 
         
            -
                    """
         
     | 
| 128 | 
         
            -
                    Compute sigma_t of a given continuous-time label t in [0, T].
         
     | 
| 129 | 
         
            -
                    """
         
     | 
| 130 | 
         
            -
                    return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                def marginal_lambda(self, t):
         
     | 
| 133 | 
         
            -
                    """
         
     | 
| 134 | 
         
            -
                    Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
         
     | 
| 135 | 
         
            -
                    """
         
     | 
| 136 | 
         
            -
                    log_mean_coeff = self.marginal_log_mean_coeff(t)
         
     | 
| 137 | 
         
            -
                    log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
         
     | 
| 138 | 
         
            -
                    return log_mean_coeff - log_std
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                def inverse_lambda(self, lamb):
         
     | 
| 141 | 
         
            -
                    """
         
     | 
| 142 | 
         
            -
                    Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
         
     | 
| 143 | 
         
            -
                    """
         
     | 
| 144 | 
         
            -
                    if self.schedule == 'linear':
         
     | 
| 145 | 
         
            -
                        tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
         
     | 
| 146 | 
         
            -
                        Delta = self.beta_0 ** 2 + tmp
         
     | 
| 147 | 
         
            -
                        return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
         
     | 
| 148 | 
         
            -
                    elif self.schedule == 'discrete':
         
     | 
| 149 | 
         
            -
                        log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
         
     | 
| 150 | 
         
            -
                        t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
         
     | 
| 151 | 
         
            -
                                           torch.flip(self.t_array.to(lamb.device), [1]))
         
     | 
| 152 | 
         
            -
                        return t.reshape((-1,))
         
     | 
| 153 | 
         
            -
                    else:
         
     | 
| 154 | 
         
            -
                        log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
         
     | 
| 155 | 
         
            -
                        t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
         
     | 
| 156 | 
         
            -
                                    1. + self.cosine_s) / math.pi - self.cosine_s
         
     | 
| 157 | 
         
            -
                        t = t_fn(log_alpha)
         
     | 
| 158 | 
         
            -
                        return t
         
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
             
     | 
| 161 | 
         
            -
            def model_wrapper(
         
     | 
| 162 | 
         
            -
                    model,
         
     | 
| 163 | 
         
            -
                    noise_schedule,
         
     | 
| 164 | 
         
            -
                    model_type="noise",
         
     | 
| 165 | 
         
            -
                    model_kwargs={},
         
     | 
| 166 | 
         
            -
                    guidance_type="uncond",
         
     | 
| 167 | 
         
            -
                    condition=None,
         
     | 
| 168 | 
         
            -
                    unconditional_condition=None,
         
     | 
| 169 | 
         
            -
                    guidance_scale=1.,
         
     | 
| 170 | 
         
            -
                    classifier_fn=None,
         
     | 
| 171 | 
         
            -
                    classifier_kwargs={},
         
     | 
| 172 | 
         
            -
            ):
         
     | 
| 173 | 
         
            -
                """Create a wrapper function for the noise prediction model.
         
     | 
| 174 | 
         
            -
                DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
         
     | 
| 175 | 
         
            -
                firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
         
     | 
| 176 | 
         
            -
                We support four types of the diffusion model by setting `model_type`:
         
     | 
| 177 | 
         
            -
                    1. "noise": noise prediction model. (Trained by predicting noise).
         
     | 
| 178 | 
         
            -
                    2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
         
     | 
| 179 | 
         
            -
                    3. "v": velocity prediction model. (Trained by predicting the velocity).
         
     | 
| 180 | 
         
            -
                        The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
         
     | 
| 181 | 
         
            -
                        [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
         
     | 
| 182 | 
         
            -
                            arXiv preprint arXiv:2202.00512 (2022).
         
     | 
| 183 | 
         
            -
                        [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
         
     | 
| 184 | 
         
            -
                            arXiv preprint arXiv:2210.02303 (2022).
         
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
                    4. "score": marginal score function. (Trained by denoising score matching).
         
     | 
| 187 | 
         
            -
                        Note that the score function and the noise prediction model follows a simple relationship:
         
     | 
| 188 | 
         
            -
                        ```
         
     | 
| 189 | 
         
            -
                            noise(x_t, t) = -sigma_t * score(x_t, t)
         
     | 
| 190 | 
         
            -
                        ```
         
     | 
| 191 | 
         
            -
                We support three types of guided sampling by DPMs by setting `guidance_type`:
         
     | 
| 192 | 
         
            -
                    1. "uncond": unconditional sampling by DPMs.
         
     | 
| 193 | 
         
            -
                        The input `model` has the following format:
         
     | 
| 194 | 
         
            -
                        ``
         
     | 
| 195 | 
         
            -
                            model(x, t_input, **model_kwargs) -> noise | x_start | v | score
         
     | 
| 196 | 
         
            -
                        ``
         
     | 
| 197 | 
         
            -
                    2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
         
     | 
| 198 | 
         
            -
                        The input `model` has the following format:
         
     | 
| 199 | 
         
            -
                        ``
         
     | 
| 200 | 
         
            -
                            model(x, t_input, **model_kwargs) -> noise | x_start | v | score
         
     | 
| 201 | 
         
            -
                        ``
         
     | 
| 202 | 
         
            -
                        The input `classifier_fn` has the following format:
         
     | 
| 203 | 
         
            -
                        ``
         
     | 
| 204 | 
         
            -
                            classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
         
     | 
| 205 | 
         
            -
                        ``
         
     | 
| 206 | 
         
            -
                        [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
         
     | 
| 207 | 
         
            -
                            in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
         
     | 
| 208 | 
         
            -
                    3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
         
     | 
| 209 | 
         
            -
                        The input `model` has the following format:
         
     | 
| 210 | 
         
            -
                        ``
         
     | 
| 211 | 
         
            -
                            model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
         
     | 
| 212 | 
         
            -
                        ``
         
     | 
| 213 | 
         
            -
                        And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
         
     | 
| 214 | 
         
            -
                        [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
         
     | 
| 215 | 
         
            -
                            arXiv preprint arXiv:2207.12598 (2022).
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
                The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
         
     | 
| 218 | 
         
            -
                or continuous-time labels (i.e. epsilon to T).
         
     | 
| 219 | 
         
            -
                We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
         
     | 
| 220 | 
         
            -
                ``
         
     | 
| 221 | 
         
            -
                    def model_fn(x, t_continuous) -> noise:
         
     | 
| 222 | 
         
            -
                        t_input = get_model_input_time(t_continuous)
         
     | 
| 223 | 
         
            -
                        return noise_pred(model, x, t_input, **model_kwargs)
         
     | 
| 224 | 
         
            -
                ``
         
     | 
| 225 | 
         
            -
                where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
         
     | 
| 226 | 
         
            -
                ===============================================================
         
     | 
| 227 | 
         
            -
                Args:
         
     | 
| 228 | 
         
            -
                    model: A diffusion model with the corresponding format described above.
         
     | 
| 229 | 
         
            -
                    noise_schedule: A noise schedule object, such as NoiseScheduleVP.
         
     | 
| 230 | 
         
            -
                    model_type: A `str`. The parameterization type of the diffusion model.
         
     | 
| 231 | 
         
            -
                                "noise" or "x_start" or "v" or "score".
         
     | 
| 232 | 
         
            -
                    model_kwargs: A `dict`. A dict for the other inputs of the model function.
         
     | 
| 233 | 
         
            -
                    guidance_type: A `str`. The type of the guidance for sampling.
         
     | 
| 234 | 
         
            -
                                "uncond" or "classifier" or "classifier-free".
         
     | 
| 235 | 
         
            -
                    condition: A pytorch tensor. The condition for the guided sampling.
         
     | 
| 236 | 
         
            -
                                Only used for "classifier" or "classifier-free" guidance type.
         
     | 
| 237 | 
         
            -
                    unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
         
     | 
| 238 | 
         
            -
                                Only used for "classifier-free" guidance type.
         
     | 
| 239 | 
         
            -
                    guidance_scale: A `float`. The scale for the guided sampling.
         
     | 
| 240 | 
         
            -
                    classifier_fn: A classifier function. Only used for the classifier guidance.
         
     | 
| 241 | 
         
            -
                    classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
         
     | 
| 242 | 
         
            -
                Returns:
         
     | 
| 243 | 
         
            -
                    A noise prediction model that accepts the noised data and the continuous time as the inputs.
         
     | 
| 244 | 
         
            -
                """
         
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
                def get_model_input_time(t_continuous):
         
     | 
| 247 | 
         
            -
                    """
         
     | 
| 248 | 
         
            -
                    Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
         
     | 
| 249 | 
         
            -
                    For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
         
     | 
| 250 | 
         
            -
                    For continuous-time DPMs, we just use `t_continuous`.
         
     | 
| 251 | 
         
            -
                    """
         
     | 
| 252 | 
         
            -
                    if noise_schedule.schedule == 'discrete':
         
     | 
| 253 | 
         
            -
                        return (t_continuous - 1. / noise_schedule.total_N) * 1000.
         
     | 
| 254 | 
         
            -
                    else:
         
     | 
| 255 | 
         
            -
                        return t_continuous
         
     | 
| 256 | 
         
            -
             
     | 
| 257 | 
         
            -
                def noise_pred_fn(x, t_continuous, cond=None):
         
     | 
| 258 | 
         
            -
                    if t_continuous.reshape((-1,)).shape[0] == 1:
         
     | 
| 259 | 
         
            -
                        t_continuous = t_continuous.expand((x.shape[0]))
         
     | 
| 260 | 
         
            -
                    t_input = get_model_input_time(t_continuous)
         
     | 
| 261 | 
         
            -
                    if cond is None:
         
     | 
| 262 | 
         
            -
                        output = model(x, t_input, **model_kwargs)
         
     | 
| 263 | 
         
            -
                    else:
         
     | 
| 264 | 
         
            -
                        output = model(x, t_input, cond, **model_kwargs)
         
     | 
| 265 | 
         
            -
                    if model_type == "noise":
         
     | 
| 266 | 
         
            -
                        return output
         
     | 
| 267 | 
         
            -
                    elif model_type == "x_start":
         
     | 
| 268 | 
         
            -
                        alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
         
     | 
| 269 | 
         
            -
                        dims = x.dim()
         
     | 
| 270 | 
         
            -
                        return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
         
     | 
| 271 | 
         
            -
                    elif model_type == "v":
         
     | 
| 272 | 
         
            -
                        alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
         
     | 
| 273 | 
         
            -
                        dims = x.dim()
         
     | 
| 274 | 
         
            -
                        return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
         
     | 
| 275 | 
         
            -
                    elif model_type == "score":
         
     | 
| 276 | 
         
            -
                        sigma_t = noise_schedule.marginal_std(t_continuous)
         
     | 
| 277 | 
         
            -
                        dims = x.dim()
         
     | 
| 278 | 
         
            -
                        return -expand_dims(sigma_t, dims) * output
         
     | 
| 279 | 
         
            -
             
     | 
| 280 | 
         
            -
                def cond_grad_fn(x, t_input):
         
     | 
| 281 | 
         
            -
                    """
         
     | 
| 282 | 
         
            -
                    Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
         
     | 
| 283 | 
         
            -
                    """
         
     | 
| 284 | 
         
            -
                    with torch.enable_grad():
         
     | 
| 285 | 
         
            -
                        x_in = x.detach().requires_grad_(True)
         
     | 
| 286 | 
         
            -
                        log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
         
     | 
| 287 | 
         
            -
                        return torch.autograd.grad(log_prob.sum(), x_in)[0]
         
     | 
| 288 | 
         
            -
             
     | 
| 289 | 
         
            -
                def model_fn(x, t_continuous):
         
     | 
| 290 | 
         
            -
                    """
         
     | 
| 291 | 
         
            -
                    The noise predicition model function that is used for DPM-Solver.
         
     | 
| 292 | 
         
            -
                    """
         
     | 
| 293 | 
         
            -
                    if t_continuous.reshape((-1,)).shape[0] == 1:
         
     | 
| 294 | 
         
            -
                        t_continuous = t_continuous.expand((x.shape[0]))
         
     | 
| 295 | 
         
            -
                    if guidance_type == "uncond":
         
     | 
| 296 | 
         
            -
                        return noise_pred_fn(x, t_continuous)
         
     | 
| 297 | 
         
            -
                    elif guidance_type == "classifier":
         
     | 
| 298 | 
         
            -
                        assert classifier_fn is not None
         
     | 
| 299 | 
         
            -
                        t_input = get_model_input_time(t_continuous)
         
     | 
| 300 | 
         
            -
                        cond_grad = cond_grad_fn(x, t_input)
         
     | 
| 301 | 
         
            -
                        sigma_t = noise_schedule.marginal_std(t_continuous)
         
     | 
| 302 | 
         
            -
                        noise = noise_pred_fn(x, t_continuous)
         
     | 
| 303 | 
         
            -
                        return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
         
     | 
| 304 | 
         
            -
                    elif guidance_type == "classifier-free":
         
     | 
| 305 | 
         
            -
                        if guidance_scale == 1. or unconditional_condition is None:
         
     | 
| 306 | 
         
            -
                            return noise_pred_fn(x, t_continuous, cond=condition)
         
     | 
| 307 | 
         
            -
                        else:
         
     | 
| 308 | 
         
            -
                            x_in = torch.cat([x] * 2)
         
     | 
| 309 | 
         
            -
                            t_in = torch.cat([t_continuous] * 2)
         
     | 
| 310 | 
         
            -
                            c_in = torch.cat([unconditional_condition, condition])
         
     | 
| 311 | 
         
            -
                            noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
         
     | 
| 312 | 
         
            -
                            return noise_uncond + guidance_scale * (noise - noise_uncond)
         
     | 
| 313 | 
         
            -
             
     | 
| 314 | 
         
            -
                assert model_type in ["noise", "x_start", "v"]
         
     | 
| 315 | 
         
            -
                assert guidance_type in ["uncond", "classifier", "classifier-free"]
         
     | 
| 316 | 
         
            -
                return model_fn
         
     | 
| 317 | 
         
            -
             
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
            class DPM_Solver:
         
     | 
| 320 | 
         
            -
                def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
         
     | 
| 321 | 
         
            -
                    """Construct a DPM-Solver.
         
     | 
| 322 | 
         
            -
                    We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
         
     | 
| 323 | 
         
            -
                    If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
         
     | 
| 324 | 
         
            -
                    If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
         
     | 
| 325 | 
         
            -
                        In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
         
     | 
| 326 | 
         
            -
                        The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
         
     | 
| 327 | 
         
            -
                    Args:
         
     | 
| 328 | 
         
            -
                        model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
         
     | 
| 329 | 
         
            -
                            ``
         
     | 
| 330 | 
         
            -
                            def model_fn(x, t_continuous):
         
     | 
| 331 | 
         
            -
                                return noise
         
     | 
| 332 | 
         
            -
                            ``
         
     | 
| 333 | 
         
            -
                        noise_schedule: A noise schedule object, such as NoiseScheduleVP.
         
     | 
| 334 | 
         
            -
                        predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
         
     | 
| 335 | 
         
            -
                        thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
         
     | 
| 336 | 
         
            -
                        max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
         
     | 
| 337 | 
         
            -
             
     | 
| 338 | 
         
            -
                    [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
         
     | 
| 339 | 
         
            -
                    """
         
     | 
| 340 | 
         
            -
                    self.model = model_fn
         
     | 
| 341 | 
         
            -
                    self.noise_schedule = noise_schedule
         
     | 
| 342 | 
         
            -
                    self.predict_x0 = predict_x0
         
     | 
| 343 | 
         
            -
                    self.thresholding = thresholding
         
     | 
| 344 | 
         
            -
                    self.max_val = max_val
         
     | 
| 345 | 
         
            -
             
     | 
| 346 | 
         
            -
                def noise_prediction_fn(self, x, t):
         
     | 
| 347 | 
         
            -
                    """
         
     | 
| 348 | 
         
            -
                    Return the noise prediction model.
         
     | 
| 349 | 
         
            -
                    """
         
     | 
| 350 | 
         
            -
                    return self.model(x, t)
         
     | 
| 351 | 
         
            -
             
     | 
| 352 | 
         
            -
                def data_prediction_fn(self, x, t):
         
     | 
| 353 | 
         
            -
                    """
         
     | 
| 354 | 
         
            -
                    Return the data prediction model (with thresholding).
         
     | 
| 355 | 
         
            -
                    """
         
     | 
| 356 | 
         
            -
                    noise = self.noise_prediction_fn(x, t)
         
     | 
| 357 | 
         
            -
                    dims = x.dim()
         
     | 
| 358 | 
         
            -
                    alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
         
     | 
| 359 | 
         
            -
                    x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
         
     | 
| 360 | 
         
            -
                    if self.thresholding:
         
     | 
| 361 | 
         
            -
                        p = 0.995  # A hyperparameter in the paper of "Imagen" [1].
         
     | 
| 362 | 
         
            -
                        s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
         
     | 
| 363 | 
         
            -
                        s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
         
     | 
| 364 | 
         
            -
                        x0 = torch.clamp(x0, -s, s) / s
         
     | 
| 365 | 
         
            -
                    return x0
         
     | 
| 366 | 
         
            -
             
     | 
| 367 | 
         
            -
                def model_fn(self, x, t):
         
     | 
| 368 | 
         
            -
                    """
         
     | 
| 369 | 
         
            -
                    Convert the model to the noise prediction model or the data prediction model.
         
     | 
| 370 | 
         
            -
                    """
         
     | 
| 371 | 
         
            -
                    if self.predict_x0:
         
     | 
| 372 | 
         
            -
                        return self.data_prediction_fn(x, t)
         
     | 
| 373 | 
         
            -
                    else:
         
     | 
| 374 | 
         
            -
                        return self.noise_prediction_fn(x, t)
         
     | 
| 375 | 
         
            -
             
     | 
| 376 | 
         
            -
                def get_time_steps(self, skip_type, t_T, t_0, N, device):
         
     | 
| 377 | 
         
            -
                    """Compute the intermediate time steps for sampling.
         
     | 
| 378 | 
         
            -
                    Args:
         
     | 
| 379 | 
         
            -
                        skip_type: A `str`. The type for the spacing of the time steps. We support three types:
         
     | 
| 380 | 
         
            -
                            - 'logSNR': uniform logSNR for the time steps.
         
     | 
| 381 | 
         
            -
                            - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
         
     | 
| 382 | 
         
            -
                            - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
         
     | 
| 383 | 
         
            -
                        t_T: A `float`. The starting time of the sampling (default is T).
         
     | 
| 384 | 
         
            -
                        t_0: A `float`. The ending time of the sampling (default is epsilon).
         
     | 
| 385 | 
         
            -
                        N: A `int`. The total number of the spacing of the time steps.
         
     | 
| 386 | 
         
            -
                        device: A torch device.
         
     | 
| 387 | 
         
            -
                    Returns:
         
     | 
| 388 | 
         
            -
                        A pytorch tensor of the time steps, with the shape (N + 1,).
         
     | 
| 389 | 
         
            -
                    """
         
     | 
| 390 | 
         
            -
                    if skip_type == 'logSNR':
         
     | 
| 391 | 
         
            -
                        lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
         
     | 
| 392 | 
         
            -
                        lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
         
     | 
| 393 | 
         
            -
                        logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
         
     | 
| 394 | 
         
            -
                        return self.noise_schedule.inverse_lambda(logSNR_steps)
         
     | 
| 395 | 
         
            -
                    elif skip_type == 'time_uniform':
         
     | 
| 396 | 
         
            -
                        return torch.linspace(t_T, t_0, N + 1).to(device)
         
     | 
| 397 | 
         
            -
                    elif skip_type == 'time_quadratic':
         
     | 
| 398 | 
         
            -
                        t_order = 2
         
     | 
| 399 | 
         
            -
                        t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
         
     | 
| 400 | 
         
            -
                        return t
         
     | 
| 401 | 
         
            -
                    else:
         
     | 
| 402 | 
         
            -
                        raise ValueError(
         
     | 
| 403 | 
         
            -
                            "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
         
     | 
| 404 | 
         
            -
             
     | 
| 405 | 
         
            -
                def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
         
     | 
| 406 | 
         
            -
                    """
         
     | 
| 407 | 
         
            -
                    Get the order of each step for sampling by the singlestep DPM-Solver.
         
     | 
| 408 | 
         
            -
                    We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
         
     | 
| 409 | 
         
            -
                    Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
         
     | 
| 410 | 
         
            -
                        - If order == 1:
         
     | 
| 411 | 
         
            -
                            We take `steps` of DPM-Solver-1 (i.e. DDIM).
         
     | 
| 412 | 
         
            -
                        - If order == 2:
         
     | 
| 413 | 
         
            -
                            - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
         
     | 
| 414 | 
         
            -
                            - If steps % 2 == 0, we use K steps of DPM-Solver-2.
         
     | 
| 415 | 
         
            -
                            - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
         
     | 
| 416 | 
         
            -
                        - If order == 3:
         
     | 
| 417 | 
         
            -
                            - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
         
     | 
| 418 | 
         
            -
                            - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
         
     | 
| 419 | 
         
            -
                            - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
         
     | 
| 420 | 
         
            -
                            - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
         
     | 
| 421 | 
         
            -
                    ============================================
         
     | 
| 422 | 
         
            -
                    Args:
         
     | 
| 423 | 
         
            -
                        order: A `int`. The max order for the solver (2 or 3).
         
     | 
| 424 | 
         
            -
                        steps: A `int`. The total number of function evaluations (NFE).
         
     | 
| 425 | 
         
            -
                        skip_type: A `str`. The type for the spacing of the time steps. We support three types:
         
     | 
| 426 | 
         
            -
                            - 'logSNR': uniform logSNR for the time steps.
         
     | 
| 427 | 
         
            -
                            - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
         
     | 
| 428 | 
         
            -
                            - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
         
     | 
| 429 | 
         
            -
                        t_T: A `float`. The starting time of the sampling (default is T).
         
     | 
| 430 | 
         
            -
                        t_0: A `float`. The ending time of the sampling (default is epsilon).
         
     | 
| 431 | 
         
            -
                        device: A torch device.
         
     | 
| 432 | 
         
            -
                    Returns:
         
     | 
| 433 | 
         
            -
                        orders: A list of the solver order of each step.
         
     | 
| 434 | 
         
            -
                    """
         
     | 
| 435 | 
         
            -
                    if order == 3:
         
     | 
| 436 | 
         
            -
                        K = steps // 3 + 1
         
     | 
| 437 | 
         
            -
                        if steps % 3 == 0:
         
     | 
| 438 | 
         
            -
                            orders = [3, ] * (K - 2) + [2, 1]
         
     | 
| 439 | 
         
            -
                        elif steps % 3 == 1:
         
     | 
| 440 | 
         
            -
                            orders = [3, ] * (K - 1) + [1]
         
     | 
| 441 | 
         
            -
                        else:
         
     | 
| 442 | 
         
            -
                            orders = [3, ] * (K - 1) + [2]
         
     | 
| 443 | 
         
            -
                    elif order == 2:
         
     | 
| 444 | 
         
            -
                        if steps % 2 == 0:
         
     | 
| 445 | 
         
            -
                            K = steps // 2
         
     | 
| 446 | 
         
            -
                            orders = [2, ] * K
         
     | 
| 447 | 
         
            -
                        else:
         
     | 
| 448 | 
         
            -
                            K = steps // 2 + 1
         
     | 
| 449 | 
         
            -
                            orders = [2, ] * (K - 1) + [1]
         
     | 
| 450 | 
         
            -
                    elif order == 1:
         
     | 
| 451 | 
         
            -
                        K = 1
         
     | 
| 452 | 
         
            -
                        orders = [1, ] * steps
         
     | 
| 453 | 
         
            -
                    else:
         
     | 
| 454 | 
         
            -
                        raise ValueError("'order' must be '1' or '2' or '3'.")
         
     | 
| 455 | 
         
            -
                    if skip_type == 'logSNR':
         
     | 
| 456 | 
         
            -
                        # To reproduce the results in DPM-Solver paper
         
     | 
| 457 | 
         
            -
                        timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
         
     | 
| 458 | 
         
            -
                    else:
         
     | 
| 459 | 
         
            -
                        timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
         
     | 
| 460 | 
         
            -
                            torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
         
     | 
| 461 | 
         
            -
                    return timesteps_outer, orders
         
     | 
| 462 | 
         
            -
             
     | 
| 463 | 
         
            -
                def denoise_to_zero_fn(self, x, s):
         
     | 
| 464 | 
         
            -
                    """
         
     | 
| 465 | 
         
            -
                    Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
         
     | 
| 466 | 
         
            -
                    """
         
     | 
| 467 | 
         
            -
                    return self.data_prediction_fn(x, s)
         
     | 
| 468 | 
         
            -
             
     | 
| 469 | 
         
            -
                def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
         
     | 
| 470 | 
         
            -
                    """
         
     | 
| 471 | 
         
            -
                    DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
         
     | 
| 472 | 
         
            -
                    Args:
         
     | 
| 473 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 474 | 
         
            -
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         
     | 
| 475 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 476 | 
         
            -
                        model_s: A pytorch tensor. The model function evaluated at time `s`.
         
     | 
| 477 | 
         
            -
                            If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
         
     | 
| 478 | 
         
            -
                        return_intermediate: A `bool`. If true, also return the model value at time `s`.
         
     | 
| 479 | 
         
            -
                    Returns:
         
     | 
| 480 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 481 | 
         
            -
                    """
         
     | 
| 482 | 
         
            -
                    ns = self.noise_schedule
         
     | 
| 483 | 
         
            -
                    dims = x.dim()
         
     | 
| 484 | 
         
            -
                    lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
         
     | 
| 485 | 
         
            -
                    h = lambda_t - lambda_s
         
     | 
| 486 | 
         
            -
                    log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
         
     | 
| 487 | 
         
            -
                    sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
         
     | 
| 488 | 
         
            -
                    alpha_t = torch.exp(log_alpha_t)
         
     | 
| 489 | 
         
            -
             
     | 
| 490 | 
         
            -
                    if self.predict_x0:
         
     | 
| 491 | 
         
            -
                        phi_1 = torch.expm1(-h)
         
     | 
| 492 | 
         
            -
                        if model_s is None:
         
     | 
| 493 | 
         
            -
                            model_s = self.model_fn(x, s)
         
     | 
| 494 | 
         
            -
                        x_t = (
         
     | 
| 495 | 
         
            -
                                expand_dims(sigma_t / sigma_s, dims) * x
         
     | 
| 496 | 
         
            -
                                - expand_dims(alpha_t * phi_1, dims) * model_s
         
     | 
| 497 | 
         
            -
                        )
         
     | 
| 498 | 
         
            -
                        if return_intermediate:
         
     | 
| 499 | 
         
            -
                            return x_t, {'model_s': model_s}
         
     | 
| 500 | 
         
            -
                        else:
         
     | 
| 501 | 
         
            -
                            return x_t
         
     | 
| 502 | 
         
            -
                    else:
         
     | 
| 503 | 
         
            -
                        phi_1 = torch.expm1(h)
         
     | 
| 504 | 
         
            -
                        if model_s is None:
         
     | 
| 505 | 
         
            -
                            model_s = self.model_fn(x, s)
         
     | 
| 506 | 
         
            -
                        x_t = (
         
     | 
| 507 | 
         
            -
                                expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         
     | 
| 508 | 
         
            -
                                - expand_dims(sigma_t * phi_1, dims) * model_s
         
     | 
| 509 | 
         
            -
                        )
         
     | 
| 510 | 
         
            -
                        if return_intermediate:
         
     | 
| 511 | 
         
            -
                            return x_t, {'model_s': model_s}
         
     | 
| 512 | 
         
            -
                        else:
         
     | 
| 513 | 
         
            -
                            return x_t
         
     | 
| 514 | 
         
            -
             
     | 
| 515 | 
         
            -
                def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
         
     | 
| 516 | 
         
            -
                                                        solver_type='dpm_solver'):
         
     | 
| 517 | 
         
            -
                    """
         
     | 
| 518 | 
         
            -
                    Singlestep solver DPM-Solver-2 from time `s` to time `t`.
         
     | 
| 519 | 
         
            -
                    Args:
         
     | 
| 520 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 521 | 
         
            -
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         
     | 
| 522 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 523 | 
         
            -
                        r1: A `float`. The hyperparameter of the second-order solver.
         
     | 
| 524 | 
         
            -
                        model_s: A pytorch tensor. The model function evaluated at time `s`.
         
     | 
| 525 | 
         
            -
                            If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
         
     | 
| 526 | 
         
            -
                        return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
         
     | 
| 527 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 528 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 529 | 
         
            -
                    Returns:
         
     | 
| 530 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 531 | 
         
            -
                    """
         
     | 
| 532 | 
         
            -
                    if solver_type not in ['dpm_solver', 'taylor']:
         
     | 
| 533 | 
         
            -
                        raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
         
     | 
| 534 | 
         
            -
                    if r1 is None:
         
     | 
| 535 | 
         
            -
                        r1 = 0.5
         
     | 
| 536 | 
         
            -
                    ns = self.noise_schedule
         
     | 
| 537 | 
         
            -
                    dims = x.dim()
         
     | 
| 538 | 
         
            -
                    lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
         
     | 
| 539 | 
         
            -
                    h = lambda_t - lambda_s
         
     | 
| 540 | 
         
            -
                    lambda_s1 = lambda_s + r1 * h
         
     | 
| 541 | 
         
            -
                    s1 = ns.inverse_lambda(lambda_s1)
         
     | 
| 542 | 
         
            -
                    log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
         
     | 
| 543 | 
         
            -
                        s1), ns.marginal_log_mean_coeff(t)
         
     | 
| 544 | 
         
            -
                    sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
         
     | 
| 545 | 
         
            -
                    alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
         
     | 
| 546 | 
         
            -
             
     | 
| 547 | 
         
            -
                    if self.predict_x0:
         
     | 
| 548 | 
         
            -
                        phi_11 = torch.expm1(-r1 * h)
         
     | 
| 549 | 
         
            -
                        phi_1 = torch.expm1(-h)
         
     | 
| 550 | 
         
            -
             
     | 
| 551 | 
         
            -
                        if model_s is None:
         
     | 
| 552 | 
         
            -
                            model_s = self.model_fn(x, s)
         
     | 
| 553 | 
         
            -
                        x_s1 = (
         
     | 
| 554 | 
         
            -
                                expand_dims(sigma_s1 / sigma_s, dims) * x
         
     | 
| 555 | 
         
            -
                                - expand_dims(alpha_s1 * phi_11, dims) * model_s
         
     | 
| 556 | 
         
            -
                        )
         
     | 
| 557 | 
         
            -
                        model_s1 = self.model_fn(x_s1, s1)
         
     | 
| 558 | 
         
            -
                        if solver_type == 'dpm_solver':
         
     | 
| 559 | 
         
            -
                            x_t = (
         
     | 
| 560 | 
         
            -
                                    expand_dims(sigma_t / sigma_s, dims) * x
         
     | 
| 561 | 
         
            -
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         
     | 
| 562 | 
         
            -
                                    - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
         
     | 
| 563 | 
         
            -
                            )
         
     | 
| 564 | 
         
            -
                        elif solver_type == 'taylor':
         
     | 
| 565 | 
         
            -
                            x_t = (
         
     | 
| 566 | 
         
            -
                                    expand_dims(sigma_t / sigma_s, dims) * x
         
     | 
| 567 | 
         
            -
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         
     | 
| 568 | 
         
            -
                                    + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
         
     | 
| 569 | 
         
            -
                                                model_s1 - model_s)
         
     | 
| 570 | 
         
            -
                            )
         
     | 
| 571 | 
         
            -
                    else:
         
     | 
| 572 | 
         
            -
                        phi_11 = torch.expm1(r1 * h)
         
     | 
| 573 | 
         
            -
                        phi_1 = torch.expm1(h)
         
     | 
| 574 | 
         
            -
             
     | 
| 575 | 
         
            -
                        if model_s is None:
         
     | 
| 576 | 
         
            -
                            model_s = self.model_fn(x, s)
         
     | 
| 577 | 
         
            -
                        x_s1 = (
         
     | 
| 578 | 
         
            -
                                expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
         
     | 
| 579 | 
         
            -
                                - expand_dims(sigma_s1 * phi_11, dims) * model_s
         
     | 
| 580 | 
         
            -
                        )
         
     | 
| 581 | 
         
            -
                        model_s1 = self.model_fn(x_s1, s1)
         
     | 
| 582 | 
         
            -
                        if solver_type == 'dpm_solver':
         
     | 
| 583 | 
         
            -
                            x_t = (
         
     | 
| 584 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         
     | 
| 585 | 
         
            -
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         
     | 
| 586 | 
         
            -
                                    - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
         
     | 
| 587 | 
         
            -
                            )
         
     | 
| 588 | 
         
            -
                        elif solver_type == 'taylor':
         
     | 
| 589 | 
         
            -
                            x_t = (
         
     | 
| 590 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         
     | 
| 591 | 
         
            -
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         
     | 
| 592 | 
         
            -
                                    - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
         
     | 
| 593 | 
         
            -
                            )
         
     | 
| 594 | 
         
            -
                    if return_intermediate:
         
     | 
| 595 | 
         
            -
                        return x_t, {'model_s': model_s, 'model_s1': model_s1}
         
     | 
| 596 | 
         
            -
                    else:
         
     | 
| 597 | 
         
            -
                        return x_t
         
     | 
| 598 | 
         
            -
             
     | 
| 599 | 
         
            -
                def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
         
     | 
| 600 | 
         
            -
                                                       return_intermediate=False, solver_type='dpm_solver'):
         
     | 
| 601 | 
         
            -
                    """
         
     | 
| 602 | 
         
            -
                    Singlestep solver DPM-Solver-3 from time `s` to time `t`.
         
     | 
| 603 | 
         
            -
                    Args:
         
     | 
| 604 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 605 | 
         
            -
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         
     | 
| 606 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 607 | 
         
            -
                        r1: A `float`. The hyperparameter of the third-order solver.
         
     | 
| 608 | 
         
            -
                        r2: A `float`. The hyperparameter of the third-order solver.
         
     | 
| 609 | 
         
            -
                        model_s: A pytorch tensor. The model function evaluated at time `s`.
         
     | 
| 610 | 
         
            -
                            If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
         
     | 
| 611 | 
         
            -
                        model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
         
     | 
| 612 | 
         
            -
                            If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
         
     | 
| 613 | 
         
            -
                        return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
         
     | 
| 614 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 615 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 616 | 
         
            -
                    Returns:
         
     | 
| 617 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 618 | 
         
            -
                    """
         
     | 
| 619 | 
         
            -
                    if solver_type not in ['dpm_solver', 'taylor']:
         
     | 
| 620 | 
         
            -
                        raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
         
     | 
| 621 | 
         
            -
                    if r1 is None:
         
     | 
| 622 | 
         
            -
                        r1 = 1. / 3.
         
     | 
| 623 | 
         
            -
                    if r2 is None:
         
     | 
| 624 | 
         
            -
                        r2 = 2. / 3.
         
     | 
| 625 | 
         
            -
                    ns = self.noise_schedule
         
     | 
| 626 | 
         
            -
                    dims = x.dim()
         
     | 
| 627 | 
         
            -
                    lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
         
     | 
| 628 | 
         
            -
                    h = lambda_t - lambda_s
         
     | 
| 629 | 
         
            -
                    lambda_s1 = lambda_s + r1 * h
         
     | 
| 630 | 
         
            -
                    lambda_s2 = lambda_s + r2 * h
         
     | 
| 631 | 
         
            -
                    s1 = ns.inverse_lambda(lambda_s1)
         
     | 
| 632 | 
         
            -
                    s2 = ns.inverse_lambda(lambda_s2)
         
     | 
| 633 | 
         
            -
                    log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
         
     | 
| 634 | 
         
            -
                        s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
         
     | 
| 635 | 
         
            -
                    sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
         
     | 
| 636 | 
         
            -
                        s2), ns.marginal_std(t)
         
     | 
| 637 | 
         
            -
                    alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
         
     | 
| 638 | 
         
            -
             
     | 
| 639 | 
         
            -
                    if self.predict_x0:
         
     | 
| 640 | 
         
            -
                        phi_11 = torch.expm1(-r1 * h)
         
     | 
| 641 | 
         
            -
                        phi_12 = torch.expm1(-r2 * h)
         
     | 
| 642 | 
         
            -
                        phi_1 = torch.expm1(-h)
         
     | 
| 643 | 
         
            -
                        phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
         
     | 
| 644 | 
         
            -
                        phi_2 = phi_1 / h + 1.
         
     | 
| 645 | 
         
            -
                        phi_3 = phi_2 / h - 0.5
         
     | 
| 646 | 
         
            -
             
     | 
| 647 | 
         
            -
                        if model_s is None:
         
     | 
| 648 | 
         
            -
                            model_s = self.model_fn(x, s)
         
     | 
| 649 | 
         
            -
                        if model_s1 is None:
         
     | 
| 650 | 
         
            -
                            x_s1 = (
         
     | 
| 651 | 
         
            -
                                    expand_dims(sigma_s1 / sigma_s, dims) * x
         
     | 
| 652 | 
         
            -
                                    - expand_dims(alpha_s1 * phi_11, dims) * model_s
         
     | 
| 653 | 
         
            -
                            )
         
     | 
| 654 | 
         
            -
                            model_s1 = self.model_fn(x_s1, s1)
         
     | 
| 655 | 
         
            -
                        x_s2 = (
         
     | 
| 656 | 
         
            -
                                expand_dims(sigma_s2 / sigma_s, dims) * x
         
     | 
| 657 | 
         
            -
                                - expand_dims(alpha_s2 * phi_12, dims) * model_s
         
     | 
| 658 | 
         
            -
                                + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
         
     | 
| 659 | 
         
            -
                        )
         
     | 
| 660 | 
         
            -
                        model_s2 = self.model_fn(x_s2, s2)
         
     | 
| 661 | 
         
            -
                        if solver_type == 'dpm_solver':
         
     | 
| 662 | 
         
            -
                            x_t = (
         
     | 
| 663 | 
         
            -
                                    expand_dims(sigma_t / sigma_s, dims) * x
         
     | 
| 664 | 
         
            -
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         
     | 
| 665 | 
         
            -
                                    + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
         
     | 
| 666 | 
         
            -
                            )
         
     | 
| 667 | 
         
            -
                        elif solver_type == 'taylor':
         
     | 
| 668 | 
         
            -
                            D1_0 = (1. / r1) * (model_s1 - model_s)
         
     | 
| 669 | 
         
            -
                            D1_1 = (1. / r2) * (model_s2 - model_s)
         
     | 
| 670 | 
         
            -
                            D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
         
     | 
| 671 | 
         
            -
                            D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
         
     | 
| 672 | 
         
            -
                            x_t = (
         
     | 
| 673 | 
         
            -
                                    expand_dims(sigma_t / sigma_s, dims) * x
         
     | 
| 674 | 
         
            -
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         
     | 
| 675 | 
         
            -
                                    + expand_dims(alpha_t * phi_2, dims) * D1
         
     | 
| 676 | 
         
            -
                                    - expand_dims(alpha_t * phi_3, dims) * D2
         
     | 
| 677 | 
         
            -
                            )
         
     | 
| 678 | 
         
            -
                    else:
         
     | 
| 679 | 
         
            -
                        phi_11 = torch.expm1(r1 * h)
         
     | 
| 680 | 
         
            -
                        phi_12 = torch.expm1(r2 * h)
         
     | 
| 681 | 
         
            -
                        phi_1 = torch.expm1(h)
         
     | 
| 682 | 
         
            -
                        phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
         
     | 
| 683 | 
         
            -
                        phi_2 = phi_1 / h - 1.
         
     | 
| 684 | 
         
            -
                        phi_3 = phi_2 / h - 0.5
         
     | 
| 685 | 
         
            -
             
     | 
| 686 | 
         
            -
                        if model_s is None:
         
     | 
| 687 | 
         
            -
                            model_s = self.model_fn(x, s)
         
     | 
| 688 | 
         
            -
                        if model_s1 is None:
         
     | 
| 689 | 
         
            -
                            x_s1 = (
         
     | 
| 690 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
         
     | 
| 691 | 
         
            -
                                    - expand_dims(sigma_s1 * phi_11, dims) * model_s
         
     | 
| 692 | 
         
            -
                            )
         
     | 
| 693 | 
         
            -
                            model_s1 = self.model_fn(x_s1, s1)
         
     | 
| 694 | 
         
            -
                        x_s2 = (
         
     | 
| 695 | 
         
            -
                                expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
         
     | 
| 696 | 
         
            -
                                - expand_dims(sigma_s2 * phi_12, dims) * model_s
         
     | 
| 697 | 
         
            -
                                - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
         
     | 
| 698 | 
         
            -
                        )
         
     | 
| 699 | 
         
            -
                        model_s2 = self.model_fn(x_s2, s2)
         
     | 
| 700 | 
         
            -
                        if solver_type == 'dpm_solver':
         
     | 
| 701 | 
         
            -
                            x_t = (
         
     | 
| 702 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         
     | 
| 703 | 
         
            -
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         
     | 
| 704 | 
         
            -
                                    - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
         
     | 
| 705 | 
         
            -
                            )
         
     | 
| 706 | 
         
            -
                        elif solver_type == 'taylor':
         
     | 
| 707 | 
         
            -
                            D1_0 = (1. / r1) * (model_s1 - model_s)
         
     | 
| 708 | 
         
            -
                            D1_1 = (1. / r2) * (model_s2 - model_s)
         
     | 
| 709 | 
         
            -
                            D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
         
     | 
| 710 | 
         
            -
                            D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
         
     | 
| 711 | 
         
            -
                            x_t = (
         
     | 
| 712 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         
     | 
| 713 | 
         
            -
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         
     | 
| 714 | 
         
            -
                                    - expand_dims(sigma_t * phi_2, dims) * D1
         
     | 
| 715 | 
         
            -
                                    - expand_dims(sigma_t * phi_3, dims) * D2
         
     | 
| 716 | 
         
            -
                            )
         
     | 
| 717 | 
         
            -
             
     | 
| 718 | 
         
            -
                    if return_intermediate:
         
     | 
| 719 | 
         
            -
                        return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
         
     | 
| 720 | 
         
            -
                    else:
         
     | 
| 721 | 
         
            -
                        return x_t
         
     | 
| 722 | 
         
            -
             
     | 
| 723 | 
         
            -
                def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
         
     | 
| 724 | 
         
            -
                    """
         
     | 
| 725 | 
         
            -
                    Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
         
     | 
| 726 | 
         
            -
                    Args:
         
     | 
| 727 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 728 | 
         
            -
                        model_prev_list: A list of pytorch tensor. The previous computed model values.
         
     | 
| 729 | 
         
            -
                        t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
         
     | 
| 730 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 731 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 732 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 733 | 
         
            -
                    Returns:
         
     | 
| 734 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 735 | 
         
            -
                    """
         
     | 
| 736 | 
         
            -
                    if solver_type not in ['dpm_solver', 'taylor']:
         
     | 
| 737 | 
         
            -
                        raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
         
     | 
| 738 | 
         
            -
                    ns = self.noise_schedule
         
     | 
| 739 | 
         
            -
                    dims = x.dim()
         
     | 
| 740 | 
         
            -
                    model_prev_1, model_prev_0 = model_prev_list
         
     | 
| 741 | 
         
            -
                    t_prev_1, t_prev_0 = t_prev_list
         
     | 
| 742 | 
         
            -
                    lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
         
     | 
| 743 | 
         
            -
                        t_prev_0), ns.marginal_lambda(t)
         
     | 
| 744 | 
         
            -
                    log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
         
     | 
| 745 | 
         
            -
                    sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
         
     | 
| 746 | 
         
            -
                    alpha_t = torch.exp(log_alpha_t)
         
     | 
| 747 | 
         
            -
             
     | 
| 748 | 
         
            -
                    h_0 = lambda_prev_0 - lambda_prev_1
         
     | 
| 749 | 
         
            -
                    h = lambda_t - lambda_prev_0
         
     | 
| 750 | 
         
            -
                    r0 = h_0 / h
         
     | 
| 751 | 
         
            -
                    D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
         
     | 
| 752 | 
         
            -
                    if self.predict_x0:
         
     | 
| 753 | 
         
            -
                        if solver_type == 'dpm_solver':
         
     | 
| 754 | 
         
            -
                            x_t = (
         
     | 
| 755 | 
         
            -
                                    expand_dims(sigma_t / sigma_prev_0, dims) * x
         
     | 
| 756 | 
         
            -
                                    - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
         
     | 
| 757 | 
         
            -
                                    - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
         
     | 
| 758 | 
         
            -
                            )
         
     | 
| 759 | 
         
            -
                        elif solver_type == 'taylor':
         
     | 
| 760 | 
         
            -
                            x_t = (
         
     | 
| 761 | 
         
            -
                                    expand_dims(sigma_t / sigma_prev_0, dims) * x
         
     | 
| 762 | 
         
            -
                                    - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
         
     | 
| 763 | 
         
            -
                                    + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
         
     | 
| 764 | 
         
            -
                            )
         
     | 
| 765 | 
         
            -
                    else:
         
     | 
| 766 | 
         
            -
                        if solver_type == 'dpm_solver':
         
     | 
| 767 | 
         
            -
                            x_t = (
         
     | 
| 768 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         
     | 
| 769 | 
         
            -
                                    - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
         
     | 
| 770 | 
         
            -
                                    - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
         
     | 
| 771 | 
         
            -
                            )
         
     | 
| 772 | 
         
            -
                        elif solver_type == 'taylor':
         
     | 
| 773 | 
         
            -
                            x_t = (
         
     | 
| 774 | 
         
            -
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         
     | 
| 775 | 
         
            -
                                    - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
         
     | 
| 776 | 
         
            -
                                    - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
         
     | 
| 777 | 
         
            -
                            )
         
     | 
| 778 | 
         
            -
                    return x_t
         
     | 
| 779 | 
         
            -
             
     | 
| 780 | 
         
            -
                def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
         
     | 
| 781 | 
         
            -
                    """
         
     | 
| 782 | 
         
            -
                    Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
         
     | 
| 783 | 
         
            -
                    Args:
         
     | 
| 784 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 785 | 
         
            -
                        model_prev_list: A list of pytorch tensor. The previous computed model values.
         
     | 
| 786 | 
         
            -
                        t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
         
     | 
| 787 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 788 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 789 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 790 | 
         
            -
                    Returns:
         
     | 
| 791 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 792 | 
         
            -
                    """
         
     | 
| 793 | 
         
            -
                    ns = self.noise_schedule
         
     | 
| 794 | 
         
            -
                    dims = x.dim()
         
     | 
| 795 | 
         
            -
                    model_prev_2, model_prev_1, model_prev_0 = model_prev_list
         
     | 
| 796 | 
         
            -
                    t_prev_2, t_prev_1, t_prev_0 = t_prev_list
         
     | 
| 797 | 
         
            -
                    lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
         
     | 
| 798 | 
         
            -
                        t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
         
     | 
| 799 | 
         
            -
                    log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
         
     | 
| 800 | 
         
            -
                    sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
         
     | 
| 801 | 
         
            -
                    alpha_t = torch.exp(log_alpha_t)
         
     | 
| 802 | 
         
            -
             
     | 
| 803 | 
         
            -
                    h_1 = lambda_prev_1 - lambda_prev_2
         
     | 
| 804 | 
         
            -
                    h_0 = lambda_prev_0 - lambda_prev_1
         
     | 
| 805 | 
         
            -
                    h = lambda_t - lambda_prev_0
         
     | 
| 806 | 
         
            -
                    r0, r1 = h_0 / h, h_1 / h
         
     | 
| 807 | 
         
            -
                    D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
         
     | 
| 808 | 
         
            -
                    D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
         
     | 
| 809 | 
         
            -
                    D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
         
     | 
| 810 | 
         
            -
                    D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
         
     | 
| 811 | 
         
            -
                    if self.predict_x0:
         
     | 
| 812 | 
         
            -
                        x_t = (
         
     | 
| 813 | 
         
            -
                                expand_dims(sigma_t / sigma_prev_0, dims) * x
         
     | 
| 814 | 
         
            -
                                - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
         
     | 
| 815 | 
         
            -
                                + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
         
     | 
| 816 | 
         
            -
                                - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
         
     | 
| 817 | 
         
            -
                        )
         
     | 
| 818 | 
         
            -
                    else:
         
     | 
| 819 | 
         
            -
                        x_t = (
         
     | 
| 820 | 
         
            -
                                expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         
     | 
| 821 | 
         
            -
                                - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
         
     | 
| 822 | 
         
            -
                                - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
         
     | 
| 823 | 
         
            -
                                - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
         
     | 
| 824 | 
         
            -
                        )
         
     | 
| 825 | 
         
            -
                    return x_t
         
     | 
| 826 | 
         
            -
             
     | 
| 827 | 
         
            -
                def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
         
     | 
| 828 | 
         
            -
                                                 r2=None):
         
     | 
| 829 | 
         
            -
                    """
         
     | 
| 830 | 
         
            -
                    Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
         
     | 
| 831 | 
         
            -
                    Args:
         
     | 
| 832 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 833 | 
         
            -
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         
     | 
| 834 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 835 | 
         
            -
                        order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
         
     | 
| 836 | 
         
            -
                        return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
         
     | 
| 837 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 838 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 839 | 
         
            -
                        r1: A `float`. The hyperparameter of the second-order or third-order solver.
         
     | 
| 840 | 
         
            -
                        r2: A `float`. The hyperparameter of the third-order solver.
         
     | 
| 841 | 
         
            -
                    Returns:
         
     | 
| 842 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 843 | 
         
            -
                    """
         
     | 
| 844 | 
         
            -
                    if order == 1:
         
     | 
| 845 | 
         
            -
                        return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
         
     | 
| 846 | 
         
            -
                    elif order == 2:
         
     | 
| 847 | 
         
            -
                        return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
         
     | 
| 848 | 
         
            -
                                                                        solver_type=solver_type, r1=r1)
         
     | 
| 849 | 
         
            -
                    elif order == 3:
         
     | 
| 850 | 
         
            -
                        return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
         
     | 
| 851 | 
         
            -
                                                                       solver_type=solver_type, r1=r1, r2=r2)
         
     | 
| 852 | 
         
            -
                    else:
         
     | 
| 853 | 
         
            -
                        raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
         
     | 
| 854 | 
         
            -
             
     | 
| 855 | 
         
            -
                def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
         
     | 
| 856 | 
         
            -
                    """
         
     | 
| 857 | 
         
            -
                    Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
         
     | 
| 858 | 
         
            -
                    Args:
         
     | 
| 859 | 
         
            -
                        x: A pytorch tensor. The initial value at time `s`.
         
     | 
| 860 | 
         
            -
                        model_prev_list: A list of pytorch tensor. The previous computed model values.
         
     | 
| 861 | 
         
            -
                        t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
         
     | 
| 862 | 
         
            -
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         
     | 
| 863 | 
         
            -
                        order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
         
     | 
| 864 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 865 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 866 | 
         
            -
                    Returns:
         
     | 
| 867 | 
         
            -
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         
     | 
| 868 | 
         
            -
                    """
         
     | 
| 869 | 
         
            -
                    if order == 1:
         
     | 
| 870 | 
         
            -
                        return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
         
     | 
| 871 | 
         
            -
                    elif order == 2:
         
     | 
| 872 | 
         
            -
                        return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
         
     | 
| 873 | 
         
            -
                    elif order == 3:
         
     | 
| 874 | 
         
            -
                        return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
         
     | 
| 875 | 
         
            -
                    else:
         
     | 
| 876 | 
         
            -
                        raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
         
     | 
| 877 | 
         
            -
             
     | 
| 878 | 
         
            -
                def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
         
     | 
| 879 | 
         
            -
                                        solver_type='dpm_solver'):
         
     | 
| 880 | 
         
            -
                    """
         
     | 
| 881 | 
         
            -
                    The adaptive step size solver based on singlestep DPM-Solver.
         
     | 
| 882 | 
         
            -
                    Args:
         
     | 
| 883 | 
         
            -
                        x: A pytorch tensor. The initial value at time `t_T`.
         
     | 
| 884 | 
         
            -
                        order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
         
     | 
| 885 | 
         
            -
                        t_T: A `float`. The starting time of the sampling (default is T).
         
     | 
| 886 | 
         
            -
                        t_0: A `float`. The ending time of the sampling (default is epsilon).
         
     | 
| 887 | 
         
            -
                        h_init: A `float`. The initial step size (for logSNR).
         
     | 
| 888 | 
         
            -
                        atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
         
     | 
| 889 | 
         
            -
                        rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
         
     | 
| 890 | 
         
            -
                        theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
         
     | 
| 891 | 
         
            -
                        t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
         
     | 
| 892 | 
         
            -
                            current time and `t_0` is less than `t_err`. The default setting is 1e-5.
         
     | 
| 893 | 
         
            -
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         
     | 
| 894 | 
         
            -
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         
     | 
| 895 | 
         
            -
                    Returns:
         
     | 
| 896 | 
         
            -
                        x_0: A pytorch tensor. The approximated solution at time `t_0`.
         
     | 
| 897 | 
         
            -
                    [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
         
     | 
| 898 | 
         
            -
                    """
         
     | 
| 899 | 
         
            -
                    ns = self.noise_schedule
         
     | 
| 900 | 
         
            -
                    s = t_T * torch.ones((x.shape[0],)).to(x)
         
     | 
| 901 | 
         
            -
                    lambda_s = ns.marginal_lambda(s)
         
     | 
| 902 | 
         
            -
                    lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
         
     | 
| 903 | 
         
            -
                    h = h_init * torch.ones_like(s).to(x)
         
     | 
| 904 | 
         
            -
                    x_prev = x
         
     | 
| 905 | 
         
            -
                    nfe = 0
         
     | 
| 906 | 
         
            -
                    if order == 2:
         
     | 
| 907 | 
         
            -
                        r1 = 0.5
         
     | 
| 908 | 
         
            -
                        lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
         
     | 
| 909 | 
         
            -
                        higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
         
     | 
| 910 | 
         
            -
                                                                                                           solver_type=solver_type,
         
     | 
| 911 | 
         
            -
                                                                                                           **kwargs)
         
     | 
| 912 | 
         
            -
                    elif order == 3:
         
     | 
| 913 | 
         
            -
                        r1, r2 = 1. / 3., 2. / 3.
         
     | 
| 914 | 
         
            -
                        lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
         
     | 
| 915 | 
         
            -
                                                                                                return_intermediate=True,
         
     | 
| 916 | 
         
            -
                                                                                                solver_type=solver_type)
         
     | 
| 917 | 
         
            -
                        higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
         
     | 
| 918 | 
         
            -
                                                                                                          solver_type=solver_type,
         
     | 
| 919 | 
         
            -
                                                                                                          **kwargs)
         
     | 
| 920 | 
         
            -
                    else:
         
     | 
| 921 | 
         
            -
                        raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
         
     | 
| 922 | 
         
            -
                    while torch.abs((s - t_0)).mean() > t_err:
         
     | 
| 923 | 
         
            -
                        t = ns.inverse_lambda(lambda_s + h)
         
     | 
| 924 | 
         
            -
                        x_lower, lower_noise_kwargs = lower_update(x, s, t)
         
     | 
| 925 | 
         
            -
                        x_higher = higher_update(x, s, t, **lower_noise_kwargs)
         
     | 
| 926 | 
         
            -
                        delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
         
     | 
| 927 | 
         
            -
                        norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
         
     | 
| 928 | 
         
            -
                        E = norm_fn((x_higher - x_lower) / delta).max()
         
     | 
| 929 | 
         
            -
                        if torch.all(E <= 1.):
         
     | 
| 930 | 
         
            -
                            x = x_higher
         
     | 
| 931 | 
         
            -
                            s = t
         
     | 
| 932 | 
         
            -
                            x_prev = x_lower
         
     | 
| 933 | 
         
            -
                            lambda_s = ns.marginal_lambda(s)
         
     | 
| 934 | 
         
            -
                        h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
         
     | 
| 935 | 
         
            -
                        nfe += order
         
     | 
| 936 | 
         
            -
                    print('adaptive solver nfe', nfe)
         
     | 
| 937 | 
         
            -
                    return x
         
     | 
| 938 | 
         
            -
             
     | 
| 939 | 
         
            -
                def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
         
     | 
| 940 | 
         
            -
                           method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
         
     | 
| 941 | 
         
            -
                           atol=0.0078, rtol=0.05,
         
     | 
| 942 | 
         
            -
                           ):
         
     | 
| 943 | 
         
            -
                    """
         
     | 
| 944 | 
         
            -
                    Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
         
     | 
| 945 | 
         
            -
                    =====================================================
         
     | 
| 946 | 
         
            -
                    We support the following algorithms for both noise prediction model and data prediction model:
         
     | 
| 947 | 
         
            -
                        - 'singlestep':
         
     | 
| 948 | 
         
            -
                            Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
         
     | 
| 949 | 
         
            -
                            We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
         
     | 
| 950 | 
         
            -
                            The total number of function evaluations (NFE) == `steps`.
         
     | 
| 951 | 
         
            -
                            Given a fixed NFE == `steps`, the sampling procedure is:
         
     | 
| 952 | 
         
            -
                                - If `order` == 1:
         
     | 
| 953 | 
         
            -
                                    - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
         
     | 
| 954 | 
         
            -
                                - If `order` == 2:
         
     | 
| 955 | 
         
            -
                                    - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
         
     | 
| 956 | 
         
            -
                                    - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
         
     | 
| 957 | 
         
            -
                                    - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
         
     | 
| 958 | 
         
            -
                                - If `order` == 3:
         
     | 
| 959 | 
         
            -
                                    - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
         
     | 
| 960 | 
         
            -
                                    - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
         
     | 
| 961 | 
         
            -
                                    - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
         
     | 
| 962 | 
         
            -
                                    - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
         
     | 
| 963 | 
         
            -
                        - 'multistep':
         
     | 
| 964 | 
         
            -
                            Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
         
     | 
| 965 | 
         
            -
                            We initialize the first `order` values by lower order multistep solvers.
         
     | 
| 966 | 
         
            -
                            Given a fixed NFE == `steps`, the sampling procedure is:
         
     | 
| 967 | 
         
            -
                                Denote K = steps.
         
     | 
| 968 | 
         
            -
                                - If `order` == 1:
         
     | 
| 969 | 
         
            -
                                    - We use K steps of DPM-Solver-1 (i.e. DDIM).
         
     | 
| 970 | 
         
            -
                                - If `order` == 2:
         
     | 
| 971 | 
         
            -
                                    - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
         
     | 
| 972 | 
         
            -
                                - If `order` == 3:
         
     | 
| 973 | 
         
            -
                                    - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
         
     | 
| 974 | 
         
            -
                        - 'singlestep_fixed':
         
     | 
| 975 | 
         
            -
                            Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
         
     | 
| 976 | 
         
            -
                            We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
         
     | 
| 977 | 
         
            -
                        - 'adaptive':
         
     | 
| 978 | 
         
            -
                            Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
         
     | 
| 979 | 
         
            -
                            We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
         
     | 
| 980 | 
         
            -
                            You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
         
     | 
| 981 | 
         
            -
                            (NFE) and the sample quality.
         
     | 
| 982 | 
         
            -
                                - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
         
     | 
| 983 | 
         
            -
                                - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
         
     | 
| 984 | 
         
            -
                    =====================================================
         
     | 
| 985 | 
         
            -
                    Some advices for choosing the algorithm:
         
     | 
| 986 | 
         
            -
                        - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
         
     | 
| 987 | 
         
            -
                            Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
         
     | 
| 988 | 
         
            -
                            e.g.
         
     | 
| 989 | 
         
            -
                                >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
         
     | 
| 990 | 
         
            -
                                >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
         
     | 
| 991 | 
         
            -
                                        skip_type='time_uniform', method='singlestep')
         
     | 
| 992 | 
         
            -
                        - For **guided sampling with large guidance scale** by DPMs:
         
     | 
| 993 | 
         
            -
                            Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
         
     | 
| 994 | 
         
            -
                            e.g.
         
     | 
| 995 | 
         
            -
                                >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
         
     | 
| 996 | 
         
            -
                                >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
         
     | 
| 997 | 
         
            -
                                        skip_type='time_uniform', method='multistep')
         
     | 
| 998 | 
         
            -
                    We support three types of `skip_type`:
         
     | 
| 999 | 
         
            -
                        - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
         
     | 
| 1000 | 
         
            -
                        - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
         
     | 
| 1001 | 
         
            -
                        - 'time_quadratic': quadratic time for the time steps.
         
     | 
| 1002 | 
         
            -
                    =====================================================
         
     | 
| 1003 | 
         
            -
                    Args:
         
     | 
| 1004 | 
         
            -
                        x: A pytorch tensor. The initial value at time `t_start`
         
     | 
| 1005 | 
         
            -
                            e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
         
     | 
| 1006 | 
         
            -
                        steps: A `int`. The total number of function evaluations (NFE).
         
     | 
| 1007 | 
         
            -
                        t_start: A `float`. The starting time of the sampling.
         
     | 
| 1008 | 
         
            -
                            If `T` is None, we use self.noise_schedule.T (default is 1.0).
         
     | 
| 1009 | 
         
            -
                        t_end: A `float`. The ending time of the sampling.
         
     | 
| 1010 | 
         
            -
                            If `t_end` is None, we use 1. / self.noise_schedule.total_N.
         
     | 
| 1011 | 
         
            -
                            e.g. if total_N == 1000, we have `t_end` == 1e-3.
         
     | 
| 1012 | 
         
            -
                            For discrete-time DPMs:
         
     | 
| 1013 | 
         
            -
                                - We recommend `t_end` == 1. / self.noise_schedule.total_N.
         
     | 
| 1014 | 
         
            -
                            For continuous-time DPMs:
         
     | 
| 1015 | 
         
            -
                                - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
         
     | 
| 1016 | 
         
            -
                        order: A `int`. The order of DPM-Solver.
         
     | 
| 1017 | 
         
            -
                        skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
         
     | 
| 1018 | 
         
            -
                        method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
         
     | 
| 1019 | 
         
            -
                        denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
         
     | 
| 1020 | 
         
            -
                            Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
         
     | 
| 1021 | 
         
            -
                            This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
         
     | 
| 1022 | 
         
            -
                            score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
         
     | 
| 1023 | 
         
            -
                            for diffusion models sampling by diffusion SDEs for low-resolutional images
         
     | 
| 1024 | 
         
            -
                            (such as CIFAR-10). However, we observed that such trick does not matter for
         
     | 
| 1025 | 
         
            -
                            high-resolutional images. As it needs an additional NFE, we do not recommend
         
     | 
| 1026 | 
         
            -
                            it for high-resolutional images.
         
     | 
| 1027 | 
         
            -
                        lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
         
     | 
| 1028 | 
         
            -
                            Only valid for `method=multistep` and `steps < 15`. We empirically find that
         
     | 
| 1029 | 
         
            -
                            this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
         
     | 
| 1030 | 
         
            -
                            (especially for steps <= 10). So we recommend to set it to be `True`.
         
     | 
| 1031 | 
         
            -
                        solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
         
     | 
| 1032 | 
         
            -
                        atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
         
     | 
| 1033 | 
         
            -
                        rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
         
     | 
| 1034 | 
         
            -
                    Returns:
         
     | 
| 1035 | 
         
            -
                        x_end: A pytorch tensor. The approximated solution at time `t_end`.
         
     | 
| 1036 | 
         
            -
                    """
         
     | 
| 1037 | 
         
            -
                    t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
         
     | 
| 1038 | 
         
            -
                    t_T = self.noise_schedule.T if t_start is None else t_start
         
     | 
| 1039 | 
         
            -
                    device = x.device
         
     | 
| 1040 | 
         
            -
                    if method == 'adaptive':
         
     | 
| 1041 | 
         
            -
                        with torch.no_grad():
         
     | 
| 1042 | 
         
            -
                            x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
         
     | 
| 1043 | 
         
            -
                                                         solver_type=solver_type)
         
     | 
| 1044 | 
         
            -
                    elif method == 'multistep':
         
     | 
| 1045 | 
         
            -
                        assert steps >= order
         
     | 
| 1046 | 
         
            -
                        timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
         
     | 
| 1047 | 
         
            -
                        assert timesteps.shape[0] - 1 == steps
         
     | 
| 1048 | 
         
            -
                        with torch.no_grad():
         
     | 
| 1049 | 
         
            -
                            vec_t = timesteps[0].expand((x.shape[0]))
         
     | 
| 1050 | 
         
            -
                            model_prev_list = [self.model_fn(x, vec_t)]
         
     | 
| 1051 | 
         
            -
                            t_prev_list = [vec_t]
         
     | 
| 1052 | 
         
            -
                            # Init the first `order` values by lower order multistep DPM-Solver.
         
     | 
| 1053 | 
         
            -
                            for init_order in tqdm(range(1, order), desc="DPM init order"):
         
     | 
| 1054 | 
         
            -
                                vec_t = timesteps[init_order].expand(x.shape[0])
         
     | 
| 1055 | 
         
            -
                                x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
         
     | 
| 1056 | 
         
            -
                                                                     solver_type=solver_type)
         
     | 
| 1057 | 
         
            -
                                model_prev_list.append(self.model_fn(x, vec_t))
         
     | 
| 1058 | 
         
            -
                                t_prev_list.append(vec_t)
         
     | 
| 1059 | 
         
            -
                            # Compute the remaining values by `order`-th order multistep DPM-Solver.
         
     | 
| 1060 | 
         
            -
                            for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
         
     | 
| 1061 | 
         
            -
                                vec_t = timesteps[step].expand(x.shape[0])
         
     | 
| 1062 | 
         
            -
                                if lower_order_final and steps < 15:
         
     | 
| 1063 | 
         
            -
                                    step_order = min(order, steps + 1 - step)
         
     | 
| 1064 | 
         
            -
                                else:
         
     | 
| 1065 | 
         
            -
                                    step_order = order
         
     | 
| 1066 | 
         
            -
                                x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
         
     | 
| 1067 | 
         
            -
                                                                     solver_type=solver_type)
         
     | 
| 1068 | 
         
            -
                                for i in range(order - 1):
         
     | 
| 1069 | 
         
            -
                                    t_prev_list[i] = t_prev_list[i + 1]
         
     | 
| 1070 | 
         
            -
                                    model_prev_list[i] = model_prev_list[i + 1]
         
     | 
| 1071 | 
         
            -
                                t_prev_list[-1] = vec_t
         
     | 
| 1072 | 
         
            -
                                # We do not need to evaluate the final model value.
         
     | 
| 1073 | 
         
            -
                                if step < steps:
         
     | 
| 1074 | 
         
            -
                                    model_prev_list[-1] = self.model_fn(x, vec_t)
         
     | 
| 1075 | 
         
            -
                    elif method in ['singlestep', 'singlestep_fixed']:
         
     | 
| 1076 | 
         
            -
                        if method == 'singlestep':
         
     | 
| 1077 | 
         
            -
                            timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
         
     | 
| 1078 | 
         
            -
                                                                                                          skip_type=skip_type,
         
     | 
| 1079 | 
         
            -
                                                                                                          t_T=t_T, t_0=t_0,
         
     | 
| 1080 | 
         
            -
                                                                                                          device=device)
         
     | 
| 1081 | 
         
            -
                        elif method == 'singlestep_fixed':
         
     | 
| 1082 | 
         
            -
                            K = steps // order
         
     | 
| 1083 | 
         
            -
                            orders = [order, ] * K
         
     | 
| 1084 | 
         
            -
                            timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
         
     | 
| 1085 | 
         
            -
                        for i, order in enumerate(orders):
         
     | 
| 1086 | 
         
            -
                            t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
         
     | 
| 1087 | 
         
            -
                            timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
         
     | 
| 1088 | 
         
            -
                                                                  N=order, device=device)
         
     | 
| 1089 | 
         
            -
                            lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
         
     | 
| 1090 | 
         
            -
                            vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
         
     | 
| 1091 | 
         
            -
                            h = lambda_inner[-1] - lambda_inner[0]
         
     | 
| 1092 | 
         
            -
                            r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
         
     | 
| 1093 | 
         
            -
                            r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
         
     | 
| 1094 | 
         
            -
                            x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
         
     | 
| 1095 | 
         
            -
                    if denoise_to_zero:
         
     | 
| 1096 | 
         
            -
                        x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
         
     | 
| 1097 | 
         
            -
                    return x
         
     | 
| 1098 | 
         
            -
             
     | 
| 1099 | 
         
            -
             
     | 
| 1100 | 
         
            -
            #############################################################
         
     | 
| 1101 | 
         
            -
            # other utility functions
         
     | 
| 1102 | 
         
            -
            #############################################################
         
     | 
| 1103 | 
         
            -
             
     | 
| 1104 | 
         
            -
            def interpolate_fn(x, xp, yp):
         
     | 
| 1105 | 
         
            -
                """
         
     | 
| 1106 | 
         
            -
                A piecewise linear function y = f(x), using xp and yp as keypoints.
         
     | 
| 1107 | 
         
            -
                We implement f(x) in a differentiable way (i.e. applicable for autograd).
         
     | 
| 1108 | 
         
            -
                The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
         
     | 
| 1109 | 
         
            -
                Args:
         
     | 
| 1110 | 
         
            -
                    x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
         
     | 
| 1111 | 
         
            -
                    xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
         
     | 
| 1112 | 
         
            -
                    yp: PyTorch tensor with shape [C, K].
         
     | 
| 1113 | 
         
            -
                Returns:
         
     | 
| 1114 | 
         
            -
                    The function values f(x), with shape [N, C].
         
     | 
| 1115 | 
         
            -
                """
         
     | 
| 1116 | 
         
            -
                N, K = x.shape[0], xp.shape[1]
         
     | 
| 1117 | 
         
            -
                all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
         
     | 
| 1118 | 
         
            -
                sorted_all_x, x_indices = torch.sort(all_x, dim=2)
         
     | 
| 1119 | 
         
            -
                x_idx = torch.argmin(x_indices, dim=2)
         
     | 
| 1120 | 
         
            -
                cand_start_idx = x_idx - 1
         
     | 
| 1121 | 
         
            -
                start_idx = torch.where(
         
     | 
| 1122 | 
         
            -
                    torch.eq(x_idx, 0),
         
     | 
| 1123 | 
         
            -
                    torch.tensor(1, device=x.device),
         
     | 
| 1124 | 
         
            -
                    torch.where(
         
     | 
| 1125 | 
         
            -
                        torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
         
     | 
| 1126 | 
         
            -
                    ),
         
     | 
| 1127 | 
         
            -
                )
         
     | 
| 1128 | 
         
            -
                end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
         
     | 
| 1129 | 
         
            -
                start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
         
     | 
| 1130 | 
         
            -
                end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
         
     | 
| 1131 | 
         
            -
                start_idx2 = torch.where(
         
     | 
| 1132 | 
         
            -
                    torch.eq(x_idx, 0),
         
     | 
| 1133 | 
         
            -
                    torch.tensor(0, device=x.device),
         
     | 
| 1134 | 
         
            -
                    torch.where(
         
     | 
| 1135 | 
         
            -
                        torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
         
     | 
| 1136 | 
         
            -
                    ),
         
     | 
| 1137 | 
         
            -
                )
         
     | 
| 1138 | 
         
            -
                y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
         
     | 
| 1139 | 
         
            -
                start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
         
     | 
| 1140 | 
         
            -
                end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
         
     | 
| 1141 | 
         
            -
                cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
         
     | 
| 1142 | 
         
            -
                return cand
         
     | 
| 1143 | 
         
            -
             
     | 
| 1144 | 
         
            -
             
     | 
| 1145 | 
         
            -
            def expand_dims(v, dims):
         
     | 
| 1146 | 
         
            -
                """
         
     | 
| 1147 | 
         
            -
                Expand the tensor `v` to the dim `dims`.
         
     | 
| 1148 | 
         
            -
                Args:
         
     | 
| 1149 | 
         
            -
                    `v`: a PyTorch tensor with shape [N].
         
     | 
| 1150 | 
         
            -
                    `dim`: a `int`.
         
     | 
| 1151 | 
         
            -
                Returns:
         
     | 
| 1152 | 
         
            -
                    a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
         
     | 
| 1153 | 
         
            -
                """
         
     | 
| 1154 | 
         
            -
                return v[(...,) + (None,) * (dims - 1)]
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/dpm_solver/sampler.py
    DELETED
    
    | 
         @@ -1,87 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """SAMPLING ONLY."""
         
     | 
| 2 | 
         
            -
            import torch
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            MODEL_TYPES = {
         
     | 
| 8 | 
         
            -
                "eps": "noise",
         
     | 
| 9 | 
         
            -
                "v": "v"
         
     | 
| 10 | 
         
            -
            }
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            class DPMSolverSampler(object):
         
     | 
| 14 | 
         
            -
                def __init__(self, model, **kwargs):
         
     | 
| 15 | 
         
            -
                    super().__init__()
         
     | 
| 16 | 
         
            -
                    self.model = model
         
     | 
| 17 | 
         
            -
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
         
     | 
| 18 | 
         
            -
                    self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
                def register_buffer(self, name, attr):
         
     | 
| 21 | 
         
            -
                    if type(attr) == torch.Tensor:
         
     | 
| 22 | 
         
            -
                        if attr.device != torch.device("cuda"):
         
     | 
| 23 | 
         
            -
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 24 | 
         
            -
                    setattr(self, name, attr)
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
                @torch.no_grad()
         
     | 
| 27 | 
         
            -
                def sample(self,
         
     | 
| 28 | 
         
            -
                           S,
         
     | 
| 29 | 
         
            -
                           batch_size,
         
     | 
| 30 | 
         
            -
                           shape,
         
     | 
| 31 | 
         
            -
                           conditioning=None,
         
     | 
| 32 | 
         
            -
                           callback=None,
         
     | 
| 33 | 
         
            -
                           normals_sequence=None,
         
     | 
| 34 | 
         
            -
                           img_callback=None,
         
     | 
| 35 | 
         
            -
                           quantize_x0=False,
         
     | 
| 36 | 
         
            -
                           eta=0.,
         
     | 
| 37 | 
         
            -
                           mask=None,
         
     | 
| 38 | 
         
            -
                           x0=None,
         
     | 
| 39 | 
         
            -
                           temperature=1.,
         
     | 
| 40 | 
         
            -
                           noise_dropout=0.,
         
     | 
| 41 | 
         
            -
                           score_corrector=None,
         
     | 
| 42 | 
         
            -
                           corrector_kwargs=None,
         
     | 
| 43 | 
         
            -
                           verbose=True,
         
     | 
| 44 | 
         
            -
                           x_T=None,
         
     | 
| 45 | 
         
            -
                           log_every_t=100,
         
     | 
| 46 | 
         
            -
                           unconditional_guidance_scale=1.,
         
     | 
| 47 | 
         
            -
                           unconditional_conditioning=None,
         
     | 
| 48 | 
         
            -
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 49 | 
         
            -
                           **kwargs
         
     | 
| 50 | 
         
            -
                           ):
         
     | 
| 51 | 
         
            -
                    if conditioning is not None:
         
     | 
| 52 | 
         
            -
                        if isinstance(conditioning, dict):
         
     | 
| 53 | 
         
            -
                            cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         
     | 
| 54 | 
         
            -
                            if cbs != batch_size:
         
     | 
| 55 | 
         
            -
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 56 | 
         
            -
                        else:
         
     | 
| 57 | 
         
            -
                            if conditioning.shape[0] != batch_size:
         
     | 
| 58 | 
         
            -
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
                    # sampling
         
     | 
| 61 | 
         
            -
                    C, H, W = shape
         
     | 
| 62 | 
         
            -
                    size = (batch_size, C, H, W)
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                    print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                    device = self.model.betas.device
         
     | 
| 67 | 
         
            -
                    if x_T is None:
         
     | 
| 68 | 
         
            -
                        img = torch.randn(size, device=device)
         
     | 
| 69 | 
         
            -
                    else:
         
     | 
| 70 | 
         
            -
                        img = x_T
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                    ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
                    model_fn = model_wrapper(
         
     | 
| 75 | 
         
            -
                        lambda x, t, c: self.model.apply_model(x, t, c),
         
     | 
| 76 | 
         
            -
                        ns,
         
     | 
| 77 | 
         
            -
                        model_type=MODEL_TYPES[self.model.parameterization],
         
     | 
| 78 | 
         
            -
                        guidance_type="classifier-free",
         
     | 
| 79 | 
         
            -
                        condition=conditioning,
         
     | 
| 80 | 
         
            -
                        unconditional_condition=unconditional_conditioning,
         
     | 
| 81 | 
         
            -
                        guidance_scale=unconditional_guidance_scale,
         
     | 
| 82 | 
         
            -
                    )
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
                    dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
         
     | 
| 85 | 
         
            -
                    x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
                    return x.to(device), None
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/plms.py
    DELETED
    
    | 
         @@ -1,244 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """SAMPLING ONLY."""
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            import torch
         
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            from tqdm import tqdm
         
     | 
| 6 | 
         
            -
            from functools import partial
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
         
     | 
| 9 | 
         
            -
            from ldm.models.diffusion.sampling_util import norm_thresholding
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            class PLMSSampler(object):
         
     | 
| 13 | 
         
            -
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 14 | 
         
            -
                    super().__init__()
         
     | 
| 15 | 
         
            -
                    self.model = model
         
     | 
| 16 | 
         
            -
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 17 | 
         
            -
                    self.schedule = schedule
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
                def register_buffer(self, name, attr):
         
     | 
| 20 | 
         
            -
                    if type(attr) == torch.Tensor:
         
     | 
| 21 | 
         
            -
                        if attr.device != torch.device("cuda"):
         
     | 
| 22 | 
         
            -
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 23 | 
         
            -
                    setattr(self, name, attr)
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         
     | 
| 26 | 
         
            -
                    if ddim_eta != 0:
         
     | 
| 27 | 
         
            -
                        raise ValueError('ddim_eta must be 0 for PLMS')
         
     | 
| 28 | 
         
            -
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         
     | 
| 29 | 
         
            -
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         
     | 
| 30 | 
         
            -
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 31 | 
         
            -
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 32 | 
         
            -
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
                    self.register_buffer('betas', to_torch(self.model.betas))
         
     | 
| 35 | 
         
            -
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 36 | 
         
            -
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 39 | 
         
            -
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         
     | 
| 40 | 
         
            -
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         
     | 
| 41 | 
         
            -
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         
     | 
| 42 | 
         
            -
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         
     | 
| 43 | 
         
            -
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
                    # ddim sampling parameters
         
     | 
| 46 | 
         
            -
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         
     | 
| 47 | 
         
            -
                                                                                               ddim_timesteps=self.ddim_timesteps,
         
     | 
| 48 | 
         
            -
                                                                                               eta=ddim_eta,verbose=verbose)
         
     | 
| 49 | 
         
            -
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         
     | 
| 50 | 
         
            -
                    self.register_buffer('ddim_alphas', ddim_alphas)
         
     | 
| 51 | 
         
            -
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         
     | 
| 52 | 
         
            -
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         
     | 
| 53 | 
         
            -
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 54 | 
         
            -
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         
     | 
| 55 | 
         
            -
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         
     | 
| 56 | 
         
            -
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
                @torch.no_grad()
         
     | 
| 59 | 
         
            -
                def sample(self,
         
     | 
| 60 | 
         
            -
                           S,
         
     | 
| 61 | 
         
            -
                           batch_size,
         
     | 
| 62 | 
         
            -
                           shape,
         
     | 
| 63 | 
         
            -
                           conditioning=None,
         
     | 
| 64 | 
         
            -
                           callback=None,
         
     | 
| 65 | 
         
            -
                           normals_sequence=None,
         
     | 
| 66 | 
         
            -
                           img_callback=None,
         
     | 
| 67 | 
         
            -
                           quantize_x0=False,
         
     | 
| 68 | 
         
            -
                           eta=0.,
         
     | 
| 69 | 
         
            -
                           mask=None,
         
     | 
| 70 | 
         
            -
                           x0=None,
         
     | 
| 71 | 
         
            -
                           temperature=1.,
         
     | 
| 72 | 
         
            -
                           noise_dropout=0.,
         
     | 
| 73 | 
         
            -
                           score_corrector=None,
         
     | 
| 74 | 
         
            -
                           corrector_kwargs=None,
         
     | 
| 75 | 
         
            -
                           verbose=True,
         
     | 
| 76 | 
         
            -
                           x_T=None,
         
     | 
| 77 | 
         
            -
                           log_every_t=100,
         
     | 
| 78 | 
         
            -
                           unconditional_guidance_scale=1.,
         
     | 
| 79 | 
         
            -
                           unconditional_conditioning=None,
         
     | 
| 80 | 
         
            -
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 81 | 
         
            -
                           dynamic_threshold=None,
         
     | 
| 82 | 
         
            -
                           **kwargs
         
     | 
| 83 | 
         
            -
                           ):
         
     | 
| 84 | 
         
            -
                    if conditioning is not None:
         
     | 
| 85 | 
         
            -
                        if isinstance(conditioning, dict):
         
     | 
| 86 | 
         
            -
                            cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         
     | 
| 87 | 
         
            -
                            if cbs != batch_size:
         
     | 
| 88 | 
         
            -
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 89 | 
         
            -
                        else:
         
     | 
| 90 | 
         
            -
                            if conditioning.shape[0] != batch_size:
         
     | 
| 91 | 
         
            -
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         
     | 
| 94 | 
         
            -
                    # sampling
         
     | 
| 95 | 
         
            -
                    C, H, W = shape
         
     | 
| 96 | 
         
            -
                    size = (batch_size, C, H, W)
         
     | 
| 97 | 
         
            -
                    print(f'Data shape for PLMS sampling is {size}')
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
                    samples, intermediates = self.plms_sampling(conditioning, size,
         
     | 
| 100 | 
         
            -
                                                                callback=callback,
         
     | 
| 101 | 
         
            -
                                                                img_callback=img_callback,
         
     | 
| 102 | 
         
            -
                                                                quantize_denoised=quantize_x0,
         
     | 
| 103 | 
         
            -
                                                                mask=mask, x0=x0,
         
     | 
| 104 | 
         
            -
                                                                ddim_use_original_steps=False,
         
     | 
| 105 | 
         
            -
                                                                noise_dropout=noise_dropout,
         
     | 
| 106 | 
         
            -
                                                                temperature=temperature,
         
     | 
| 107 | 
         
            -
                                                                score_corrector=score_corrector,
         
     | 
| 108 | 
         
            -
                                                                corrector_kwargs=corrector_kwargs,
         
     | 
| 109 | 
         
            -
                                                                x_T=x_T,
         
     | 
| 110 | 
         
            -
                                                                log_every_t=log_every_t,
         
     | 
| 111 | 
         
            -
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 112 | 
         
            -
                                                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 113 | 
         
            -
                                                                dynamic_threshold=dynamic_threshold,
         
     | 
| 114 | 
         
            -
                                                                )
         
     | 
| 115 | 
         
            -
                    return samples, intermediates
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                @torch.no_grad()
         
     | 
| 118 | 
         
            -
                def plms_sampling(self, cond, shape,
         
     | 
| 119 | 
         
            -
                                  x_T=None, ddim_use_original_steps=False,
         
     | 
| 120 | 
         
            -
                                  callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 121 | 
         
            -
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         
     | 
| 122 | 
         
            -
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 123 | 
         
            -
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,
         
     | 
| 124 | 
         
            -
                                  dynamic_threshold=None):
         
     | 
| 125 | 
         
            -
                    device = self.model.betas.device
         
     | 
| 126 | 
         
            -
                    b = shape[0]
         
     | 
| 127 | 
         
            -
                    if x_T is None:
         
     | 
| 128 | 
         
            -
                        img = torch.randn(shape, device=device)
         
     | 
| 129 | 
         
            -
                    else:
         
     | 
| 130 | 
         
            -
                        img = x_T
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                    if timesteps is None:
         
     | 
| 133 | 
         
            -
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         
     | 
| 134 | 
         
            -
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 135 | 
         
            -
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         
     | 
| 136 | 
         
            -
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         
     | 
| 139 | 
         
            -
                    time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
         
     | 
| 140 | 
         
            -
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 141 | 
         
            -
                    print(f"Running PLMS Sampling with {total_steps} timesteps")
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                    iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
         
     | 
| 144 | 
         
            -
                    old_eps = []
         
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
                    for i, step in enumerate(iterator):
         
     | 
| 147 | 
         
            -
                        index = total_steps - i - 1
         
     | 
| 148 | 
         
            -
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 149 | 
         
            -
                        ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                        if mask is not None:
         
     | 
| 152 | 
         
            -
                            assert x0 is not None
         
     | 
| 153 | 
         
            -
                            img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
         
     | 
| 154 | 
         
            -
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
                        outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         
     | 
| 157 | 
         
            -
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         
     | 
| 158 | 
         
            -
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         
     | 
| 159 | 
         
            -
                                                  corrector_kwargs=corrector_kwargs,
         
     | 
| 160 | 
         
            -
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 161 | 
         
            -
                                                  unconditional_conditioning=unconditional_conditioning,
         
     | 
| 162 | 
         
            -
                                                  old_eps=old_eps, t_next=ts_next,
         
     | 
| 163 | 
         
            -
                                                  dynamic_threshold=dynamic_threshold)
         
     | 
| 164 | 
         
            -
                        img, pred_x0, e_t = outs
         
     | 
| 165 | 
         
            -
                        old_eps.append(e_t)
         
     | 
| 166 | 
         
            -
                        if len(old_eps) >= 4:
         
     | 
| 167 | 
         
            -
                            old_eps.pop(0)
         
     | 
| 168 | 
         
            -
                        if callback: callback(i)
         
     | 
| 169 | 
         
            -
                        if img_callback: img_callback(pred_x0, i)
         
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 172 | 
         
            -
                            intermediates['x_inter'].append(img)
         
     | 
| 173 | 
         
            -
                            intermediates['pred_x0'].append(pred_x0)
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
                    return img, intermediates
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                @torch.no_grad()
         
     | 
| 178 | 
         
            -
                def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         
     | 
| 179 | 
         
            -
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 180 | 
         
            -
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
         
     | 
| 181 | 
         
            -
                                  dynamic_threshold=None):
         
     | 
| 182 | 
         
            -
                    b, *_, device = *x.shape, x.device
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
                    def get_model_output(x, t):
         
     | 
| 185 | 
         
            -
                        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         
     | 
| 186 | 
         
            -
                            e_t = self.model.apply_model(x, t, c)
         
     | 
| 187 | 
         
            -
                        else:
         
     | 
| 188 | 
         
            -
                            x_in = torch.cat([x] * 2)
         
     | 
| 189 | 
         
            -
                            t_in = torch.cat([t] * 2)
         
     | 
| 190 | 
         
            -
                            c_in = torch.cat([unconditional_conditioning, c])
         
     | 
| 191 | 
         
            -
                            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         
     | 
| 192 | 
         
            -
                            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
         
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
                        if score_corrector is not None:
         
     | 
| 195 | 
         
            -
                            assert self.model.parameterization == "eps"
         
     | 
| 196 | 
         
            -
                            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         
     | 
| 197 | 
         
            -
             
     | 
| 198 | 
         
            -
                        return e_t
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 201 | 
         
            -
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         
     | 
| 202 | 
         
            -
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         
     | 
| 203 | 
         
            -
                    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
                    def get_x_prev_and_pred_x0(e_t, index):
         
     | 
| 206 | 
         
            -
                        # select parameters corresponding to the currently considered timestep
         
     | 
| 207 | 
         
            -
                        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         
     | 
| 208 | 
         
            -
                        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         
     | 
| 209 | 
         
            -
                        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         
     | 
| 210 | 
         
            -
                        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                        # current prediction for x_0
         
     | 
| 213 | 
         
            -
                        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 214 | 
         
            -
                        if quantize_denoised:
         
     | 
| 215 | 
         
            -
                            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 216 | 
         
            -
                        if dynamic_threshold is not None:
         
     | 
| 217 | 
         
            -
                            pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
         
     | 
| 218 | 
         
            -
                        # direction pointing to x_t
         
     | 
| 219 | 
         
            -
                        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 220 | 
         
            -
                        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 221 | 
         
            -
                        if noise_dropout > 0.:
         
     | 
| 222 | 
         
            -
                            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 223 | 
         
            -
                        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         
     | 
| 224 | 
         
            -
                        return x_prev, pred_x0
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
                    e_t = get_model_output(x, t)
         
     | 
| 227 | 
         
            -
                    if len(old_eps) == 0:
         
     | 
| 228 | 
         
            -
                        # Pseudo Improved Euler (2nd order)
         
     | 
| 229 | 
         
            -
                        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
         
     | 
| 230 | 
         
            -
                        e_t_next = get_model_output(x_prev, t_next)
         
     | 
| 231 | 
         
            -
                        e_t_prime = (e_t + e_t_next) / 2
         
     | 
| 232 | 
         
            -
                    elif len(old_eps) == 1:
         
     | 
| 233 | 
         
            -
                        # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
         
     | 
| 234 | 
         
            -
                        e_t_prime = (3 * e_t - old_eps[-1]) / 2
         
     | 
| 235 | 
         
            -
                    elif len(old_eps) == 2:
         
     | 
| 236 | 
         
            -
                        # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
         
     | 
| 237 | 
         
            -
                        e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
         
     | 
| 238 | 
         
            -
                    elif len(old_eps) >= 3:
         
     | 
| 239 | 
         
            -
                        # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
         
     | 
| 240 | 
         
            -
                        e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
                    x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
         
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
                    return x_prev, pred_x0, e_t
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/models/diffusion/sampling_util.py
    DELETED
    
    | 
         @@ -1,22 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import numpy as np
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            def append_dims(x, target_dims):
         
     | 
| 6 | 
         
            -
                """Appends dimensions to the end of a tensor until it has target_dims dimensions.
         
     | 
| 7 | 
         
            -
                From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
         
     | 
| 8 | 
         
            -
                dims_to_append = target_dims - x.ndim
         
     | 
| 9 | 
         
            -
                if dims_to_append < 0:
         
     | 
| 10 | 
         
            -
                    raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
         
     | 
| 11 | 
         
            -
                return x[(...,) + (None,) * dims_to_append]
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            def norm_thresholding(x0, value):
         
     | 
| 15 | 
         
            -
                s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
         
     | 
| 16 | 
         
            -
                return x0 * (value / s)
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            def spatial_norm_thresholding(x0, value):
         
     | 
| 20 | 
         
            -
                # b c h w
         
     | 
| 21 | 
         
            -
                s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
         
     | 
| 22 | 
         
            -
                return x0 * (value / s)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/attention.py
    DELETED
    
    | 
         @@ -1,331 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from inspect import isfunction
         
     | 
| 2 | 
         
            -
            import math
         
     | 
| 3 | 
         
            -
            import torch
         
     | 
| 4 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            -
            from torch import nn, einsum
         
     | 
| 6 | 
         
            -
            from einops import rearrange, repeat
         
     | 
| 7 | 
         
            -
            from typing import Optional, Any
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            from ldm.modules.diffusionmodules.util import checkpoint
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            try:
         
     | 
| 13 | 
         
            -
                import xformers
         
     | 
| 14 | 
         
            -
                import xformers.ops
         
     | 
| 15 | 
         
            -
                XFORMERS_IS_AVAILBLE = True
         
     | 
| 16 | 
         
            -
            except:
         
     | 
| 17 | 
         
            -
                XFORMERS_IS_AVAILBLE = False
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            def exists(val):
         
     | 
| 21 | 
         
            -
                return val is not None
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            def uniq(arr):
         
     | 
| 25 | 
         
            -
                return{el: True for el in arr}.keys()
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            def default(val, d):
         
     | 
| 29 | 
         
            -
                if exists(val):
         
     | 
| 30 | 
         
            -
                    return val
         
     | 
| 31 | 
         
            -
                return d() if isfunction(d) else d
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
            def max_neg_value(t):
         
     | 
| 35 | 
         
            -
                return -torch.finfo(t.dtype).max
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
            def init_(tensor):
         
     | 
| 39 | 
         
            -
                dim = tensor.shape[-1]
         
     | 
| 40 | 
         
            -
                std = 1 / math.sqrt(dim)
         
     | 
| 41 | 
         
            -
                tensor.uniform_(-std, std)
         
     | 
| 42 | 
         
            -
                return tensor
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            # feedforward
         
     | 
| 46 | 
         
            -
            class GEGLU(nn.Module):
         
     | 
| 47 | 
         
            -
                def __init__(self, dim_in, dim_out):
         
     | 
| 48 | 
         
            -
                    super().__init__()
         
     | 
| 49 | 
         
            -
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                def forward(self, x):
         
     | 
| 52 | 
         
            -
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 53 | 
         
            -
                    return x * F.gelu(gate)
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            class FeedForward(nn.Module):
         
     | 
| 57 | 
         
            -
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         
     | 
| 58 | 
         
            -
                    super().__init__()
         
     | 
| 59 | 
         
            -
                    inner_dim = int(dim * mult)
         
     | 
| 60 | 
         
            -
                    dim_out = default(dim_out, dim)
         
     | 
| 61 | 
         
            -
                    project_in = nn.Sequential(
         
     | 
| 62 | 
         
            -
                        nn.Linear(dim, inner_dim),
         
     | 
| 63 | 
         
            -
                        nn.GELU()
         
     | 
| 64 | 
         
            -
                    ) if not glu else GEGLU(dim, inner_dim)
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                    self.net = nn.Sequential(
         
     | 
| 67 | 
         
            -
                        project_in,
         
     | 
| 68 | 
         
            -
                        nn.Dropout(dropout),
         
     | 
| 69 | 
         
            -
                        nn.Linear(inner_dim, dim_out)
         
     | 
| 70 | 
         
            -
                    )
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                def forward(self, x):
         
     | 
| 73 | 
         
            -
                    return self.net(x)
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
            def zero_module(module):
         
     | 
| 77 | 
         
            -
                """
         
     | 
| 78 | 
         
            -
                Zero out the parameters of a module and return it.
         
     | 
| 79 | 
         
            -
                """
         
     | 
| 80 | 
         
            -
                for p in module.parameters():
         
     | 
| 81 | 
         
            -
                    p.detach().zero_()
         
     | 
| 82 | 
         
            -
                return module
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
            def Normalize(in_channels):
         
     | 
| 86 | 
         
            -
                return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
            class SpatialSelfAttention(nn.Module):
         
     | 
| 90 | 
         
            -
                def __init__(self, in_channels):
         
     | 
| 91 | 
         
            -
                    super().__init__()
         
     | 
| 92 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
                    self.norm = Normalize(in_channels)
         
     | 
| 95 | 
         
            -
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 96 | 
         
            -
                                             in_channels,
         
     | 
| 97 | 
         
            -
                                             kernel_size=1,
         
     | 
| 98 | 
         
            -
                                             stride=1,
         
     | 
| 99 | 
         
            -
                                             padding=0)
         
     | 
| 100 | 
         
            -
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 101 | 
         
            -
                                             in_channels,
         
     | 
| 102 | 
         
            -
                                             kernel_size=1,
         
     | 
| 103 | 
         
            -
                                             stride=1,
         
     | 
| 104 | 
         
            -
                                             padding=0)
         
     | 
| 105 | 
         
            -
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 106 | 
         
            -
                                             in_channels,
         
     | 
| 107 | 
         
            -
                                             kernel_size=1,
         
     | 
| 108 | 
         
            -
                                             stride=1,
         
     | 
| 109 | 
         
            -
                                             padding=0)
         
     | 
| 110 | 
         
            -
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 111 | 
         
            -
                                                    in_channels,
         
     | 
| 112 | 
         
            -
                                                    kernel_size=1,
         
     | 
| 113 | 
         
            -
                                                    stride=1,
         
     | 
| 114 | 
         
            -
                                                    padding=0)
         
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
                def forward(self, x):
         
     | 
| 117 | 
         
            -
                    h_ = x
         
     | 
| 118 | 
         
            -
                    h_ = self.norm(h_)
         
     | 
| 119 | 
         
            -
                    q = self.q(h_)
         
     | 
| 120 | 
         
            -
                    k = self.k(h_)
         
     | 
| 121 | 
         
            -
                    v = self.v(h_)
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
                    # compute attention
         
     | 
| 124 | 
         
            -
                    b,c,h,w = q.shape
         
     | 
| 125 | 
         
            -
                    q = rearrange(q, 'b c h w -> b (h w) c')
         
     | 
| 126 | 
         
            -
                    k = rearrange(k, 'b c h w -> b c (h w)')
         
     | 
| 127 | 
         
            -
                    w_ = torch.einsum('bij,bjk->bik', q, k)
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
                    w_ = w_ * (int(c)**(-0.5))
         
     | 
| 130 | 
         
            -
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                    # attend to values
         
     | 
| 133 | 
         
            -
                    v = rearrange(v, 'b c h w -> b c (h w)')
         
     | 
| 134 | 
         
            -
                    w_ = rearrange(w_, 'b i j -> b j i')
         
     | 
| 135 | 
         
            -
                    h_ = torch.einsum('bij,bjk->bik', v, w_)
         
     | 
| 136 | 
         
            -
                    h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
         
     | 
| 137 | 
         
            -
                    h_ = self.proj_out(h_)
         
     | 
| 138 | 
         
            -
             
     | 
| 139 | 
         
            -
                    return x+h_
         
     | 
| 140 | 
         
            -
             
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
            class CrossAttention(nn.Module):
         
     | 
| 143 | 
         
            -
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
         
     | 
| 144 | 
         
            -
                    super().__init__()
         
     | 
| 145 | 
         
            -
                    inner_dim = dim_head * heads
         
     | 
| 146 | 
         
            -
                    context_dim = default(context_dim, query_dim)
         
     | 
| 147 | 
         
            -
             
     | 
| 148 | 
         
            -
                    self.scale = dim_head ** -0.5
         
     | 
| 149 | 
         
            -
                    self.heads = heads
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         
     | 
| 152 | 
         
            -
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 153 | 
         
            -
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 154 | 
         
            -
             
     | 
| 155 | 
         
            -
                    self.to_out = nn.Sequential(
         
     | 
| 156 | 
         
            -
                        nn.Linear(inner_dim, query_dim),
         
     | 
| 157 | 
         
            -
                        nn.Dropout(dropout)
         
     | 
| 158 | 
         
            -
                    )
         
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                def forward(self, x, context=None, mask=None):
         
     | 
| 161 | 
         
            -
                    h = self.heads
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                    q = self.to_q(x)
         
     | 
| 164 | 
         
            -
                    context = default(context, x)
         
     | 
| 165 | 
         
            -
                    k = self.to_k(context)
         
     | 
| 166 | 
         
            -
                    v = self.to_v(context)
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
         
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
                    sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
         
     | 
| 171 | 
         
            -
                    del q, k
         
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
                    if exists(mask):
         
     | 
| 174 | 
         
            -
                        mask = rearrange(mask, 'b ... -> b (...)')
         
     | 
| 175 | 
         
            -
                        max_neg_value = -torch.finfo(sim.dtype).max
         
     | 
| 176 | 
         
            -
                        mask = repeat(mask, 'b j -> (b h) () j', h=h)
         
     | 
| 177 | 
         
            -
                        sim.masked_fill_(~mask, max_neg_value)
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
                    # attention, what we cannot get enough of
         
     | 
| 180 | 
         
            -
                    sim = sim.softmax(dim=-1)
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
                    out = einsum('b i j, b j d -> b i d', sim, v)
         
     | 
| 183 | 
         
            -
                    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
         
     | 
| 184 | 
         
            -
                    return self.to_out(out)
         
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
            class MemoryEfficientCrossAttention(nn.Module):
         
     | 
| 188 | 
         
            -
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         
     | 
| 189 | 
         
            -
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
         
     | 
| 190 | 
         
            -
                    super().__init__()
         
     | 
| 191 | 
         
            -
                    print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
         
     | 
| 192 | 
         
            -
                          f"{heads} heads.")
         
     | 
| 193 | 
         
            -
                    inner_dim = dim_head * heads
         
     | 
| 194 | 
         
            -
                    context_dim = default(context_dim, query_dim)
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
                    self.heads = heads
         
     | 
| 197 | 
         
            -
                    self.dim_head = dim_head
         
     | 
| 198 | 
         
            -
             
     | 
| 199 | 
         
            -
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         
     | 
| 200 | 
         
            -
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 201 | 
         
            -
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 202 | 
         
            -
             
     | 
| 203 | 
         
            -
                    self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
         
     | 
| 204 | 
         
            -
                    self.attention_op: Optional[Any] = None
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
                def forward(self, x, context=None, mask=None):
         
     | 
| 207 | 
         
            -
                    q = self.to_q(x)
         
     | 
| 208 | 
         
            -
                    context = default(context, x)
         
     | 
| 209 | 
         
            -
                    k = self.to_k(context)
         
     | 
| 210 | 
         
            -
                    v = self.to_v(context)
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                    b, _, _ = q.shape
         
     | 
| 213 | 
         
            -
                    q, k, v = map(
         
     | 
| 214 | 
         
            -
                        lambda t: t.unsqueeze(3)
         
     | 
| 215 | 
         
            -
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         
     | 
| 216 | 
         
            -
                        .permute(0, 2, 1, 3)
         
     | 
| 217 | 
         
            -
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         
     | 
| 218 | 
         
            -
                        .contiguous(),
         
     | 
| 219 | 
         
            -
                        (q, k, v),
         
     | 
| 220 | 
         
            -
                    )
         
     | 
| 221 | 
         
            -
             
     | 
| 222 | 
         
            -
                    # actually compute the attention, what we cannot get enough of
         
     | 
| 223 | 
         
            -
                    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
         
     | 
| 224 | 
         
            -
             
     | 
| 225 | 
         
            -
                    if exists(mask):
         
     | 
| 226 | 
         
            -
                        raise NotImplementedError
         
     | 
| 227 | 
         
            -
                    out = (
         
     | 
| 228 | 
         
            -
                        out.unsqueeze(0)
         
     | 
| 229 | 
         
            -
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         
     | 
| 230 | 
         
            -
                        .permute(0, 2, 1, 3)
         
     | 
| 231 | 
         
            -
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         
     | 
| 232 | 
         
            -
                    )
         
     | 
| 233 | 
         
            -
                    return self.to_out(out)
         
     | 
| 234 | 
         
            -
             
     | 
| 235 | 
         
            -
             
     | 
| 236 | 
         
            -
            class BasicTransformerBlock(nn.Module):
         
     | 
| 237 | 
         
            -
                ATTENTION_MODES = {
         
     | 
| 238 | 
         
            -
                    "softmax": CrossAttention,  # vanilla attention
         
     | 
| 239 | 
         
            -
                    "softmax-xformers": MemoryEfficientCrossAttention
         
     | 
| 240 | 
         
            -
                }
         
     | 
| 241 | 
         
            -
                def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
         
     | 
| 242 | 
         
            -
                             disable_self_attn=False):
         
     | 
| 243 | 
         
            -
                    super().__init__()
         
     | 
| 244 | 
         
            -
                    attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
         
     | 
| 245 | 
         
            -
                    assert attn_mode in self.ATTENTION_MODES
         
     | 
| 246 | 
         
            -
                    attn_cls = self.ATTENTION_MODES[attn_mode]
         
     | 
| 247 | 
         
            -
                    self.disable_self_attn = disable_self_attn
         
     | 
| 248 | 
         
            -
                    self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
         
     | 
| 249 | 
         
            -
                                          context_dim=context_dim if self.disable_self_attn else None)  # is a self-attention if not self.disable_self_attn
         
     | 
| 250 | 
         
            -
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         
     | 
| 251 | 
         
            -
                    self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
         
     | 
| 252 | 
         
            -
                                          heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
         
     | 
| 253 | 
         
            -
                    self.norm1 = nn.LayerNorm(dim)
         
     | 
| 254 | 
         
            -
                    self.norm2 = nn.LayerNorm(dim)
         
     | 
| 255 | 
         
            -
                    self.norm3 = nn.LayerNorm(dim)
         
     | 
| 256 | 
         
            -
                    self.checkpoint = checkpoint
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
                def forward(self, x, context=None):
         
     | 
| 259 | 
         
            -
                    return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
                def _forward(self, x, context=None):
         
     | 
| 262 | 
         
            -
                    x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
         
     | 
| 263 | 
         
            -
                    x = self.attn2(self.norm2(x), context=context) + x
         
     | 
| 264 | 
         
            -
                    x = self.ff(self.norm3(x)) + x
         
     | 
| 265 | 
         
            -
                    return x
         
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
            class SpatialTransformer(nn.Module):
         
     | 
| 269 | 
         
            -
                """
         
     | 
| 270 | 
         
            -
                Transformer block for image-like data.
         
     | 
| 271 | 
         
            -
                First, project the input (aka embedding)
         
     | 
| 272 | 
         
            -
                and reshape to b, t, d.
         
     | 
| 273 | 
         
            -
                Then apply standard transformer action.
         
     | 
| 274 | 
         
            -
                Finally, reshape to image
         
     | 
| 275 | 
         
            -
                NEW: use_linear for more efficiency instead of the 1x1 convs
         
     | 
| 276 | 
         
            -
                """
         
     | 
| 277 | 
         
            -
                def __init__(self, in_channels, n_heads, d_head,
         
     | 
| 278 | 
         
            -
                             depth=1, dropout=0., context_dim=None,
         
     | 
| 279 | 
         
            -
                             disable_self_attn=False, use_linear=False,
         
     | 
| 280 | 
         
            -
                             use_checkpoint=True):
         
     | 
| 281 | 
         
            -
                    super().__init__()
         
     | 
| 282 | 
         
            -
                    if exists(context_dim) and not isinstance(context_dim, list):
         
     | 
| 283 | 
         
            -
                        context_dim = [context_dim]
         
     | 
| 284 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 285 | 
         
            -
                    inner_dim = n_heads * d_head
         
     | 
| 286 | 
         
            -
                    self.norm = Normalize(in_channels)
         
     | 
| 287 | 
         
            -
                    if not use_linear:
         
     | 
| 288 | 
         
            -
                        self.proj_in = nn.Conv2d(in_channels,
         
     | 
| 289 | 
         
            -
                                                 inner_dim,
         
     | 
| 290 | 
         
            -
                                                 kernel_size=1,
         
     | 
| 291 | 
         
            -
                                                 stride=1,
         
     | 
| 292 | 
         
            -
                                                 padding=0)
         
     | 
| 293 | 
         
            -
                    else:
         
     | 
| 294 | 
         
            -
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         
     | 
| 295 | 
         
            -
             
     | 
| 296 | 
         
            -
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 297 | 
         
            -
                        [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
         
     | 
| 298 | 
         
            -
                                               disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
         
     | 
| 299 | 
         
            -
                            for d in range(depth)]
         
     | 
| 300 | 
         
            -
                    )
         
     | 
| 301 | 
         
            -
                    if not use_linear:
         
     | 
| 302 | 
         
            -
                        self.proj_out = zero_module(nn.Conv2d(inner_dim,
         
     | 
| 303 | 
         
            -
                                                              in_channels,
         
     | 
| 304 | 
         
            -
                                                              kernel_size=1,
         
     | 
| 305 | 
         
            -
                                                              stride=1,
         
     | 
| 306 | 
         
            -
                                                              padding=0))
         
     | 
| 307 | 
         
            -
                    else:
         
     | 
| 308 | 
         
            -
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         
     | 
| 309 | 
         
            -
                    self.use_linear = use_linear
         
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
                def forward(self, x, context=None):
         
     | 
| 312 | 
         
            -
                    # note: if no context is given, cross-attention defaults to self-attention
         
     | 
| 313 | 
         
            -
                    if not isinstance(context, list):
         
     | 
| 314 | 
         
            -
                        context = [context]
         
     | 
| 315 | 
         
            -
                    b, c, h, w = x.shape
         
     | 
| 316 | 
         
            -
                    x_in = x
         
     | 
| 317 | 
         
            -
                    x = self.norm(x)
         
     | 
| 318 | 
         
            -
                    if not self.use_linear:
         
     | 
| 319 | 
         
            -
                        x = self.proj_in(x)
         
     | 
| 320 | 
         
            -
                    x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
         
     | 
| 321 | 
         
            -
                    if self.use_linear:
         
     | 
| 322 | 
         
            -
                        x = self.proj_in(x)
         
     | 
| 323 | 
         
            -
                    for i, block in enumerate(self.transformer_blocks):
         
     | 
| 324 | 
         
            -
                        x = block(x, context=context[i])
         
     | 
| 325 | 
         
            -
                    if self.use_linear:
         
     | 
| 326 | 
         
            -
                        x = self.proj_out(x)
         
     | 
| 327 | 
         
            -
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
         
     | 
| 328 | 
         
            -
                    if not self.use_linear:
         
     | 
| 329 | 
         
            -
                        x = self.proj_out(x)
         
     | 
| 330 | 
         
            -
                    return x + x_in
         
     | 
| 331 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/diffusionmodules/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/modules/diffusionmodules/model.py
    DELETED
    
    | 
         @@ -1,852 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # pytorch_diffusion + derived encoder decoder
         
     | 
| 2 | 
         
            -
            import math
         
     | 
| 3 | 
         
            -
            import torch
         
     | 
| 4 | 
         
            -
            import torch.nn as nn
         
     | 
| 5 | 
         
            -
            import numpy as np
         
     | 
| 6 | 
         
            -
            from einops import rearrange
         
     | 
| 7 | 
         
            -
            from typing import Optional, Any
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            from ldm.modules.attention import MemoryEfficientCrossAttention
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            try:
         
     | 
| 12 | 
         
            -
                import xformers
         
     | 
| 13 | 
         
            -
                import xformers.ops
         
     | 
| 14 | 
         
            -
                XFORMERS_IS_AVAILBLE = True
         
     | 
| 15 | 
         
            -
            except:
         
     | 
| 16 | 
         
            -
                XFORMERS_IS_AVAILBLE = False
         
     | 
| 17 | 
         
            -
                print("No module 'xformers'. Proceeding without it.")
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
            def get_timestep_embedding(timesteps, embedding_dim):
         
     | 
| 21 | 
         
            -
                """
         
     | 
| 22 | 
         
            -
                This matches the implementation in Denoising Diffusion Probabilistic Models:
         
     | 
| 23 | 
         
            -
                From Fairseq.
         
     | 
| 24 | 
         
            -
                Build sinusoidal embeddings.
         
     | 
| 25 | 
         
            -
                This matches the implementation in tensor2tensor, but differs slightly
         
     | 
| 26 | 
         
            -
                from the description in Section 3.5 of "Attention Is All You Need".
         
     | 
| 27 | 
         
            -
                """
         
     | 
| 28 | 
         
            -
                assert len(timesteps.shape) == 1
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                half_dim = embedding_dim // 2
         
     | 
| 31 | 
         
            -
                emb = math.log(10000) / (half_dim - 1)
         
     | 
| 32 | 
         
            -
                emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
         
     | 
| 33 | 
         
            -
                emb = emb.to(device=timesteps.device)
         
     | 
| 34 | 
         
            -
                emb = timesteps.float()[:, None] * emb[None, :]
         
     | 
| 35 | 
         
            -
                emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         
     | 
| 36 | 
         
            -
                if embedding_dim % 2 == 1:  # zero pad
         
     | 
| 37 | 
         
            -
                    emb = torch.nn.functional.pad(emb, (0,1,0,0))
         
     | 
| 38 | 
         
            -
                return emb
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
            def nonlinearity(x):
         
     | 
| 42 | 
         
            -
                # swish
         
     | 
| 43 | 
         
            -
                return x*torch.sigmoid(x)
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            def Normalize(in_channels, num_groups=32):
         
     | 
| 47 | 
         
            -
                return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
            class Upsample(nn.Module):
         
     | 
| 51 | 
         
            -
                def __init__(self, in_channels, with_conv):
         
     | 
| 52 | 
         
            -
                    super().__init__()
         
     | 
| 53 | 
         
            -
                    self.with_conv = with_conv
         
     | 
| 54 | 
         
            -
                    if self.with_conv:
         
     | 
| 55 | 
         
            -
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 56 | 
         
            -
                                                    in_channels,
         
     | 
| 57 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 58 | 
         
            -
                                                    stride=1,
         
     | 
| 59 | 
         
            -
                                                    padding=1)
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
                def forward(self, x):
         
     | 
| 62 | 
         
            -
                    x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
         
     | 
| 63 | 
         
            -
                    if self.with_conv:
         
     | 
| 64 | 
         
            -
                        x = self.conv(x)
         
     | 
| 65 | 
         
            -
                    return x
         
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
            class Downsample(nn.Module):
         
     | 
| 69 | 
         
            -
                def __init__(self, in_channels, with_conv):
         
     | 
| 70 | 
         
            -
                    super().__init__()
         
     | 
| 71 | 
         
            -
                    self.with_conv = with_conv
         
     | 
| 72 | 
         
            -
                    if self.with_conv:
         
     | 
| 73 | 
         
            -
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 74 | 
         
            -
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 75 | 
         
            -
                                                    in_channels,
         
     | 
| 76 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 77 | 
         
            -
                                                    stride=2,
         
     | 
| 78 | 
         
            -
                                                    padding=0)
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
                def forward(self, x):
         
     | 
| 81 | 
         
            -
                    if self.with_conv:
         
     | 
| 82 | 
         
            -
                        pad = (0,1,0,1)
         
     | 
| 83 | 
         
            -
                        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
         
     | 
| 84 | 
         
            -
                        x = self.conv(x)
         
     | 
| 85 | 
         
            -
                    else:
         
     | 
| 86 | 
         
            -
                        x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
         
     | 
| 87 | 
         
            -
                    return x
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
            class ResnetBlock(nn.Module):
         
     | 
| 91 | 
         
            -
                def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
         
     | 
| 92 | 
         
            -
                             dropout, temb_channels=512):
         
     | 
| 93 | 
         
            -
                    super().__init__()
         
     | 
| 94 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 95 | 
         
            -
                    out_channels = in_channels if out_channels is None else out_channels
         
     | 
| 96 | 
         
            -
                    self.out_channels = out_channels
         
     | 
| 97 | 
         
            -
                    self.use_conv_shortcut = conv_shortcut
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
                    self.norm1 = Normalize(in_channels)
         
     | 
| 100 | 
         
            -
                    self.conv1 = torch.nn.Conv2d(in_channels,
         
     | 
| 101 | 
         
            -
                                                 out_channels,
         
     | 
| 102 | 
         
            -
                                                 kernel_size=3,
         
     | 
| 103 | 
         
            -
                                                 stride=1,
         
     | 
| 104 | 
         
            -
                                                 padding=1)
         
     | 
| 105 | 
         
            -
                    if temb_channels > 0:
         
     | 
| 106 | 
         
            -
                        self.temb_proj = torch.nn.Linear(temb_channels,
         
     | 
| 107 | 
         
            -
                                                         out_channels)
         
     | 
| 108 | 
         
            -
                    self.norm2 = Normalize(out_channels)
         
     | 
| 109 | 
         
            -
                    self.dropout = torch.nn.Dropout(dropout)
         
     | 
| 110 | 
         
            -
                    self.conv2 = torch.nn.Conv2d(out_channels,
         
     | 
| 111 | 
         
            -
                                                 out_channels,
         
     | 
| 112 | 
         
            -
                                                 kernel_size=3,
         
     | 
| 113 | 
         
            -
                                                 stride=1,
         
     | 
| 114 | 
         
            -
                                                 padding=1)
         
     | 
| 115 | 
         
            -
                    if self.in_channels != self.out_channels:
         
     | 
| 116 | 
         
            -
                        if self.use_conv_shortcut:
         
     | 
| 117 | 
         
            -
                            self.conv_shortcut = torch.nn.Conv2d(in_channels,
         
     | 
| 118 | 
         
            -
                                                                 out_channels,
         
     | 
| 119 | 
         
            -
                                                                 kernel_size=3,
         
     | 
| 120 | 
         
            -
                                                                 stride=1,
         
     | 
| 121 | 
         
            -
                                                                 padding=1)
         
     | 
| 122 | 
         
            -
                        else:
         
     | 
| 123 | 
         
            -
                            self.nin_shortcut = torch.nn.Conv2d(in_channels,
         
     | 
| 124 | 
         
            -
                                                                out_channels,
         
     | 
| 125 | 
         
            -
                                                                kernel_size=1,
         
     | 
| 126 | 
         
            -
                                                                stride=1,
         
     | 
| 127 | 
         
            -
                                                                padding=0)
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
                def forward(self, x, temb):
         
     | 
| 130 | 
         
            -
                    h = x
         
     | 
| 131 | 
         
            -
                    h = self.norm1(h)
         
     | 
| 132 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 133 | 
         
            -
                    h = self.conv1(h)
         
     | 
| 134 | 
         
            -
             
     | 
| 135 | 
         
            -
                    if temb is not None:
         
     | 
| 136 | 
         
            -
                        h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
         
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
                    h = self.norm2(h)
         
     | 
| 139 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 140 | 
         
            -
                    h = self.dropout(h)
         
     | 
| 141 | 
         
            -
                    h = self.conv2(h)
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                    if self.in_channels != self.out_channels:
         
     | 
| 144 | 
         
            -
                        if self.use_conv_shortcut:
         
     | 
| 145 | 
         
            -
                            x = self.conv_shortcut(x)
         
     | 
| 146 | 
         
            -
                        else:
         
     | 
| 147 | 
         
            -
                            x = self.nin_shortcut(x)
         
     | 
| 148 | 
         
            -
             
     | 
| 149 | 
         
            -
                    return x+h
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
            class AttnBlock(nn.Module):
         
     | 
| 153 | 
         
            -
                def __init__(self, in_channels):
         
     | 
| 154 | 
         
            -
                    super().__init__()
         
     | 
| 155 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
                    self.norm = Normalize(in_channels)
         
     | 
| 158 | 
         
            -
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 159 | 
         
            -
                                             in_channels,
         
     | 
| 160 | 
         
            -
                                             kernel_size=1,
         
     | 
| 161 | 
         
            -
                                             stride=1,
         
     | 
| 162 | 
         
            -
                                             padding=0)
         
     | 
| 163 | 
         
            -
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 164 | 
         
            -
                                             in_channels,
         
     | 
| 165 | 
         
            -
                                             kernel_size=1,
         
     | 
| 166 | 
         
            -
                                             stride=1,
         
     | 
| 167 | 
         
            -
                                             padding=0)
         
     | 
| 168 | 
         
            -
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 169 | 
         
            -
                                             in_channels,
         
     | 
| 170 | 
         
            -
                                             kernel_size=1,
         
     | 
| 171 | 
         
            -
                                             stride=1,
         
     | 
| 172 | 
         
            -
                                             padding=0)
         
     | 
| 173 | 
         
            -
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 174 | 
         
            -
                                                    in_channels,
         
     | 
| 175 | 
         
            -
                                                    kernel_size=1,
         
     | 
| 176 | 
         
            -
                                                    stride=1,
         
     | 
| 177 | 
         
            -
                                                    padding=0)
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
                def forward(self, x):
         
     | 
| 180 | 
         
            -
                    h_ = x
         
     | 
| 181 | 
         
            -
                    h_ = self.norm(h_)
         
     | 
| 182 | 
         
            -
                    q = self.q(h_)
         
     | 
| 183 | 
         
            -
                    k = self.k(h_)
         
     | 
| 184 | 
         
            -
                    v = self.v(h_)
         
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
                    # compute attention
         
     | 
| 187 | 
         
            -
                    b,c,h,w = q.shape
         
     | 
| 188 | 
         
            -
                    q = q.reshape(b,c,h*w)
         
     | 
| 189 | 
         
            -
                    q = q.permute(0,2,1)   # b,hw,c
         
     | 
| 190 | 
         
            -
                    k = k.reshape(b,c,h*w) # b,c,hw
         
     | 
| 191 | 
         
            -
                    w_ = torch.bmm(q,k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
         
     | 
| 192 | 
         
            -
                    w_ = w_ * (int(c)**(-0.5))
         
     | 
| 193 | 
         
            -
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
                    # attend to values
         
     | 
| 196 | 
         
            -
                    v = v.reshape(b,c,h*w)
         
     | 
| 197 | 
         
            -
                    w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
         
     | 
| 198 | 
         
            -
                    h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
         
     | 
| 199 | 
         
            -
                    h_ = h_.reshape(b,c,h,w)
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
                    h_ = self.proj_out(h_)
         
     | 
| 202 | 
         
            -
             
     | 
| 203 | 
         
            -
                    return x+h_
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
            class MemoryEfficientAttnBlock(nn.Module):
         
     | 
| 206 | 
         
            -
                """
         
     | 
| 207 | 
         
            -
                    Uses xformers efficient implementation,
         
     | 
| 208 | 
         
            -
                    see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         
     | 
| 209 | 
         
            -
                    Note: this is a single-head self-attention operation
         
     | 
| 210 | 
         
            -
                """
         
     | 
| 211 | 
         
            -
                #
         
     | 
| 212 | 
         
            -
                def __init__(self, in_channels):
         
     | 
| 213 | 
         
            -
                    super().__init__()
         
     | 
| 214 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 215 | 
         
            -
             
     | 
| 216 | 
         
            -
                    self.norm = Normalize(in_channels)
         
     | 
| 217 | 
         
            -
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 218 | 
         
            -
                                             in_channels,
         
     | 
| 219 | 
         
            -
                                             kernel_size=1,
         
     | 
| 220 | 
         
            -
                                             stride=1,
         
     | 
| 221 | 
         
            -
                                             padding=0)
         
     | 
| 222 | 
         
            -
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 223 | 
         
            -
                                             in_channels,
         
     | 
| 224 | 
         
            -
                                             kernel_size=1,
         
     | 
| 225 | 
         
            -
                                             stride=1,
         
     | 
| 226 | 
         
            -
                                             padding=0)
         
     | 
| 227 | 
         
            -
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 228 | 
         
            -
                                             in_channels,
         
     | 
| 229 | 
         
            -
                                             kernel_size=1,
         
     | 
| 230 | 
         
            -
                                             stride=1,
         
     | 
| 231 | 
         
            -
                                             padding=0)
         
     | 
| 232 | 
         
            -
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 233 | 
         
            -
                                                    in_channels,
         
     | 
| 234 | 
         
            -
                                                    kernel_size=1,
         
     | 
| 235 | 
         
            -
                                                    stride=1,
         
     | 
| 236 | 
         
            -
                                                    padding=0)
         
     | 
| 237 | 
         
            -
                    self.attention_op: Optional[Any] = None
         
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
                def forward(self, x):
         
     | 
| 240 | 
         
            -
                    h_ = x
         
     | 
| 241 | 
         
            -
                    h_ = self.norm(h_)
         
     | 
| 242 | 
         
            -
                    q = self.q(h_)
         
     | 
| 243 | 
         
            -
                    k = self.k(h_)
         
     | 
| 244 | 
         
            -
                    v = self.v(h_)
         
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
                    # compute attention
         
     | 
| 247 | 
         
            -
                    B, C, H, W = q.shape
         
     | 
| 248 | 
         
            -
                    q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
         
     | 
| 249 | 
         
            -
             
     | 
| 250 | 
         
            -
                    q, k, v = map(
         
     | 
| 251 | 
         
            -
                        lambda t: t.unsqueeze(3)
         
     | 
| 252 | 
         
            -
                        .reshape(B, t.shape[1], 1, C)
         
     | 
| 253 | 
         
            -
                        .permute(0, 2, 1, 3)
         
     | 
| 254 | 
         
            -
                        .reshape(B * 1, t.shape[1], C)
         
     | 
| 255 | 
         
            -
                        .contiguous(),
         
     | 
| 256 | 
         
            -
                        (q, k, v),
         
     | 
| 257 | 
         
            -
                    )
         
     | 
| 258 | 
         
            -
                    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
         
     | 
| 259 | 
         
            -
             
     | 
| 260 | 
         
            -
                    out = (
         
     | 
| 261 | 
         
            -
                        out.unsqueeze(0)
         
     | 
| 262 | 
         
            -
                        .reshape(B, 1, out.shape[1], C)
         
     | 
| 263 | 
         
            -
                        .permute(0, 2, 1, 3)
         
     | 
| 264 | 
         
            -
                        .reshape(B, out.shape[1], C)
         
     | 
| 265 | 
         
            -
                    )
         
     | 
| 266 | 
         
            -
                    out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
         
     | 
| 267 | 
         
            -
                    out = self.proj_out(out)
         
     | 
| 268 | 
         
            -
                    return x+out
         
     | 
| 269 | 
         
            -
             
     | 
| 270 | 
         
            -
             
     | 
| 271 | 
         
            -
            class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
         
     | 
| 272 | 
         
            -
                def forward(self, x, context=None, mask=None):
         
     | 
| 273 | 
         
            -
                    b, c, h, w = x.shape
         
     | 
| 274 | 
         
            -
                    x = rearrange(x, 'b c h w -> b (h w) c')
         
     | 
| 275 | 
         
            -
                    out = super().forward(x, context=context, mask=mask)
         
     | 
| 276 | 
         
            -
                    out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
         
     | 
| 277 | 
         
            -
                    return x + out
         
     | 
| 278 | 
         
            -
             
     | 
| 279 | 
         
            -
             
     | 
| 280 | 
         
            -
            def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
         
     | 
| 281 | 
         
            -
                assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
         
     | 
| 282 | 
         
            -
                if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
         
     | 
| 283 | 
         
            -
                    attn_type = "vanilla-xformers"
         
     | 
| 284 | 
         
            -
                print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
         
     | 
| 285 | 
         
            -
                if attn_type == "vanilla":
         
     | 
| 286 | 
         
            -
                    assert attn_kwargs is None
         
     | 
| 287 | 
         
            -
                    return AttnBlock(in_channels)
         
     | 
| 288 | 
         
            -
                elif attn_type == "vanilla-xformers":
         
     | 
| 289 | 
         
            -
                    print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
         
     | 
| 290 | 
         
            -
                    return MemoryEfficientAttnBlock(in_channels)
         
     | 
| 291 | 
         
            -
                elif type == "memory-efficient-cross-attn":
         
     | 
| 292 | 
         
            -
                    attn_kwargs["query_dim"] = in_channels
         
     | 
| 293 | 
         
            -
                    return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
         
     | 
| 294 | 
         
            -
                elif attn_type == "none":
         
     | 
| 295 | 
         
            -
                    return nn.Identity(in_channels)
         
     | 
| 296 | 
         
            -
                else:
         
     | 
| 297 | 
         
            -
                    raise NotImplementedError()
         
     | 
| 298 | 
         
            -
             
     | 
| 299 | 
         
            -
             
     | 
| 300 | 
         
            -
            class Model(nn.Module):
         
     | 
| 301 | 
         
            -
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 302 | 
         
            -
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 303 | 
         
            -
                             resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
         
     | 
| 304 | 
         
            -
                    super().__init__()
         
     | 
| 305 | 
         
            -
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 306 | 
         
            -
                    self.ch = ch
         
     | 
| 307 | 
         
            -
                    self.temb_ch = self.ch*4
         
     | 
| 308 | 
         
            -
                    self.num_resolutions = len(ch_mult)
         
     | 
| 309 | 
         
            -
                    self.num_res_blocks = num_res_blocks
         
     | 
| 310 | 
         
            -
                    self.resolution = resolution
         
     | 
| 311 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 312 | 
         
            -
             
     | 
| 313 | 
         
            -
                    self.use_timestep = use_timestep
         
     | 
| 314 | 
         
            -
                    if self.use_timestep:
         
     | 
| 315 | 
         
            -
                        # timestep embedding
         
     | 
| 316 | 
         
            -
                        self.temb = nn.Module()
         
     | 
| 317 | 
         
            -
                        self.temb.dense = nn.ModuleList([
         
     | 
| 318 | 
         
            -
                            torch.nn.Linear(self.ch,
         
     | 
| 319 | 
         
            -
                                            self.temb_ch),
         
     | 
| 320 | 
         
            -
                            torch.nn.Linear(self.temb_ch,
         
     | 
| 321 | 
         
            -
                                            self.temb_ch),
         
     | 
| 322 | 
         
            -
                        ])
         
     | 
| 323 | 
         
            -
             
     | 
| 324 | 
         
            -
                    # downsampling
         
     | 
| 325 | 
         
            -
                    self.conv_in = torch.nn.Conv2d(in_channels,
         
     | 
| 326 | 
         
            -
                                                   self.ch,
         
     | 
| 327 | 
         
            -
                                                   kernel_size=3,
         
     | 
| 328 | 
         
            -
                                                   stride=1,
         
     | 
| 329 | 
         
            -
                                                   padding=1)
         
     | 
| 330 | 
         
            -
             
     | 
| 331 | 
         
            -
                    curr_res = resolution
         
     | 
| 332 | 
         
            -
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 333 | 
         
            -
                    self.down = nn.ModuleList()
         
     | 
| 334 | 
         
            -
                    for i_level in range(self.num_resolutions):
         
     | 
| 335 | 
         
            -
                        block = nn.ModuleList()
         
     | 
| 336 | 
         
            -
                        attn = nn.ModuleList()
         
     | 
| 337 | 
         
            -
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 338 | 
         
            -
                        block_out = ch*ch_mult[i_level]
         
     | 
| 339 | 
         
            -
                        for i_block in range(self.num_res_blocks):
         
     | 
| 340 | 
         
            -
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 341 | 
         
            -
                                                     out_channels=block_out,
         
     | 
| 342 | 
         
            -
                                                     temb_channels=self.temb_ch,
         
     | 
| 343 | 
         
            -
                                                     dropout=dropout))
         
     | 
| 344 | 
         
            -
                            block_in = block_out
         
     | 
| 345 | 
         
            -
                            if curr_res in attn_resolutions:
         
     | 
| 346 | 
         
            -
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 347 | 
         
            -
                        down = nn.Module()
         
     | 
| 348 | 
         
            -
                        down.block = block
         
     | 
| 349 | 
         
            -
                        down.attn = attn
         
     | 
| 350 | 
         
            -
                        if i_level != self.num_resolutions-1:
         
     | 
| 351 | 
         
            -
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 352 | 
         
            -
                            curr_res = curr_res // 2
         
     | 
| 353 | 
         
            -
                        self.down.append(down)
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                    # middle
         
     | 
| 356 | 
         
            -
                    self.mid = nn.Module()
         
     | 
| 357 | 
         
            -
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 358 | 
         
            -
                                                   out_channels=block_in,
         
     | 
| 359 | 
         
            -
                                                   temb_channels=self.temb_ch,
         
     | 
| 360 | 
         
            -
                                                   dropout=dropout)
         
     | 
| 361 | 
         
            -
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 362 | 
         
            -
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 363 | 
         
            -
                                                   out_channels=block_in,
         
     | 
| 364 | 
         
            -
                                                   temb_channels=self.temb_ch,
         
     | 
| 365 | 
         
            -
                                                   dropout=dropout)
         
     | 
| 366 | 
         
            -
             
     | 
| 367 | 
         
            -
                    # upsampling
         
     | 
| 368 | 
         
            -
                    self.up = nn.ModuleList()
         
     | 
| 369 | 
         
            -
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 370 | 
         
            -
                        block = nn.ModuleList()
         
     | 
| 371 | 
         
            -
                        attn = nn.ModuleList()
         
     | 
| 372 | 
         
            -
                        block_out = ch*ch_mult[i_level]
         
     | 
| 373 | 
         
            -
                        skip_in = ch*ch_mult[i_level]
         
     | 
| 374 | 
         
            -
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 375 | 
         
            -
                            if i_block == self.num_res_blocks:
         
     | 
| 376 | 
         
            -
                                skip_in = ch*in_ch_mult[i_level]
         
     | 
| 377 | 
         
            -
                            block.append(ResnetBlock(in_channels=block_in+skip_in,
         
     | 
| 378 | 
         
            -
                                                     out_channels=block_out,
         
     | 
| 379 | 
         
            -
                                                     temb_channels=self.temb_ch,
         
     | 
| 380 | 
         
            -
                                                     dropout=dropout))
         
     | 
| 381 | 
         
            -
                            block_in = block_out
         
     | 
| 382 | 
         
            -
                            if curr_res in attn_resolutions:
         
     | 
| 383 | 
         
            -
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 384 | 
         
            -
                        up = nn.Module()
         
     | 
| 385 | 
         
            -
                        up.block = block
         
     | 
| 386 | 
         
            -
                        up.attn = attn
         
     | 
| 387 | 
         
            -
                        if i_level != 0:
         
     | 
| 388 | 
         
            -
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 389 | 
         
            -
                            curr_res = curr_res * 2
         
     | 
| 390 | 
         
            -
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 391 | 
         
            -
             
     | 
| 392 | 
         
            -
                    # end
         
     | 
| 393 | 
         
            -
                    self.norm_out = Normalize(block_in)
         
     | 
| 394 | 
         
            -
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 395 | 
         
            -
                                                    out_ch,
         
     | 
| 396 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 397 | 
         
            -
                                                    stride=1,
         
     | 
| 398 | 
         
            -
                                                    padding=1)
         
     | 
| 399 | 
         
            -
             
     | 
| 400 | 
         
            -
                def forward(self, x, t=None, context=None):
         
     | 
| 401 | 
         
            -
                    #assert x.shape[2] == x.shape[3] == self.resolution
         
     | 
| 402 | 
         
            -
                    if context is not None:
         
     | 
| 403 | 
         
            -
                        # assume aligned context, cat along channel axis
         
     | 
| 404 | 
         
            -
                        x = torch.cat((x, context), dim=1)
         
     | 
| 405 | 
         
            -
                    if self.use_timestep:
         
     | 
| 406 | 
         
            -
                        # timestep embedding
         
     | 
| 407 | 
         
            -
                        assert t is not None
         
     | 
| 408 | 
         
            -
                        temb = get_timestep_embedding(t, self.ch)
         
     | 
| 409 | 
         
            -
                        temb = self.temb.dense[0](temb)
         
     | 
| 410 | 
         
            -
                        temb = nonlinearity(temb)
         
     | 
| 411 | 
         
            -
                        temb = self.temb.dense[1](temb)
         
     | 
| 412 | 
         
            -
                    else:
         
     | 
| 413 | 
         
            -
                        temb = None
         
     | 
| 414 | 
         
            -
             
     | 
| 415 | 
         
            -
                    # downsampling
         
     | 
| 416 | 
         
            -
                    hs = [self.conv_in(x)]
         
     | 
| 417 | 
         
            -
                    for i_level in range(self.num_resolutions):
         
     | 
| 418 | 
         
            -
                        for i_block in range(self.num_res_blocks):
         
     | 
| 419 | 
         
            -
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 420 | 
         
            -
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 421 | 
         
            -
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 422 | 
         
            -
                            hs.append(h)
         
     | 
| 423 | 
         
            -
                        if i_level != self.num_resolutions-1:
         
     | 
| 424 | 
         
            -
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 425 | 
         
            -
             
     | 
| 426 | 
         
            -
                    # middle
         
     | 
| 427 | 
         
            -
                    h = hs[-1]
         
     | 
| 428 | 
         
            -
                    h = self.mid.block_1(h, temb)
         
     | 
| 429 | 
         
            -
                    h = self.mid.attn_1(h)
         
     | 
| 430 | 
         
            -
                    h = self.mid.block_2(h, temb)
         
     | 
| 431 | 
         
            -
             
     | 
| 432 | 
         
            -
                    # upsampling
         
     | 
| 433 | 
         
            -
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 434 | 
         
            -
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 435 | 
         
            -
                            h = self.up[i_level].block[i_block](
         
     | 
| 436 | 
         
            -
                                torch.cat([h, hs.pop()], dim=1), temb)
         
     | 
| 437 | 
         
            -
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 438 | 
         
            -
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 439 | 
         
            -
                        if i_level != 0:
         
     | 
| 440 | 
         
            -
                            h = self.up[i_level].upsample(h)
         
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
                    # end
         
     | 
| 443 | 
         
            -
                    h = self.norm_out(h)
         
     | 
| 444 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 445 | 
         
            -
                    h = self.conv_out(h)
         
     | 
| 446 | 
         
            -
                    return h
         
     | 
| 447 | 
         
            -
             
     | 
| 448 | 
         
            -
                def get_last_layer(self):
         
     | 
| 449 | 
         
            -
                    return self.conv_out.weight
         
     | 
| 450 | 
         
            -
             
     | 
| 451 | 
         
            -
             
     | 
| 452 | 
         
            -
            class Encoder(nn.Module):
         
     | 
| 453 | 
         
            -
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 454 | 
         
            -
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 455 | 
         
            -
                             resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
         
     | 
| 456 | 
         
            -
                             **ignore_kwargs):
         
     | 
| 457 | 
         
            -
                    super().__init__()
         
     | 
| 458 | 
         
            -
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 459 | 
         
            -
                    self.ch = ch
         
     | 
| 460 | 
         
            -
                    self.temb_ch = 0
         
     | 
| 461 | 
         
            -
                    self.num_resolutions = len(ch_mult)
         
     | 
| 462 | 
         
            -
                    self.num_res_blocks = num_res_blocks
         
     | 
| 463 | 
         
            -
                    self.resolution = resolution
         
     | 
| 464 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 465 | 
         
            -
             
     | 
| 466 | 
         
            -
                    # downsampling
         
     | 
| 467 | 
         
            -
                    self.conv_in = torch.nn.Conv2d(in_channels,
         
     | 
| 468 | 
         
            -
                                                   self.ch,
         
     | 
| 469 | 
         
            -
                                                   kernel_size=3,
         
     | 
| 470 | 
         
            -
                                                   stride=1,
         
     | 
| 471 | 
         
            -
                                                   padding=1)
         
     | 
| 472 | 
         
            -
             
     | 
| 473 | 
         
            -
                    curr_res = resolution
         
     | 
| 474 | 
         
            -
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 475 | 
         
            -
                    self.in_ch_mult = in_ch_mult
         
     | 
| 476 | 
         
            -
                    self.down = nn.ModuleList()
         
     | 
| 477 | 
         
            -
                    for i_level in range(self.num_resolutions):
         
     | 
| 478 | 
         
            -
                        block = nn.ModuleList()
         
     | 
| 479 | 
         
            -
                        attn = nn.ModuleList()
         
     | 
| 480 | 
         
            -
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 481 | 
         
            -
                        block_out = ch*ch_mult[i_level]
         
     | 
| 482 | 
         
            -
                        for i_block in range(self.num_res_blocks):
         
     | 
| 483 | 
         
            -
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 484 | 
         
            -
                                                     out_channels=block_out,
         
     | 
| 485 | 
         
            -
                                                     temb_channels=self.temb_ch,
         
     | 
| 486 | 
         
            -
                                                     dropout=dropout))
         
     | 
| 487 | 
         
            -
                            block_in = block_out
         
     | 
| 488 | 
         
            -
                            if curr_res in attn_resolutions:
         
     | 
| 489 | 
         
            -
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 490 | 
         
            -
                        down = nn.Module()
         
     | 
| 491 | 
         
            -
                        down.block = block
         
     | 
| 492 | 
         
            -
                        down.attn = attn
         
     | 
| 493 | 
         
            -
                        if i_level != self.num_resolutions-1:
         
     | 
| 494 | 
         
            -
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 495 | 
         
            -
                            curr_res = curr_res // 2
         
     | 
| 496 | 
         
            -
                        self.down.append(down)
         
     | 
| 497 | 
         
            -
             
     | 
| 498 | 
         
            -
                    # middle
         
     | 
| 499 | 
         
            -
                    self.mid = nn.Module()
         
     | 
| 500 | 
         
            -
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 501 | 
         
            -
                                                   out_channels=block_in,
         
     | 
| 502 | 
         
            -
                                                   temb_channels=self.temb_ch,
         
     | 
| 503 | 
         
            -
                                                   dropout=dropout)
         
     | 
| 504 | 
         
            -
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 505 | 
         
            -
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 506 | 
         
            -
                                                   out_channels=block_in,
         
     | 
| 507 | 
         
            -
                                                   temb_channels=self.temb_ch,
         
     | 
| 508 | 
         
            -
                                                   dropout=dropout)
         
     | 
| 509 | 
         
            -
             
     | 
| 510 | 
         
            -
                    # end
         
     | 
| 511 | 
         
            -
                    self.norm_out = Normalize(block_in)
         
     | 
| 512 | 
         
            -
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 513 | 
         
            -
                                                    2*z_channels if double_z else z_channels,
         
     | 
| 514 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 515 | 
         
            -
                                                    stride=1,
         
     | 
| 516 | 
         
            -
                                                    padding=1)
         
     | 
| 517 | 
         
            -
             
     | 
| 518 | 
         
            -
                def forward(self, x):
         
     | 
| 519 | 
         
            -
                    # timestep embedding
         
     | 
| 520 | 
         
            -
                    temb = None
         
     | 
| 521 | 
         
            -
             
     | 
| 522 | 
         
            -
                    # downsampling
         
     | 
| 523 | 
         
            -
                    hs = [self.conv_in(x)]
         
     | 
| 524 | 
         
            -
                    for i_level in range(self.num_resolutions):
         
     | 
| 525 | 
         
            -
                        for i_block in range(self.num_res_blocks):
         
     | 
| 526 | 
         
            -
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 527 | 
         
            -
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 528 | 
         
            -
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 529 | 
         
            -
                            hs.append(h)
         
     | 
| 530 | 
         
            -
                        if i_level != self.num_resolutions-1:
         
     | 
| 531 | 
         
            -
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 532 | 
         
            -
             
     | 
| 533 | 
         
            -
                    # middle
         
     | 
| 534 | 
         
            -
                    h = hs[-1]
         
     | 
| 535 | 
         
            -
                    h = self.mid.block_1(h, temb)
         
     | 
| 536 | 
         
            -
                    h = self.mid.attn_1(h)
         
     | 
| 537 | 
         
            -
                    h = self.mid.block_2(h, temb)
         
     | 
| 538 | 
         
            -
             
     | 
| 539 | 
         
            -
                    # end
         
     | 
| 540 | 
         
            -
                    h = self.norm_out(h)
         
     | 
| 541 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 542 | 
         
            -
                    h = self.conv_out(h)
         
     | 
| 543 | 
         
            -
                    return h
         
     | 
| 544 | 
         
            -
             
     | 
| 545 | 
         
            -
             
     | 
| 546 | 
         
            -
            class Decoder(nn.Module):
         
     | 
| 547 | 
         
            -
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 548 | 
         
            -
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 549 | 
         
            -
                             resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
         
     | 
| 550 | 
         
            -
                             attn_type="vanilla", **ignorekwargs):
         
     | 
| 551 | 
         
            -
                    super().__init__()
         
     | 
| 552 | 
         
            -
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 553 | 
         
            -
                    self.ch = ch
         
     | 
| 554 | 
         
            -
                    self.temb_ch = 0
         
     | 
| 555 | 
         
            -
                    self.num_resolutions = len(ch_mult)
         
     | 
| 556 | 
         
            -
                    self.num_res_blocks = num_res_blocks
         
     | 
| 557 | 
         
            -
                    self.resolution = resolution
         
     | 
| 558 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 559 | 
         
            -
                    self.give_pre_end = give_pre_end
         
     | 
| 560 | 
         
            -
                    self.tanh_out = tanh_out
         
     | 
| 561 | 
         
            -
             
     | 
| 562 | 
         
            -
                    # compute in_ch_mult, block_in and curr_res at lowest res
         
     | 
| 563 | 
         
            -
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 564 | 
         
            -
                    block_in = ch*ch_mult[self.num_resolutions-1]
         
     | 
| 565 | 
         
            -
                    curr_res = resolution // 2**(self.num_resolutions-1)
         
     | 
| 566 | 
         
            -
                    self.z_shape = (1,z_channels,curr_res,curr_res)
         
     | 
| 567 | 
         
            -
                    print("Working with z of shape {} = {} dimensions.".format(
         
     | 
| 568 | 
         
            -
                        self.z_shape, np.prod(self.z_shape)))
         
     | 
| 569 | 
         
            -
             
     | 
| 570 | 
         
            -
                    # z to block_in
         
     | 
| 571 | 
         
            -
                    self.conv_in = torch.nn.Conv2d(z_channels,
         
     | 
| 572 | 
         
            -
                                                   block_in,
         
     | 
| 573 | 
         
            -
                                                   kernel_size=3,
         
     | 
| 574 | 
         
            -
                                                   stride=1,
         
     | 
| 575 | 
         
            -
                                                   padding=1)
         
     | 
| 576 | 
         
            -
             
     | 
| 577 | 
         
            -
                    # middle
         
     | 
| 578 | 
         
            -
                    self.mid = nn.Module()
         
     | 
| 579 | 
         
            -
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 580 | 
         
            -
                                                   out_channels=block_in,
         
     | 
| 581 | 
         
            -
                                                   temb_channels=self.temb_ch,
         
     | 
| 582 | 
         
            -
                                                   dropout=dropout)
         
     | 
| 583 | 
         
            -
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 584 | 
         
            -
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 585 | 
         
            -
                                                   out_channels=block_in,
         
     | 
| 586 | 
         
            -
                                                   temb_channels=self.temb_ch,
         
     | 
| 587 | 
         
            -
                                                   dropout=dropout)
         
     | 
| 588 | 
         
            -
             
     | 
| 589 | 
         
            -
                    # upsampling
         
     | 
| 590 | 
         
            -
                    self.up = nn.ModuleList()
         
     | 
| 591 | 
         
            -
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 592 | 
         
            -
                        block = nn.ModuleList()
         
     | 
| 593 | 
         
            -
                        attn = nn.ModuleList()
         
     | 
| 594 | 
         
            -
                        block_out = ch*ch_mult[i_level]
         
     | 
| 595 | 
         
            -
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 596 | 
         
            -
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 597 | 
         
            -
                                                     out_channels=block_out,
         
     | 
| 598 | 
         
            -
                                                     temb_channels=self.temb_ch,
         
     | 
| 599 | 
         
            -
                                                     dropout=dropout))
         
     | 
| 600 | 
         
            -
                            block_in = block_out
         
     | 
| 601 | 
         
            -
                            if curr_res in attn_resolutions:
         
     | 
| 602 | 
         
            -
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 603 | 
         
            -
                        up = nn.Module()
         
     | 
| 604 | 
         
            -
                        up.block = block
         
     | 
| 605 | 
         
            -
                        up.attn = attn
         
     | 
| 606 | 
         
            -
                        if i_level != 0:
         
     | 
| 607 | 
         
            -
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 608 | 
         
            -
                            curr_res = curr_res * 2
         
     | 
| 609 | 
         
            -
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 610 | 
         
            -
             
     | 
| 611 | 
         
            -
                    # end
         
     | 
| 612 | 
         
            -
                    self.norm_out = Normalize(block_in)
         
     | 
| 613 | 
         
            -
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 614 | 
         
            -
                                                    out_ch,
         
     | 
| 615 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 616 | 
         
            -
                                                    stride=1,
         
     | 
| 617 | 
         
            -
                                                    padding=1)
         
     | 
| 618 | 
         
            -
             
     | 
| 619 | 
         
            -
                def forward(self, z):
         
     | 
| 620 | 
         
            -
                    #assert z.shape[1:] == self.z_shape[1:]
         
     | 
| 621 | 
         
            -
                    self.last_z_shape = z.shape
         
     | 
| 622 | 
         
            -
             
     | 
| 623 | 
         
            -
                    # timestep embedding
         
     | 
| 624 | 
         
            -
                    temb = None
         
     | 
| 625 | 
         
            -
             
     | 
| 626 | 
         
            -
                    # z to block_in
         
     | 
| 627 | 
         
            -
                    h = self.conv_in(z)
         
     | 
| 628 | 
         
            -
             
     | 
| 629 | 
         
            -
                    # middle
         
     | 
| 630 | 
         
            -
                    h = self.mid.block_1(h, temb)
         
     | 
| 631 | 
         
            -
                    h = self.mid.attn_1(h)
         
     | 
| 632 | 
         
            -
                    h = self.mid.block_2(h, temb)
         
     | 
| 633 | 
         
            -
             
     | 
| 634 | 
         
            -
                    # upsampling
         
     | 
| 635 | 
         
            -
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 636 | 
         
            -
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 637 | 
         
            -
                            h = self.up[i_level].block[i_block](h, temb)
         
     | 
| 638 | 
         
            -
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 639 | 
         
            -
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 640 | 
         
            -
                        if i_level != 0:
         
     | 
| 641 | 
         
            -
                            h = self.up[i_level].upsample(h)
         
     | 
| 642 | 
         
            -
             
     | 
| 643 | 
         
            -
                    # end
         
     | 
| 644 | 
         
            -
                    if self.give_pre_end:
         
     | 
| 645 | 
         
            -
                        return h
         
     | 
| 646 | 
         
            -
             
     | 
| 647 | 
         
            -
                    h = self.norm_out(h)
         
     | 
| 648 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 649 | 
         
            -
                    h = self.conv_out(h)
         
     | 
| 650 | 
         
            -
                    if self.tanh_out:
         
     | 
| 651 | 
         
            -
                        h = torch.tanh(h)
         
     | 
| 652 | 
         
            -
                    return h
         
     | 
| 653 | 
         
            -
             
     | 
| 654 | 
         
            -
             
     | 
| 655 | 
         
            -
            class SimpleDecoder(nn.Module):
         
     | 
| 656 | 
         
            -
                def __init__(self, in_channels, out_channels, *args, **kwargs):
         
     | 
| 657 | 
         
            -
                    super().__init__()
         
     | 
| 658 | 
         
            -
                    self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
         
     | 
| 659 | 
         
            -
                                                 ResnetBlock(in_channels=in_channels,
         
     | 
| 660 | 
         
            -
                                                             out_channels=2 * in_channels,
         
     | 
| 661 | 
         
            -
                                                             temb_channels=0, dropout=0.0),
         
     | 
| 662 | 
         
            -
                                                 ResnetBlock(in_channels=2 * in_channels,
         
     | 
| 663 | 
         
            -
                                                            out_channels=4 * in_channels,
         
     | 
| 664 | 
         
            -
                                                            temb_channels=0, dropout=0.0),
         
     | 
| 665 | 
         
            -
                                                 ResnetBlock(in_channels=4 * in_channels,
         
     | 
| 666 | 
         
            -
                                                            out_channels=2 * in_channels,
         
     | 
| 667 | 
         
            -
                                                            temb_channels=0, dropout=0.0),
         
     | 
| 668 | 
         
            -
                                                 nn.Conv2d(2*in_channels, in_channels, 1),
         
     | 
| 669 | 
         
            -
                                                 Upsample(in_channels, with_conv=True)])
         
     | 
| 670 | 
         
            -
                    # end
         
     | 
| 671 | 
         
            -
                    self.norm_out = Normalize(in_channels)
         
     | 
| 672 | 
         
            -
                    self.conv_out = torch.nn.Conv2d(in_channels,
         
     | 
| 673 | 
         
            -
                                                    out_channels,
         
     | 
| 674 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 675 | 
         
            -
                                                    stride=1,
         
     | 
| 676 | 
         
            -
                                                    padding=1)
         
     | 
| 677 | 
         
            -
             
     | 
| 678 | 
         
            -
                def forward(self, x):
         
     | 
| 679 | 
         
            -
                    for i, layer in enumerate(self.model):
         
     | 
| 680 | 
         
            -
                        if i in [1,2,3]:
         
     | 
| 681 | 
         
            -
                            x = layer(x, None)
         
     | 
| 682 | 
         
            -
                        else:
         
     | 
| 683 | 
         
            -
                            x = layer(x)
         
     | 
| 684 | 
         
            -
             
     | 
| 685 | 
         
            -
                    h = self.norm_out(x)
         
     | 
| 686 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 687 | 
         
            -
                    x = self.conv_out(h)
         
     | 
| 688 | 
         
            -
                    return x
         
     | 
| 689 | 
         
            -
             
     | 
| 690 | 
         
            -
             
     | 
| 691 | 
         
            -
            class UpsampleDecoder(nn.Module):
         
     | 
| 692 | 
         
            -
                def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
         
     | 
| 693 | 
         
            -
                             ch_mult=(2,2), dropout=0.0):
         
     | 
| 694 | 
         
            -
                    super().__init__()
         
     | 
| 695 | 
         
            -
                    # upsampling
         
     | 
| 696 | 
         
            -
                    self.temb_ch = 0
         
     | 
| 697 | 
         
            -
                    self.num_resolutions = len(ch_mult)
         
     | 
| 698 | 
         
            -
                    self.num_res_blocks = num_res_blocks
         
     | 
| 699 | 
         
            -
                    block_in = in_channels
         
     | 
| 700 | 
         
            -
                    curr_res = resolution // 2 ** (self.num_resolutions - 1)
         
     | 
| 701 | 
         
            -
                    self.res_blocks = nn.ModuleList()
         
     | 
| 702 | 
         
            -
                    self.upsample_blocks = nn.ModuleList()
         
     | 
| 703 | 
         
            -
                    for i_level in range(self.num_resolutions):
         
     | 
| 704 | 
         
            -
                        res_block = []
         
     | 
| 705 | 
         
            -
                        block_out = ch * ch_mult[i_level]
         
     | 
| 706 | 
         
            -
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 707 | 
         
            -
                            res_block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 708 | 
         
            -
                                                     out_channels=block_out,
         
     | 
| 709 | 
         
            -
                                                     temb_channels=self.temb_ch,
         
     | 
| 710 | 
         
            -
                                                     dropout=dropout))
         
     | 
| 711 | 
         
            -
                            block_in = block_out
         
     | 
| 712 | 
         
            -
                        self.res_blocks.append(nn.ModuleList(res_block))
         
     | 
| 713 | 
         
            -
                        if i_level != self.num_resolutions - 1:
         
     | 
| 714 | 
         
            -
                            self.upsample_blocks.append(Upsample(block_in, True))
         
     | 
| 715 | 
         
            -
                            curr_res = curr_res * 2
         
     | 
| 716 | 
         
            -
             
     | 
| 717 | 
         
            -
                    # end
         
     | 
| 718 | 
         
            -
                    self.norm_out = Normalize(block_in)
         
     | 
| 719 | 
         
            -
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 720 | 
         
            -
                                                    out_channels,
         
     | 
| 721 | 
         
            -
                                                    kernel_size=3,
         
     | 
| 722 | 
         
            -
                                                    stride=1,
         
     | 
| 723 | 
         
            -
                                                    padding=1)
         
     | 
| 724 | 
         
            -
             
     | 
| 725 | 
         
            -
                def forward(self, x):
         
     | 
| 726 | 
         
            -
                    # upsampling
         
     | 
| 727 | 
         
            -
                    h = x
         
     | 
| 728 | 
         
            -
                    for k, i_level in enumerate(range(self.num_resolutions)):
         
     | 
| 729 | 
         
            -
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 730 | 
         
            -
                            h = self.res_blocks[i_level][i_block](h, None)
         
     | 
| 731 | 
         
            -
                        if i_level != self.num_resolutions - 1:
         
     | 
| 732 | 
         
            -
                            h = self.upsample_blocks[k](h)
         
     | 
| 733 | 
         
            -
                    h = self.norm_out(h)
         
     | 
| 734 | 
         
            -
                    h = nonlinearity(h)
         
     | 
| 735 | 
         
            -
                    h = self.conv_out(h)
         
     | 
| 736 | 
         
            -
                    return h
         
     | 
| 737 | 
         
            -
             
     | 
| 738 | 
         
            -
             
     | 
| 739 | 
         
            -
            class LatentRescaler(nn.Module):
         
     | 
| 740 | 
         
            -
                def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
         
     | 
| 741 | 
         
            -
                    super().__init__()
         
     | 
| 742 | 
         
            -
                    # residual block, interpolate, residual block
         
     | 
| 743 | 
         
            -
                    self.factor = factor
         
     | 
| 744 | 
         
            -
                    self.conv_in = nn.Conv2d(in_channels,
         
     | 
| 745 | 
         
            -
                                             mid_channels,
         
     | 
| 746 | 
         
            -
                                             kernel_size=3,
         
     | 
| 747 | 
         
            -
                                             stride=1,
         
     | 
| 748 | 
         
            -
                                             padding=1)
         
     | 
| 749 | 
         
            -
                    self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
         
     | 
| 750 | 
         
            -
                                                                 out_channels=mid_channels,
         
     | 
| 751 | 
         
            -
                                                                 temb_channels=0,
         
     | 
| 752 | 
         
            -
                                                                 dropout=0.0) for _ in range(depth)])
         
     | 
| 753 | 
         
            -
                    self.attn = AttnBlock(mid_channels)
         
     | 
| 754 | 
         
            -
                    self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
         
     | 
| 755 | 
         
            -
                                                                 out_channels=mid_channels,
         
     | 
| 756 | 
         
            -
                                                                 temb_channels=0,
         
     | 
| 757 | 
         
            -
                                                                 dropout=0.0) for _ in range(depth)])
         
     | 
| 758 | 
         
            -
             
     | 
| 759 | 
         
            -
                    self.conv_out = nn.Conv2d(mid_channels,
         
     | 
| 760 | 
         
            -
                                              out_channels,
         
     | 
| 761 | 
         
            -
                                              kernel_size=1,
         
     | 
| 762 | 
         
            -
                                              )
         
     | 
| 763 | 
         
            -
             
     | 
| 764 | 
         
            -
                def forward(self, x):
         
     | 
| 765 | 
         
            -
                    x = self.conv_in(x)
         
     | 
| 766 | 
         
            -
                    for block in self.res_block1:
         
     | 
| 767 | 
         
            -
                        x = block(x, None)
         
     | 
| 768 | 
         
            -
                    x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
         
     | 
| 769 | 
         
            -
                    x = self.attn(x)
         
     | 
| 770 | 
         
            -
                    for block in self.res_block2:
         
     | 
| 771 | 
         
            -
                        x = block(x, None)
         
     | 
| 772 | 
         
            -
                    x = self.conv_out(x)
         
     | 
| 773 | 
         
            -
                    return x
         
     | 
| 774 | 
         
            -
             
     | 
| 775 | 
         
            -
             
     | 
| 776 | 
         
            -
            class MergedRescaleEncoder(nn.Module):
         
     | 
| 777 | 
         
            -
                def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
         
     | 
| 778 | 
         
            -
                             attn_resolutions, dropout=0.0, resamp_with_conv=True,
         
     | 
| 779 | 
         
            -
                             ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
         
     | 
| 780 | 
         
            -
                    super().__init__()
         
     | 
| 781 | 
         
            -
                    intermediate_chn = ch * ch_mult[-1]
         
     | 
| 782 | 
         
            -
                    self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
         
     | 
| 783 | 
         
            -
                                           z_channels=intermediate_chn, double_z=False, resolution=resolution,
         
     | 
| 784 | 
         
            -
                                           attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
         
     | 
| 785 | 
         
            -
                                           out_ch=None)
         
     | 
| 786 | 
         
            -
                    self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
         
     | 
| 787 | 
         
            -
                                                   mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
         
     | 
| 788 | 
         
            -
             
     | 
| 789 | 
         
            -
                def forward(self, x):
         
     | 
| 790 | 
         
            -
                    x = self.encoder(x)
         
     | 
| 791 | 
         
            -
                    x = self.rescaler(x)
         
     | 
| 792 | 
         
            -
                    return x
         
     | 
| 793 | 
         
            -
             
     | 
| 794 | 
         
            -
             
     | 
| 795 | 
         
            -
            class MergedRescaleDecoder(nn.Module):
         
     | 
| 796 | 
         
            -
                def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
         
     | 
| 797 | 
         
            -
                             dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
         
     | 
| 798 | 
         
            -
                    super().__init__()
         
     | 
| 799 | 
         
            -
                    tmp_chn = z_channels*ch_mult[-1]
         
     | 
| 800 | 
         
            -
                    self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
         
     | 
| 801 | 
         
            -
                                           resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
         
     | 
| 802 | 
         
            -
                                           ch_mult=ch_mult, resolution=resolution, ch=ch)
         
     | 
| 803 | 
         
            -
                    self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
         
     | 
| 804 | 
         
            -
                                                   out_channels=tmp_chn, depth=rescale_module_depth)
         
     | 
| 805 | 
         
            -
             
     | 
| 806 | 
         
            -
                def forward(self, x):
         
     | 
| 807 | 
         
            -
                    x = self.rescaler(x)
         
     | 
| 808 | 
         
            -
                    x = self.decoder(x)
         
     | 
| 809 | 
         
            -
                    return x
         
     | 
| 810 | 
         
            -
             
     | 
| 811 | 
         
            -
             
     | 
| 812 | 
         
            -
            class Upsampler(nn.Module):
         
     | 
| 813 | 
         
            -
                def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
         
     | 
| 814 | 
         
            -
                    super().__init__()
         
     | 
| 815 | 
         
            -
                    assert out_size >= in_size
         
     | 
| 816 | 
         
            -
                    num_blocks = int(np.log2(out_size//in_size))+1
         
     | 
| 817 | 
         
            -
                    factor_up = 1.+ (out_size % in_size)
         
     | 
| 818 | 
         
            -
                    print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
         
     | 
| 819 | 
         
            -
                    self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
         
     | 
| 820 | 
         
            -
                                                   out_channels=in_channels)
         
     | 
| 821 | 
         
            -
                    self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
         
     | 
| 822 | 
         
            -
                                           attn_resolutions=[], in_channels=None, ch=in_channels,
         
     | 
| 823 | 
         
            -
                                           ch_mult=[ch_mult for _ in range(num_blocks)])
         
     | 
| 824 | 
         
            -
             
     | 
| 825 | 
         
            -
                def forward(self, x):
         
     | 
| 826 | 
         
            -
                    x = self.rescaler(x)
         
     | 
| 827 | 
         
            -
                    x = self.decoder(x)
         
     | 
| 828 | 
         
            -
                    return x
         
     | 
| 829 | 
         
            -
             
     | 
| 830 | 
         
            -
             
     | 
| 831 | 
         
            -
            class Resize(nn.Module):
         
     | 
| 832 | 
         
            -
                def __init__(self, in_channels=None, learned=False, mode="bilinear"):
         
     | 
| 833 | 
         
            -
                    super().__init__()
         
     | 
| 834 | 
         
            -
                    self.with_conv = learned
         
     | 
| 835 | 
         
            -
                    self.mode = mode
         
     | 
| 836 | 
         
            -
                    if self.with_conv:
         
     | 
| 837 | 
         
            -
                        print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
         
     | 
| 838 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 839 | 
         
            -
                        assert in_channels is not None
         
     | 
| 840 | 
         
            -
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 841 | 
         
            -
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 842 | 
         
            -
                                                    in_channels,
         
     | 
| 843 | 
         
            -
                                                    kernel_size=4,
         
     | 
| 844 | 
         
            -
                                                    stride=2,
         
     | 
| 845 | 
         
            -
                                                    padding=1)
         
     | 
| 846 | 
         
            -
             
     | 
| 847 | 
         
            -
                def forward(self, x, scale_factor=1.0):
         
     | 
| 848 | 
         
            -
                    if scale_factor==1.0:
         
     | 
| 849 | 
         
            -
                        return x
         
     | 
| 850 | 
         
            -
                    else:
         
     | 
| 851 | 
         
            -
                        x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
         
     | 
| 852 | 
         
            -
                    return x
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/diffusionmodules/openaimodel.py
    DELETED
    
    | 
         @@ -1,786 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from abc import abstractmethod
         
     | 
| 2 | 
         
            -
            import math
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            import torch as th
         
     | 
| 6 | 
         
            -
            import torch.nn as nn
         
     | 
| 7 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            from ldm.modules.diffusionmodules.util import (
         
     | 
| 10 | 
         
            -
                checkpoint,
         
     | 
| 11 | 
         
            -
                conv_nd,
         
     | 
| 12 | 
         
            -
                linear,
         
     | 
| 13 | 
         
            -
                avg_pool_nd,
         
     | 
| 14 | 
         
            -
                zero_module,
         
     | 
| 15 | 
         
            -
                normalization,
         
     | 
| 16 | 
         
            -
                timestep_embedding,
         
     | 
| 17 | 
         
            -
            )
         
     | 
| 18 | 
         
            -
            from ldm.modules.attention import SpatialTransformer
         
     | 
| 19 | 
         
            -
            from ldm.util import exists
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
            # dummy replace
         
     | 
| 23 | 
         
            -
            def convert_module_to_f16(x):
         
     | 
| 24 | 
         
            -
                pass
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            def convert_module_to_f32(x):
         
     | 
| 27 | 
         
            -
                pass
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
            ## go
         
     | 
| 31 | 
         
            -
            class AttentionPool2d(nn.Module):
         
     | 
| 32 | 
         
            -
                """
         
     | 
| 33 | 
         
            -
                Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
         
     | 
| 34 | 
         
            -
                """
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
                def __init__(
         
     | 
| 37 | 
         
            -
                    self,
         
     | 
| 38 | 
         
            -
                    spacial_dim: int,
         
     | 
| 39 | 
         
            -
                    embed_dim: int,
         
     | 
| 40 | 
         
            -
                    num_heads_channels: int,
         
     | 
| 41 | 
         
            -
                    output_dim: int = None,
         
     | 
| 42 | 
         
            -
                ):
         
     | 
| 43 | 
         
            -
                    super().__init__()
         
     | 
| 44 | 
         
            -
                    self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
         
     | 
| 45 | 
         
            -
                    self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
         
     | 
| 46 | 
         
            -
                    self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
         
     | 
| 47 | 
         
            -
                    self.num_heads = embed_dim // num_heads_channels
         
     | 
| 48 | 
         
            -
                    self.attention = QKVAttention(self.num_heads)
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
                def forward(self, x):
         
     | 
| 51 | 
         
            -
                    b, c, *_spatial = x.shape
         
     | 
| 52 | 
         
            -
                    x = x.reshape(b, c, -1)  # NC(HW)
         
     | 
| 53 | 
         
            -
                    x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
         
     | 
| 54 | 
         
            -
                    x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
         
     | 
| 55 | 
         
            -
                    x = self.qkv_proj(x)
         
     | 
| 56 | 
         
            -
                    x = self.attention(x)
         
     | 
| 57 | 
         
            -
                    x = self.c_proj(x)
         
     | 
| 58 | 
         
            -
                    return x[:, :, 0]
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
            class TimestepBlock(nn.Module):
         
     | 
| 62 | 
         
            -
                """
         
     | 
| 63 | 
         
            -
                Any module where forward() takes timestep embeddings as a second argument.
         
     | 
| 64 | 
         
            -
                """
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                @abstractmethod
         
     | 
| 67 | 
         
            -
                def forward(self, x, emb):
         
     | 
| 68 | 
         
            -
                    """
         
     | 
| 69 | 
         
            -
                    Apply the module to `x` given `emb` timestep embeddings.
         
     | 
| 70 | 
         
            -
                    """
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
         
     | 
| 74 | 
         
            -
                """
         
     | 
| 75 | 
         
            -
                A sequential module that passes timestep embeddings to the children that
         
     | 
| 76 | 
         
            -
                support it as an extra input.
         
     | 
| 77 | 
         
            -
                """
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                def forward(self, x, emb, context=None):
         
     | 
| 80 | 
         
            -
                    for layer in self:
         
     | 
| 81 | 
         
            -
                        if isinstance(layer, TimestepBlock):
         
     | 
| 82 | 
         
            -
                            x = layer(x, emb)
         
     | 
| 83 | 
         
            -
                        elif isinstance(layer, SpatialTransformer):
         
     | 
| 84 | 
         
            -
                            x = layer(x, context)
         
     | 
| 85 | 
         
            -
                        else:
         
     | 
| 86 | 
         
            -
                            x = layer(x)
         
     | 
| 87 | 
         
            -
                    return x
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
            class Upsample(nn.Module):
         
     | 
| 91 | 
         
            -
                """
         
     | 
| 92 | 
         
            -
                An upsampling layer with an optional convolution.
         
     | 
| 93 | 
         
            -
                :param channels: channels in the inputs and outputs.
         
     | 
| 94 | 
         
            -
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 95 | 
         
            -
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 96 | 
         
            -
                             upsampling occurs in the inner-two dimensions.
         
     | 
| 97 | 
         
            -
                """
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         
     | 
| 100 | 
         
            -
                    super().__init__()
         
     | 
| 101 | 
         
            -
                    self.channels = channels
         
     | 
| 102 | 
         
            -
                    self.out_channels = out_channels or channels
         
     | 
| 103 | 
         
            -
                    self.use_conv = use_conv
         
     | 
| 104 | 
         
            -
                    self.dims = dims
         
     | 
| 105 | 
         
            -
                    if use_conv:
         
     | 
| 106 | 
         
            -
                        self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
         
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
                def forward(self, x):
         
     | 
| 109 | 
         
            -
                    assert x.shape[1] == self.channels
         
     | 
| 110 | 
         
            -
                    if self.dims == 3:
         
     | 
| 111 | 
         
            -
                        x = F.interpolate(
         
     | 
| 112 | 
         
            -
                            x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
         
     | 
| 113 | 
         
            -
                        )
         
     | 
| 114 | 
         
            -
                    else:
         
     | 
| 115 | 
         
            -
                        x = F.interpolate(x, scale_factor=2, mode="nearest")
         
     | 
| 116 | 
         
            -
                    if self.use_conv:
         
     | 
| 117 | 
         
            -
                        x = self.conv(x)
         
     | 
| 118 | 
         
            -
                    return x
         
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
            class TransposedUpsample(nn.Module):
         
     | 
| 121 | 
         
            -
                'Learned 2x upsampling without padding'
         
     | 
| 122 | 
         
            -
                def __init__(self, channels, out_channels=None, ks=5):
         
     | 
| 123 | 
         
            -
                    super().__init__()
         
     | 
| 124 | 
         
            -
                    self.channels = channels
         
     | 
| 125 | 
         
            -
                    self.out_channels = out_channels or channels
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
                    self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
                def forward(self,x):
         
     | 
| 130 | 
         
            -
                    return self.up(x)
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
            class Downsample(nn.Module):
         
     | 
| 134 | 
         
            -
                """
         
     | 
| 135 | 
         
            -
                A downsampling layer with an optional convolution.
         
     | 
| 136 | 
         
            -
                :param channels: channels in the inputs and outputs.
         
     | 
| 137 | 
         
            -
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 138 | 
         
            -
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 139 | 
         
            -
                             downsampling occurs in the inner-two dimensions.
         
     | 
| 140 | 
         
            -
                """
         
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
                def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
         
     | 
| 143 | 
         
            -
                    super().__init__()
         
     | 
| 144 | 
         
            -
                    self.channels = channels
         
     | 
| 145 | 
         
            -
                    self.out_channels = out_channels or channels
         
     | 
| 146 | 
         
            -
                    self.use_conv = use_conv
         
     | 
| 147 | 
         
            -
                    self.dims = dims
         
     | 
| 148 | 
         
            -
                    stride = 2 if dims != 3 else (1, 2, 2)
         
     | 
| 149 | 
         
            -
                    if use_conv:
         
     | 
| 150 | 
         
            -
                        self.op = conv_nd(
         
     | 
| 151 | 
         
            -
                            dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
         
     | 
| 152 | 
         
            -
                        )
         
     | 
| 153 | 
         
            -
                    else:
         
     | 
| 154 | 
         
            -
                        assert self.channels == self.out_channels
         
     | 
| 155 | 
         
            -
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
                def forward(self, x):
         
     | 
| 158 | 
         
            -
                    assert x.shape[1] == self.channels
         
     | 
| 159 | 
         
            -
                    return self.op(x)
         
     | 
| 160 | 
         
            -
             
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
            class ResBlock(TimestepBlock):
         
     | 
| 163 | 
         
            -
                """
         
     | 
| 164 | 
         
            -
                A residual block that can optionally change the number of channels.
         
     | 
| 165 | 
         
            -
                :param channels: the number of input channels.
         
     | 
| 166 | 
         
            -
                :param emb_channels: the number of timestep embedding channels.
         
     | 
| 167 | 
         
            -
                :param dropout: the rate of dropout.
         
     | 
| 168 | 
         
            -
                :param out_channels: if specified, the number of out channels.
         
     | 
| 169 | 
         
            -
                :param use_conv: if True and out_channels is specified, use a spatial
         
     | 
| 170 | 
         
            -
                    convolution instead of a smaller 1x1 convolution to change the
         
     | 
| 171 | 
         
            -
                    channels in the skip connection.
         
     | 
| 172 | 
         
            -
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 173 | 
         
            -
                :param use_checkpoint: if True, use gradient checkpointing on this module.
         
     | 
| 174 | 
         
            -
                :param up: if True, use this block for upsampling.
         
     | 
| 175 | 
         
            -
                :param down: if True, use this block for downsampling.
         
     | 
| 176 | 
         
            -
                """
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
                def __init__(
         
     | 
| 179 | 
         
            -
                    self,
         
     | 
| 180 | 
         
            -
                    channels,
         
     | 
| 181 | 
         
            -
                    emb_channels,
         
     | 
| 182 | 
         
            -
                    dropout,
         
     | 
| 183 | 
         
            -
                    out_channels=None,
         
     | 
| 184 | 
         
            -
                    use_conv=False,
         
     | 
| 185 | 
         
            -
                    use_scale_shift_norm=False,
         
     | 
| 186 | 
         
            -
                    dims=2,
         
     | 
| 187 | 
         
            -
                    use_checkpoint=False,
         
     | 
| 188 | 
         
            -
                    up=False,
         
     | 
| 189 | 
         
            -
                    down=False,
         
     | 
| 190 | 
         
            -
                ):
         
     | 
| 191 | 
         
            -
                    super().__init__()
         
     | 
| 192 | 
         
            -
                    self.channels = channels
         
     | 
| 193 | 
         
            -
                    self.emb_channels = emb_channels
         
     | 
| 194 | 
         
            -
                    self.dropout = dropout
         
     | 
| 195 | 
         
            -
                    self.out_channels = out_channels or channels
         
     | 
| 196 | 
         
            -
                    self.use_conv = use_conv
         
     | 
| 197 | 
         
            -
                    self.use_checkpoint = use_checkpoint
         
     | 
| 198 | 
         
            -
                    self.use_scale_shift_norm = use_scale_shift_norm
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
                    self.in_layers = nn.Sequential(
         
     | 
| 201 | 
         
            -
                        normalization(channels),
         
     | 
| 202 | 
         
            -
                        nn.SiLU(),
         
     | 
| 203 | 
         
            -
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         
     | 
| 204 | 
         
            -
                    )
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
                    self.updown = up or down
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
                    if up:
         
     | 
| 209 | 
         
            -
                        self.h_upd = Upsample(channels, False, dims)
         
     | 
| 210 | 
         
            -
                        self.x_upd = Upsample(channels, False, dims)
         
     | 
| 211 | 
         
            -
                    elif down:
         
     | 
| 212 | 
         
            -
                        self.h_upd = Downsample(channels, False, dims)
         
     | 
| 213 | 
         
            -
                        self.x_upd = Downsample(channels, False, dims)
         
     | 
| 214 | 
         
            -
                    else:
         
     | 
| 215 | 
         
            -
                        self.h_upd = self.x_upd = nn.Identity()
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
                    self.emb_layers = nn.Sequential(
         
     | 
| 218 | 
         
            -
                        nn.SiLU(),
         
     | 
| 219 | 
         
            -
                        linear(
         
     | 
| 220 | 
         
            -
                            emb_channels,
         
     | 
| 221 | 
         
            -
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         
     | 
| 222 | 
         
            -
                        ),
         
     | 
| 223 | 
         
            -
                    )
         
     | 
| 224 | 
         
            -
                    self.out_layers = nn.Sequential(
         
     | 
| 225 | 
         
            -
                        normalization(self.out_channels),
         
     | 
| 226 | 
         
            -
                        nn.SiLU(),
         
     | 
| 227 | 
         
            -
                        nn.Dropout(p=dropout),
         
     | 
| 228 | 
         
            -
                        zero_module(
         
     | 
| 229 | 
         
            -
                            conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
         
     | 
| 230 | 
         
            -
                        ),
         
     | 
| 231 | 
         
            -
                    )
         
     | 
| 232 | 
         
            -
             
     | 
| 233 | 
         
            -
                    if self.out_channels == channels:
         
     | 
| 234 | 
         
            -
                        self.skip_connection = nn.Identity()
         
     | 
| 235 | 
         
            -
                    elif use_conv:
         
     | 
| 236 | 
         
            -
                        self.skip_connection = conv_nd(
         
     | 
| 237 | 
         
            -
                            dims, channels, self.out_channels, 3, padding=1
         
     | 
| 238 | 
         
            -
                        )
         
     | 
| 239 | 
         
            -
                    else:
         
     | 
| 240 | 
         
            -
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
                def forward(self, x, emb):
         
     | 
| 243 | 
         
            -
                    """
         
     | 
| 244 | 
         
            -
                    Apply the block to a Tensor, conditioned on a timestep embedding.
         
     | 
| 245 | 
         
            -
                    :param x: an [N x C x ...] Tensor of features.
         
     | 
| 246 | 
         
            -
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         
     | 
| 247 | 
         
            -
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 248 | 
         
            -
                    """
         
     | 
| 249 | 
         
            -
                    return checkpoint(
         
     | 
| 250 | 
         
            -
                        self._forward, (x, emb), self.parameters(), self.use_checkpoint
         
     | 
| 251 | 
         
            -
                    )
         
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
             
     | 
| 254 | 
         
            -
                def _forward(self, x, emb):
         
     | 
| 255 | 
         
            -
                    if self.updown:
         
     | 
| 256 | 
         
            -
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         
     | 
| 257 | 
         
            -
                        h = in_rest(x)
         
     | 
| 258 | 
         
            -
                        h = self.h_upd(h)
         
     | 
| 259 | 
         
            -
                        x = self.x_upd(x)
         
     | 
| 260 | 
         
            -
                        h = in_conv(h)
         
     | 
| 261 | 
         
            -
                    else:
         
     | 
| 262 | 
         
            -
                        h = self.in_layers(x)
         
     | 
| 263 | 
         
            -
                    emb_out = self.emb_layers(emb).type(h.dtype)
         
     | 
| 264 | 
         
            -
                    while len(emb_out.shape) < len(h.shape):
         
     | 
| 265 | 
         
            -
                        emb_out = emb_out[..., None]
         
     | 
| 266 | 
         
            -
                    if self.use_scale_shift_norm:
         
     | 
| 267 | 
         
            -
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         
     | 
| 268 | 
         
            -
                        scale, shift = th.chunk(emb_out, 2, dim=1)
         
     | 
| 269 | 
         
            -
                        h = out_norm(h) * (1 + scale) + shift
         
     | 
| 270 | 
         
            -
                        h = out_rest(h)
         
     | 
| 271 | 
         
            -
                    else:
         
     | 
| 272 | 
         
            -
                        h = h + emb_out
         
     | 
| 273 | 
         
            -
                        h = self.out_layers(h)
         
     | 
| 274 | 
         
            -
                    return self.skip_connection(x) + h
         
     | 
| 275 | 
         
            -
             
     | 
| 276 | 
         
            -
             
     | 
| 277 | 
         
            -
            class AttentionBlock(nn.Module):
         
     | 
| 278 | 
         
            -
                """
         
     | 
| 279 | 
         
            -
                An attention block that allows spatial positions to attend to each other.
         
     | 
| 280 | 
         
            -
                Originally ported from here, but adapted to the N-d case.
         
     | 
| 281 | 
         
            -
                https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
         
     | 
| 282 | 
         
            -
                """
         
     | 
| 283 | 
         
            -
             
     | 
| 284 | 
         
            -
                def __init__(
         
     | 
| 285 | 
         
            -
                    self,
         
     | 
| 286 | 
         
            -
                    channels,
         
     | 
| 287 | 
         
            -
                    num_heads=1,
         
     | 
| 288 | 
         
            -
                    num_head_channels=-1,
         
     | 
| 289 | 
         
            -
                    use_checkpoint=False,
         
     | 
| 290 | 
         
            -
                    use_new_attention_order=False,
         
     | 
| 291 | 
         
            -
                ):
         
     | 
| 292 | 
         
            -
                    super().__init__()
         
     | 
| 293 | 
         
            -
                    self.channels = channels
         
     | 
| 294 | 
         
            -
                    if num_head_channels == -1:
         
     | 
| 295 | 
         
            -
                        self.num_heads = num_heads
         
     | 
| 296 | 
         
            -
                    else:
         
     | 
| 297 | 
         
            -
                        assert (
         
     | 
| 298 | 
         
            -
                            channels % num_head_channels == 0
         
     | 
| 299 | 
         
            -
                        ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
         
     | 
| 300 | 
         
            -
                        self.num_heads = channels // num_head_channels
         
     | 
| 301 | 
         
            -
                    self.use_checkpoint = use_checkpoint
         
     | 
| 302 | 
         
            -
                    self.norm = normalization(channels)
         
     | 
| 303 | 
         
            -
                    self.qkv = conv_nd(1, channels, channels * 3, 1)
         
     | 
| 304 | 
         
            -
                    if use_new_attention_order:
         
     | 
| 305 | 
         
            -
                        # split qkv before split heads
         
     | 
| 306 | 
         
            -
                        self.attention = QKVAttention(self.num_heads)
         
     | 
| 307 | 
         
            -
                    else:
         
     | 
| 308 | 
         
            -
                        # split heads before split qkv
         
     | 
| 309 | 
         
            -
                        self.attention = QKVAttentionLegacy(self.num_heads)
         
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
                    self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
         
     | 
| 312 | 
         
            -
             
     | 
| 313 | 
         
            -
                def forward(self, x):
         
     | 
| 314 | 
         
            -
                    return checkpoint(self._forward, (x,), self.parameters(), True)   # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
         
     | 
| 315 | 
         
            -
                    #return pt_checkpoint(self._forward, x)  # pytorch
         
     | 
| 316 | 
         
            -
             
     | 
| 317 | 
         
            -
                def _forward(self, x):
         
     | 
| 318 | 
         
            -
                    b, c, *spatial = x.shape
         
     | 
| 319 | 
         
            -
                    x = x.reshape(b, c, -1)
         
     | 
| 320 | 
         
            -
                    qkv = self.qkv(self.norm(x))
         
     | 
| 321 | 
         
            -
                    h = self.attention(qkv)
         
     | 
| 322 | 
         
            -
                    h = self.proj_out(h)
         
     | 
| 323 | 
         
            -
                    return (x + h).reshape(b, c, *spatial)
         
     | 
| 324 | 
         
            -
             
     | 
| 325 | 
         
            -
             
     | 
| 326 | 
         
            -
            def count_flops_attn(model, _x, y):
         
     | 
| 327 | 
         
            -
                """
         
     | 
| 328 | 
         
            -
                A counter for the `thop` package to count the operations in an
         
     | 
| 329 | 
         
            -
                attention operation.
         
     | 
| 330 | 
         
            -
                Meant to be used like:
         
     | 
| 331 | 
         
            -
                    macs, params = thop.profile(
         
     | 
| 332 | 
         
            -
                        model,
         
     | 
| 333 | 
         
            -
                        inputs=(inputs, timestamps),
         
     | 
| 334 | 
         
            -
                        custom_ops={QKVAttention: QKVAttention.count_flops},
         
     | 
| 335 | 
         
            -
                    )
         
     | 
| 336 | 
         
            -
                """
         
     | 
| 337 | 
         
            -
                b, c, *spatial = y[0].shape
         
     | 
| 338 | 
         
            -
                num_spatial = int(np.prod(spatial))
         
     | 
| 339 | 
         
            -
                # We perform two matmuls with the same number of ops.
         
     | 
| 340 | 
         
            -
                # The first computes the weight matrix, the second computes
         
     | 
| 341 | 
         
            -
                # the combination of the value vectors.
         
     | 
| 342 | 
         
            -
                matmul_ops = 2 * b * (num_spatial ** 2) * c
         
     | 
| 343 | 
         
            -
                model.total_ops += th.DoubleTensor([matmul_ops])
         
     | 
| 344 | 
         
            -
             
     | 
| 345 | 
         
            -
             
     | 
| 346 | 
         
            -
            class QKVAttentionLegacy(nn.Module):
         
     | 
| 347 | 
         
            -
                """
         
     | 
| 348 | 
         
            -
                A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
         
     | 
| 349 | 
         
            -
                """
         
     | 
| 350 | 
         
            -
             
     | 
| 351 | 
         
            -
                def __init__(self, n_heads):
         
     | 
| 352 | 
         
            -
                    super().__init__()
         
     | 
| 353 | 
         
            -
                    self.n_heads = n_heads
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                def forward(self, qkv):
         
     | 
| 356 | 
         
            -
                    """
         
     | 
| 357 | 
         
            -
                    Apply QKV attention.
         
     | 
| 358 | 
         
            -
                    :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
         
     | 
| 359 | 
         
            -
                    :return: an [N x (H * C) x T] tensor after attention.
         
     | 
| 360 | 
         
            -
                    """
         
     | 
| 361 | 
         
            -
                    bs, width, length = qkv.shape
         
     | 
| 362 | 
         
            -
                    assert width % (3 * self.n_heads) == 0
         
     | 
| 363 | 
         
            -
                    ch = width // (3 * self.n_heads)
         
     | 
| 364 | 
         
            -
                    q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
         
     | 
| 365 | 
         
            -
                    scale = 1 / math.sqrt(math.sqrt(ch))
         
     | 
| 366 | 
         
            -
                    weight = th.einsum(
         
     | 
| 367 | 
         
            -
                        "bct,bcs->bts", q * scale, k * scale
         
     | 
| 368 | 
         
            -
                    )  # More stable with f16 than dividing afterwards
         
     | 
| 369 | 
         
            -
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         
     | 
| 370 | 
         
            -
                    a = th.einsum("bts,bcs->bct", weight, v)
         
     | 
| 371 | 
         
            -
                    return a.reshape(bs, -1, length)
         
     | 
| 372 | 
         
            -
             
     | 
| 373 | 
         
            -
                @staticmethod
         
     | 
| 374 | 
         
            -
                def count_flops(model, _x, y):
         
     | 
| 375 | 
         
            -
                    return count_flops_attn(model, _x, y)
         
     | 
| 376 | 
         
            -
             
     | 
| 377 | 
         
            -
             
     | 
| 378 | 
         
            -
            class QKVAttention(nn.Module):
         
     | 
| 379 | 
         
            -
                """
         
     | 
| 380 | 
         
            -
                A module which performs QKV attention and splits in a different order.
         
     | 
| 381 | 
         
            -
                """
         
     | 
| 382 | 
         
            -
             
     | 
| 383 | 
         
            -
                def __init__(self, n_heads):
         
     | 
| 384 | 
         
            -
                    super().__init__()
         
     | 
| 385 | 
         
            -
                    self.n_heads = n_heads
         
     | 
| 386 | 
         
            -
             
     | 
| 387 | 
         
            -
                def forward(self, qkv):
         
     | 
| 388 | 
         
            -
                    """
         
     | 
| 389 | 
         
            -
                    Apply QKV attention.
         
     | 
| 390 | 
         
            -
                    :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
         
     | 
| 391 | 
         
            -
                    :return: an [N x (H * C) x T] tensor after attention.
         
     | 
| 392 | 
         
            -
                    """
         
     | 
| 393 | 
         
            -
                    bs, width, length = qkv.shape
         
     | 
| 394 | 
         
            -
                    assert width % (3 * self.n_heads) == 0
         
     | 
| 395 | 
         
            -
                    ch = width // (3 * self.n_heads)
         
     | 
| 396 | 
         
            -
                    q, k, v = qkv.chunk(3, dim=1)
         
     | 
| 397 | 
         
            -
                    scale = 1 / math.sqrt(math.sqrt(ch))
         
     | 
| 398 | 
         
            -
                    weight = th.einsum(
         
     | 
| 399 | 
         
            -
                        "bct,bcs->bts",
         
     | 
| 400 | 
         
            -
                        (q * scale).view(bs * self.n_heads, ch, length),
         
     | 
| 401 | 
         
            -
                        (k * scale).view(bs * self.n_heads, ch, length),
         
     | 
| 402 | 
         
            -
                    )  # More stable with f16 than dividing afterwards
         
     | 
| 403 | 
         
            -
                    weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
         
     | 
| 404 | 
         
            -
                    a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
         
     | 
| 405 | 
         
            -
                    return a.reshape(bs, -1, length)
         
     | 
| 406 | 
         
            -
             
     | 
| 407 | 
         
            -
                @staticmethod
         
     | 
| 408 | 
         
            -
                def count_flops(model, _x, y):
         
     | 
| 409 | 
         
            -
                    return count_flops_attn(model, _x, y)
         
     | 
| 410 | 
         
            -
             
     | 
| 411 | 
         
            -
             
     | 
| 412 | 
         
            -
            class UNetModel(nn.Module):
         
     | 
| 413 | 
         
            -
                """
         
     | 
| 414 | 
         
            -
                The full UNet model with attention and timestep embedding.
         
     | 
| 415 | 
         
            -
                :param in_channels: channels in the input Tensor.
         
     | 
| 416 | 
         
            -
                :param model_channels: base channel count for the model.
         
     | 
| 417 | 
         
            -
                :param out_channels: channels in the output Tensor.
         
     | 
| 418 | 
         
            -
                :param num_res_blocks: number of residual blocks per downsample.
         
     | 
| 419 | 
         
            -
                :param attention_resolutions: a collection of downsample rates at which
         
     | 
| 420 | 
         
            -
                    attention will take place. May be a set, list, or tuple.
         
     | 
| 421 | 
         
            -
                    For example, if this contains 4, then at 4x downsampling, attention
         
     | 
| 422 | 
         
            -
                    will be used.
         
     | 
| 423 | 
         
            -
                :param dropout: the dropout probability.
         
     | 
| 424 | 
         
            -
                :param channel_mult: channel multiplier for each level of the UNet.
         
     | 
| 425 | 
         
            -
                :param conv_resample: if True, use learned convolutions for upsampling and
         
     | 
| 426 | 
         
            -
                    downsampling.
         
     | 
| 427 | 
         
            -
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 428 | 
         
            -
                :param num_classes: if specified (as an int), then this model will be
         
     | 
| 429 | 
         
            -
                    class-conditional with `num_classes` classes.
         
     | 
| 430 | 
         
            -
                :param use_checkpoint: use gradient checkpointing to reduce memory usage.
         
     | 
| 431 | 
         
            -
                :param num_heads: the number of attention heads in each attention layer.
         
     | 
| 432 | 
         
            -
                :param num_heads_channels: if specified, ignore num_heads and instead use
         
     | 
| 433 | 
         
            -
                                           a fixed channel width per attention head.
         
     | 
| 434 | 
         
            -
                :param num_heads_upsample: works with num_heads to set a different number
         
     | 
| 435 | 
         
            -
                                           of heads for upsampling. Deprecated.
         
     | 
| 436 | 
         
            -
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         
     | 
| 437 | 
         
            -
                :param resblock_updown: use residual blocks for up/downsampling.
         
     | 
| 438 | 
         
            -
                :param use_new_attention_order: use a different attention pattern for potentially
         
     | 
| 439 | 
         
            -
                                                increased efficiency.
         
     | 
| 440 | 
         
            -
                """
         
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
                def __init__(
         
     | 
| 443 | 
         
            -
                    self,
         
     | 
| 444 | 
         
            -
                    image_size,
         
     | 
| 445 | 
         
            -
                    in_channels,
         
     | 
| 446 | 
         
            -
                    model_channels,
         
     | 
| 447 | 
         
            -
                    out_channels,
         
     | 
| 448 | 
         
            -
                    num_res_blocks,
         
     | 
| 449 | 
         
            -
                    attention_resolutions,
         
     | 
| 450 | 
         
            -
                    dropout=0,
         
     | 
| 451 | 
         
            -
                    channel_mult=(1, 2, 4, 8),
         
     | 
| 452 | 
         
            -
                    conv_resample=True,
         
     | 
| 453 | 
         
            -
                    dims=2,
         
     | 
| 454 | 
         
            -
                    num_classes=None,
         
     | 
| 455 | 
         
            -
                    use_checkpoint=False,
         
     | 
| 456 | 
         
            -
                    use_fp16=False,
         
     | 
| 457 | 
         
            -
                    num_heads=-1,
         
     | 
| 458 | 
         
            -
                    num_head_channels=-1,
         
     | 
| 459 | 
         
            -
                    num_heads_upsample=-1,
         
     | 
| 460 | 
         
            -
                    use_scale_shift_norm=False,
         
     | 
| 461 | 
         
            -
                    resblock_updown=False,
         
     | 
| 462 | 
         
            -
                    use_new_attention_order=False,
         
     | 
| 463 | 
         
            -
                    use_spatial_transformer=False,    # custom transformer support
         
     | 
| 464 | 
         
            -
                    transformer_depth=1,              # custom transformer support
         
     | 
| 465 | 
         
            -
                    context_dim=None,                 # custom transformer support
         
     | 
| 466 | 
         
            -
                    n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
         
     | 
| 467 | 
         
            -
                    legacy=True,
         
     | 
| 468 | 
         
            -
                    disable_self_attentions=None,
         
     | 
| 469 | 
         
            -
                    num_attention_blocks=None,
         
     | 
| 470 | 
         
            -
                    disable_middle_self_attn=False,
         
     | 
| 471 | 
         
            -
                    use_linear_in_transformer=False,
         
     | 
| 472 | 
         
            -
                ):
         
     | 
| 473 | 
         
            -
                    super().__init__()
         
     | 
| 474 | 
         
            -
                    if use_spatial_transformer:
         
     | 
| 475 | 
         
            -
                        assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
         
     | 
| 476 | 
         
            -
             
     | 
| 477 | 
         
            -
                    if context_dim is not None:
         
     | 
| 478 | 
         
            -
                        assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
         
     | 
| 479 | 
         
            -
                        from omegaconf.listconfig import ListConfig
         
     | 
| 480 | 
         
            -
                        if type(context_dim) == ListConfig:
         
     | 
| 481 | 
         
            -
                            context_dim = list(context_dim)
         
     | 
| 482 | 
         
            -
             
     | 
| 483 | 
         
            -
                    if num_heads_upsample == -1:
         
     | 
| 484 | 
         
            -
                        num_heads_upsample = num_heads
         
     | 
| 485 | 
         
            -
             
     | 
| 486 | 
         
            -
                    if num_heads == -1:
         
     | 
| 487 | 
         
            -
                        assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 488 | 
         
            -
             
     | 
| 489 | 
         
            -
                    if num_head_channels == -1:
         
     | 
| 490 | 
         
            -
                        assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 491 | 
         
            -
             
     | 
| 492 | 
         
            -
                    self.image_size = image_size
         
     | 
| 493 | 
         
            -
                    self.in_channels = in_channels
         
     | 
| 494 | 
         
            -
                    self.model_channels = model_channels
         
     | 
| 495 | 
         
            -
                    self.out_channels = out_channels
         
     | 
| 496 | 
         
            -
                    if isinstance(num_res_blocks, int):
         
     | 
| 497 | 
         
            -
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         
     | 
| 498 | 
         
            -
                    else:
         
     | 
| 499 | 
         
            -
                        if len(num_res_blocks) != len(channel_mult):
         
     | 
| 500 | 
         
            -
                            raise ValueError("provide num_res_blocks either as an int (globally constant) or "
         
     | 
| 501 | 
         
            -
                                             "as a list/tuple (per-level) with the same length as channel_mult")
         
     | 
| 502 | 
         
            -
                        self.num_res_blocks = num_res_blocks
         
     | 
| 503 | 
         
            -
                    if disable_self_attentions is not None:
         
     | 
| 504 | 
         
            -
                        # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
         
     | 
| 505 | 
         
            -
                        assert len(disable_self_attentions) == len(channel_mult)
         
     | 
| 506 | 
         
            -
                    if num_attention_blocks is not None:
         
     | 
| 507 | 
         
            -
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         
     | 
| 508 | 
         
            -
                        assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
         
     | 
| 509 | 
         
            -
                        print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
         
     | 
| 510 | 
         
            -
                              f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
         
     | 
| 511 | 
         
            -
                              f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
         
     | 
| 512 | 
         
            -
                              f"attention will still not be set.")
         
     | 
| 513 | 
         
            -
             
     | 
| 514 | 
         
            -
                    self.attention_resolutions = attention_resolutions
         
     | 
| 515 | 
         
            -
                    self.dropout = dropout
         
     | 
| 516 | 
         
            -
                    self.channel_mult = channel_mult
         
     | 
| 517 | 
         
            -
                    self.conv_resample = conv_resample
         
     | 
| 518 | 
         
            -
                    self.num_classes = num_classes
         
     | 
| 519 | 
         
            -
                    self.use_checkpoint = use_checkpoint
         
     | 
| 520 | 
         
            -
                    self.dtype = th.float16 if use_fp16 else th.float32
         
     | 
| 521 | 
         
            -
                    self.num_heads = num_heads
         
     | 
| 522 | 
         
            -
                    self.num_head_channels = num_head_channels
         
     | 
| 523 | 
         
            -
                    self.num_heads_upsample = num_heads_upsample
         
     | 
| 524 | 
         
            -
                    self.predict_codebook_ids = n_embed is not None
         
     | 
| 525 | 
         
            -
             
     | 
| 526 | 
         
            -
                    time_embed_dim = model_channels * 4
         
     | 
| 527 | 
         
            -
                    self.time_embed = nn.Sequential(
         
     | 
| 528 | 
         
            -
                        linear(model_channels, time_embed_dim),
         
     | 
| 529 | 
         
            -
                        nn.SiLU(),
         
     | 
| 530 | 
         
            -
                        linear(time_embed_dim, time_embed_dim),
         
     | 
| 531 | 
         
            -
                    )
         
     | 
| 532 | 
         
            -
             
     | 
| 533 | 
         
            -
                    if self.num_classes is not None:
         
     | 
| 534 | 
         
            -
                        if isinstance(self.num_classes, int):
         
     | 
| 535 | 
         
            -
                            self.label_emb = nn.Embedding(num_classes, time_embed_dim)
         
     | 
| 536 | 
         
            -
                        elif self.num_classes == "continuous":
         
     | 
| 537 | 
         
            -
                            print("setting up linear c_adm embedding layer")
         
     | 
| 538 | 
         
            -
                            self.label_emb = nn.Linear(1, time_embed_dim)
         
     | 
| 539 | 
         
            -
                        else:
         
     | 
| 540 | 
         
            -
                            raise ValueError()
         
     | 
| 541 | 
         
            -
             
     | 
| 542 | 
         
            -
                    self.input_blocks = nn.ModuleList(
         
     | 
| 543 | 
         
            -
                        [
         
     | 
| 544 | 
         
            -
                            TimestepEmbedSequential(
         
     | 
| 545 | 
         
            -
                                conv_nd(dims, in_channels, model_channels, 3, padding=1)
         
     | 
| 546 | 
         
            -
                            )
         
     | 
| 547 | 
         
            -
                        ]
         
     | 
| 548 | 
         
            -
                    )
         
     | 
| 549 | 
         
            -
                    self._feature_size = model_channels
         
     | 
| 550 | 
         
            -
                    input_block_chans = [model_channels]
         
     | 
| 551 | 
         
            -
                    ch = model_channels
         
     | 
| 552 | 
         
            -
                    ds = 1
         
     | 
| 553 | 
         
            -
                    for level, mult in enumerate(channel_mult):
         
     | 
| 554 | 
         
            -
                        for nr in range(self.num_res_blocks[level]):
         
     | 
| 555 | 
         
            -
                            layers = [
         
     | 
| 556 | 
         
            -
                                ResBlock(
         
     | 
| 557 | 
         
            -
                                    ch,
         
     | 
| 558 | 
         
            -
                                    time_embed_dim,
         
     | 
| 559 | 
         
            -
                                    dropout,
         
     | 
| 560 | 
         
            -
                                    out_channels=mult * model_channels,
         
     | 
| 561 | 
         
            -
                                    dims=dims,
         
     | 
| 562 | 
         
            -
                                    use_checkpoint=use_checkpoint,
         
     | 
| 563 | 
         
            -
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 564 | 
         
            -
                                )
         
     | 
| 565 | 
         
            -
                            ]
         
     | 
| 566 | 
         
            -
                            ch = mult * model_channels
         
     | 
| 567 | 
         
            -
                            if ds in attention_resolutions:
         
     | 
| 568 | 
         
            -
                                if num_head_channels == -1:
         
     | 
| 569 | 
         
            -
                                    dim_head = ch // num_heads
         
     | 
| 570 | 
         
            -
                                else:
         
     | 
| 571 | 
         
            -
                                    num_heads = ch // num_head_channels
         
     | 
| 572 | 
         
            -
                                    dim_head = num_head_channels
         
     | 
| 573 | 
         
            -
                                if legacy:
         
     | 
| 574 | 
         
            -
                                    #num_heads = 1
         
     | 
| 575 | 
         
            -
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 576 | 
         
            -
                                if exists(disable_self_attentions):
         
     | 
| 577 | 
         
            -
                                    disabled_sa = disable_self_attentions[level]
         
     | 
| 578 | 
         
            -
                                else:
         
     | 
| 579 | 
         
            -
                                    disabled_sa = False
         
     | 
| 580 | 
         
            -
             
     | 
| 581 | 
         
            -
                                if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
         
     | 
| 582 | 
         
            -
                                    layers.append(
         
     | 
| 583 | 
         
            -
                                        AttentionBlock(
         
     | 
| 584 | 
         
            -
                                            ch,
         
     | 
| 585 | 
         
            -
                                            use_checkpoint=use_checkpoint,
         
     | 
| 586 | 
         
            -
                                            num_heads=num_heads,
         
     | 
| 587 | 
         
            -
                                            num_head_channels=dim_head,
         
     | 
| 588 | 
         
            -
                                            use_new_attention_order=use_new_attention_order,
         
     | 
| 589 | 
         
            -
                                        ) if not use_spatial_transformer else SpatialTransformer(
         
     | 
| 590 | 
         
            -
                                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
         
     | 
| 591 | 
         
            -
                                            disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
         
     | 
| 592 | 
         
            -
                                            use_checkpoint=use_checkpoint
         
     | 
| 593 | 
         
            -
                                        )
         
     | 
| 594 | 
         
            -
                                    )
         
     | 
| 595 | 
         
            -
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 596 | 
         
            -
                            self._feature_size += ch
         
     | 
| 597 | 
         
            -
                            input_block_chans.append(ch)
         
     | 
| 598 | 
         
            -
                        if level != len(channel_mult) - 1:
         
     | 
| 599 | 
         
            -
                            out_ch = ch
         
     | 
| 600 | 
         
            -
                            self.input_blocks.append(
         
     | 
| 601 | 
         
            -
                                TimestepEmbedSequential(
         
     | 
| 602 | 
         
            -
                                    ResBlock(
         
     | 
| 603 | 
         
            -
                                        ch,
         
     | 
| 604 | 
         
            -
                                        time_embed_dim,
         
     | 
| 605 | 
         
            -
                                        dropout,
         
     | 
| 606 | 
         
            -
                                        out_channels=out_ch,
         
     | 
| 607 | 
         
            -
                                        dims=dims,
         
     | 
| 608 | 
         
            -
                                        use_checkpoint=use_checkpoint,
         
     | 
| 609 | 
         
            -
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 610 | 
         
            -
                                        down=True,
         
     | 
| 611 | 
         
            -
                                    )
         
     | 
| 612 | 
         
            -
                                    if resblock_updown
         
     | 
| 613 | 
         
            -
                                    else Downsample(
         
     | 
| 614 | 
         
            -
                                        ch, conv_resample, dims=dims, out_channels=out_ch
         
     | 
| 615 | 
         
            -
                                    )
         
     | 
| 616 | 
         
            -
                                )
         
     | 
| 617 | 
         
            -
                            )
         
     | 
| 618 | 
         
            -
                            ch = out_ch
         
     | 
| 619 | 
         
            -
                            input_block_chans.append(ch)
         
     | 
| 620 | 
         
            -
                            ds *= 2
         
     | 
| 621 | 
         
            -
                            self._feature_size += ch
         
     | 
| 622 | 
         
            -
             
     | 
| 623 | 
         
            -
                    if num_head_channels == -1:
         
     | 
| 624 | 
         
            -
                        dim_head = ch // num_heads
         
     | 
| 625 | 
         
            -
                    else:
         
     | 
| 626 | 
         
            -
                        num_heads = ch // num_head_channels
         
     | 
| 627 | 
         
            -
                        dim_head = num_head_channels
         
     | 
| 628 | 
         
            -
                    if legacy:
         
     | 
| 629 | 
         
            -
                        #num_heads = 1
         
     | 
| 630 | 
         
            -
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 631 | 
         
            -
                    self.middle_block = TimestepEmbedSequential(
         
     | 
| 632 | 
         
            -
                        ResBlock(
         
     | 
| 633 | 
         
            -
                            ch,
         
     | 
| 634 | 
         
            -
                            time_embed_dim,
         
     | 
| 635 | 
         
            -
                            dropout,
         
     | 
| 636 | 
         
            -
                            dims=dims,
         
     | 
| 637 | 
         
            -
                            use_checkpoint=use_checkpoint,
         
     | 
| 638 | 
         
            -
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 639 | 
         
            -
                        ),
         
     | 
| 640 | 
         
            -
                        AttentionBlock(
         
     | 
| 641 | 
         
            -
                            ch,
         
     | 
| 642 | 
         
            -
                            use_checkpoint=use_checkpoint,
         
     | 
| 643 | 
         
            -
                            num_heads=num_heads,
         
     | 
| 644 | 
         
            -
                            num_head_channels=dim_head,
         
     | 
| 645 | 
         
            -
                            use_new_attention_order=use_new_attention_order,
         
     | 
| 646 | 
         
            -
                        ) if not use_spatial_transformer else SpatialTransformer(  # always uses a self-attn
         
     | 
| 647 | 
         
            -
                                        ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
         
     | 
| 648 | 
         
            -
                                        disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
         
     | 
| 649 | 
         
            -
                                        use_checkpoint=use_checkpoint
         
     | 
| 650 | 
         
            -
                                    ),
         
     | 
| 651 | 
         
            -
                        ResBlock(
         
     | 
| 652 | 
         
            -
                            ch,
         
     | 
| 653 | 
         
            -
                            time_embed_dim,
         
     | 
| 654 | 
         
            -
                            dropout,
         
     | 
| 655 | 
         
            -
                            dims=dims,
         
     | 
| 656 | 
         
            -
                            use_checkpoint=use_checkpoint,
         
     | 
| 657 | 
         
            -
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 658 | 
         
            -
                        ),
         
     | 
| 659 | 
         
            -
                    )
         
     | 
| 660 | 
         
            -
                    self._feature_size += ch
         
     | 
| 661 | 
         
            -
             
     | 
| 662 | 
         
            -
                    self.output_blocks = nn.ModuleList([])
         
     | 
| 663 | 
         
            -
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         
     | 
| 664 | 
         
            -
                        for i in range(self.num_res_blocks[level] + 1):
         
     | 
| 665 | 
         
            -
                            ich = input_block_chans.pop()
         
     | 
| 666 | 
         
            -
                            layers = [
         
     | 
| 667 | 
         
            -
                                ResBlock(
         
     | 
| 668 | 
         
            -
                                    ch + ich,
         
     | 
| 669 | 
         
            -
                                    time_embed_dim,
         
     | 
| 670 | 
         
            -
                                    dropout,
         
     | 
| 671 | 
         
            -
                                    out_channels=model_channels * mult,
         
     | 
| 672 | 
         
            -
                                    dims=dims,
         
     | 
| 673 | 
         
            -
                                    use_checkpoint=use_checkpoint,
         
     | 
| 674 | 
         
            -
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 675 | 
         
            -
                                )
         
     | 
| 676 | 
         
            -
                            ]
         
     | 
| 677 | 
         
            -
                            ch = model_channels * mult
         
     | 
| 678 | 
         
            -
                            if ds in attention_resolutions:
         
     | 
| 679 | 
         
            -
                                if num_head_channels == -1:
         
     | 
| 680 | 
         
            -
                                    dim_head = ch // num_heads
         
     | 
| 681 | 
         
            -
                                else:
         
     | 
| 682 | 
         
            -
                                    num_heads = ch // num_head_channels
         
     | 
| 683 | 
         
            -
                                    dim_head = num_head_channels
         
     | 
| 684 | 
         
            -
                                if legacy:
         
     | 
| 685 | 
         
            -
                                    #num_heads = 1
         
     | 
| 686 | 
         
            -
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 687 | 
         
            -
                                if exists(disable_self_attentions):
         
     | 
| 688 | 
         
            -
                                    disabled_sa = disable_self_attentions[level]
         
     | 
| 689 | 
         
            -
                                else:
         
     | 
| 690 | 
         
            -
                                    disabled_sa = False
         
     | 
| 691 | 
         
            -
             
     | 
| 692 | 
         
            -
                                if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
         
     | 
| 693 | 
         
            -
                                    layers.append(
         
     | 
| 694 | 
         
            -
                                        AttentionBlock(
         
     | 
| 695 | 
         
            -
                                            ch,
         
     | 
| 696 | 
         
            -
                                            use_checkpoint=use_checkpoint,
         
     | 
| 697 | 
         
            -
                                            num_heads=num_heads_upsample,
         
     | 
| 698 | 
         
            -
                                            num_head_channels=dim_head,
         
     | 
| 699 | 
         
            -
                                            use_new_attention_order=use_new_attention_order,
         
     | 
| 700 | 
         
            -
                                        ) if not use_spatial_transformer else SpatialTransformer(
         
     | 
| 701 | 
         
            -
                                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
         
     | 
| 702 | 
         
            -
                                            disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
         
     | 
| 703 | 
         
            -
                                            use_checkpoint=use_checkpoint
         
     | 
| 704 | 
         
            -
                                        )
         
     | 
| 705 | 
         
            -
                                    )
         
     | 
| 706 | 
         
            -
                            if level and i == self.num_res_blocks[level]:
         
     | 
| 707 | 
         
            -
                                out_ch = ch
         
     | 
| 708 | 
         
            -
                                layers.append(
         
     | 
| 709 | 
         
            -
                                    ResBlock(
         
     | 
| 710 | 
         
            -
                                        ch,
         
     | 
| 711 | 
         
            -
                                        time_embed_dim,
         
     | 
| 712 | 
         
            -
                                        dropout,
         
     | 
| 713 | 
         
            -
                                        out_channels=out_ch,
         
     | 
| 714 | 
         
            -
                                        dims=dims,
         
     | 
| 715 | 
         
            -
                                        use_checkpoint=use_checkpoint,
         
     | 
| 716 | 
         
            -
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 717 | 
         
            -
                                        up=True,
         
     | 
| 718 | 
         
            -
                                    )
         
     | 
| 719 | 
         
            -
                                    if resblock_updown
         
     | 
| 720 | 
         
            -
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         
     | 
| 721 | 
         
            -
                                )
         
     | 
| 722 | 
         
            -
                                ds //= 2
         
     | 
| 723 | 
         
            -
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 724 | 
         
            -
                            self._feature_size += ch
         
     | 
| 725 | 
         
            -
             
     | 
| 726 | 
         
            -
                    self.out = nn.Sequential(
         
     | 
| 727 | 
         
            -
                        normalization(ch),
         
     | 
| 728 | 
         
            -
                        nn.SiLU(),
         
     | 
| 729 | 
         
            -
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         
     | 
| 730 | 
         
            -
                    )
         
     | 
| 731 | 
         
            -
                    if self.predict_codebook_ids:
         
     | 
| 732 | 
         
            -
                        self.id_predictor = nn.Sequential(
         
     | 
| 733 | 
         
            -
                        normalization(ch),
         
     | 
| 734 | 
         
            -
                        conv_nd(dims, model_channels, n_embed, 1),
         
     | 
| 735 | 
         
            -
                        #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         
     | 
| 736 | 
         
            -
                    )
         
     | 
| 737 | 
         
            -
             
     | 
| 738 | 
         
            -
                def convert_to_fp16(self):
         
     | 
| 739 | 
         
            -
                    """
         
     | 
| 740 | 
         
            -
                    Convert the torso of the model to float16.
         
     | 
| 741 | 
         
            -
                    """
         
     | 
| 742 | 
         
            -
                    self.input_blocks.apply(convert_module_to_f16)
         
     | 
| 743 | 
         
            -
                    self.middle_block.apply(convert_module_to_f16)
         
     | 
| 744 | 
         
            -
                    self.output_blocks.apply(convert_module_to_f16)
         
     | 
| 745 | 
         
            -
             
     | 
| 746 | 
         
            -
                def convert_to_fp32(self):
         
     | 
| 747 | 
         
            -
                    """
         
     | 
| 748 | 
         
            -
                    Convert the torso of the model to float32.
         
     | 
| 749 | 
         
            -
                    """
         
     | 
| 750 | 
         
            -
                    self.input_blocks.apply(convert_module_to_f32)
         
     | 
| 751 | 
         
            -
                    self.middle_block.apply(convert_module_to_f32)
         
     | 
| 752 | 
         
            -
                    self.output_blocks.apply(convert_module_to_f32)
         
     | 
| 753 | 
         
            -
             
     | 
| 754 | 
         
            -
                def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
         
     | 
| 755 | 
         
            -
                    """
         
     | 
| 756 | 
         
            -
                    Apply the model to an input batch.
         
     | 
| 757 | 
         
            -
                    :param x: an [N x C x ...] Tensor of inputs.
         
     | 
| 758 | 
         
            -
                    :param timesteps: a 1-D batch of timesteps.
         
     | 
| 759 | 
         
            -
                    :param context: conditioning plugged in via crossattn
         
     | 
| 760 | 
         
            -
                    :param y: an [N] Tensor of labels, if class-conditional.
         
     | 
| 761 | 
         
            -
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 762 | 
         
            -
                    """
         
     | 
| 763 | 
         
            -
                    assert (y is not None) == (
         
     | 
| 764 | 
         
            -
                        self.num_classes is not None
         
     | 
| 765 | 
         
            -
                    ), "must specify y if and only if the model is class-conditional"
         
     | 
| 766 | 
         
            -
                    hs = []
         
     | 
| 767 | 
         
            -
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
         
     | 
| 768 | 
         
            -
                    emb = self.time_embed(t_emb)
         
     | 
| 769 | 
         
            -
             
     | 
| 770 | 
         
            -
                    if self.num_classes is not None:
         
     | 
| 771 | 
         
            -
                        assert y.shape[0] == x.shape[0]
         
     | 
| 772 | 
         
            -
                        emb = emb + self.label_emb(y)
         
     | 
| 773 | 
         
            -
             
     | 
| 774 | 
         
            -
                    h = x.type(self.dtype)
         
     | 
| 775 | 
         
            -
                    for module in self.input_blocks:
         
     | 
| 776 | 
         
            -
                        h = module(h, emb, context)
         
     | 
| 777 | 
         
            -
                        hs.append(h)
         
     | 
| 778 | 
         
            -
                    h = self.middle_block(h, emb, context)
         
     | 
| 779 | 
         
            -
                    for module in self.output_blocks:
         
     | 
| 780 | 
         
            -
                        h = th.cat([h, hs.pop()], dim=1)
         
     | 
| 781 | 
         
            -
                        h = module(h, emb, context)
         
     | 
| 782 | 
         
            -
                    h = h.type(x.dtype)
         
     | 
| 783 | 
         
            -
                    if self.predict_codebook_ids:
         
     | 
| 784 | 
         
            -
                        return self.id_predictor(h)
         
     | 
| 785 | 
         
            -
                    else:
         
     | 
| 786 | 
         
            -
                        return self.out(h)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/diffusionmodules/upscaling.py
    DELETED
    
    | 
         @@ -1,81 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn as nn
         
     | 
| 3 | 
         
            -
            import numpy as np
         
     | 
| 4 | 
         
            -
            from functools import partial
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
         
     | 
| 7 | 
         
            -
            from ldm.util import default
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            class AbstractLowScaleModel(nn.Module):
         
     | 
| 11 | 
         
            -
                # for concatenating a downsampled image to the latent representation
         
     | 
| 12 | 
         
            -
                def __init__(self, noise_schedule_config=None):
         
     | 
| 13 | 
         
            -
                    super(AbstractLowScaleModel, self).__init__()
         
     | 
| 14 | 
         
            -
                    if noise_schedule_config is not None:
         
     | 
| 15 | 
         
            -
                        self.register_schedule(**noise_schedule_config)
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
                def register_schedule(self, beta_schedule="linear", timesteps=1000,
         
     | 
| 18 | 
         
            -
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 19 | 
         
            -
                    betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
         
     | 
| 20 | 
         
            -
                                               cosine_s=cosine_s)
         
     | 
| 21 | 
         
            -
                    alphas = 1. - betas
         
     | 
| 22 | 
         
            -
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         
     | 
| 23 | 
         
            -
                    alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
                    timesteps, = betas.shape
         
     | 
| 26 | 
         
            -
                    self.num_timesteps = int(timesteps)
         
     | 
| 27 | 
         
            -
                    self.linear_start = linear_start
         
     | 
| 28 | 
         
            -
                    self.linear_end = linear_end
         
     | 
| 29 | 
         
            -
                    assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
                    self.register_buffer('betas', to_torch(betas))
         
     | 
| 34 | 
         
            -
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 35 | 
         
            -
                    self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 38 | 
         
            -
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 39 | 
         
            -
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 40 | 
         
            -
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
         
     | 
| 41 | 
         
            -
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
         
     | 
| 42 | 
         
            -
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
                def q_sample(self, x_start, t, noise=None):
         
     | 
| 45 | 
         
            -
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 46 | 
         
            -
                    return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
         
     | 
| 47 | 
         
            -
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                def forward(self, x):
         
     | 
| 50 | 
         
            -
                    return x, None
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                def decode(self, x):
         
     | 
| 53 | 
         
            -
                    return x
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            class SimpleImageConcat(AbstractLowScaleModel):
         
     | 
| 57 | 
         
            -
                # no noise level conditioning
         
     | 
| 58 | 
         
            -
                def __init__(self):
         
     | 
| 59 | 
         
            -
                    super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
         
     | 
| 60 | 
         
            -
                    self.max_noise_level = 0
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
                def forward(self, x):
         
     | 
| 63 | 
         
            -
                    # fix to constant noise level
         
     | 
| 64 | 
         
            -
                    return x, torch.zeros(x.shape[0], device=x.device).long()
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
            class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
         
     | 
| 68 | 
         
            -
                def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
         
     | 
| 69 | 
         
            -
                    super().__init__(noise_schedule_config=noise_schedule_config)
         
     | 
| 70 | 
         
            -
                    self.max_noise_level = max_noise_level
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                def forward(self, x, noise_level=None):
         
     | 
| 73 | 
         
            -
                    if noise_level is None:
         
     | 
| 74 | 
         
            -
                        noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
         
     | 
| 75 | 
         
            -
                    else:
         
     | 
| 76 | 
         
            -
                        assert isinstance(noise_level, torch.Tensor)
         
     | 
| 77 | 
         
            -
                    z = self.q_sample(x, noise_level)
         
     | 
| 78 | 
         
            -
                    return z, noise_level
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/diffusionmodules/util.py
    DELETED
    
    | 
         @@ -1,270 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # adopted from
         
     | 
| 2 | 
         
            -
            # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
         
     | 
| 3 | 
         
            -
            # and
         
     | 
| 4 | 
         
            -
            # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 5 | 
         
            -
            # and
         
     | 
| 6 | 
         
            -
            # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
         
     | 
| 7 | 
         
            -
            #
         
     | 
| 8 | 
         
            -
            # thanks!
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            import os
         
     | 
| 12 | 
         
            -
            import math
         
     | 
| 13 | 
         
            -
            import torch
         
     | 
| 14 | 
         
            -
            import torch.nn as nn
         
     | 
| 15 | 
         
            -
            import numpy as np
         
     | 
| 16 | 
         
            -
            from einops import repeat
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            from ldm.util import instantiate_from_config
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
            def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 22 | 
         
            -
                if schedule == "linear":
         
     | 
| 23 | 
         
            -
                    betas = (
         
     | 
| 24 | 
         
            -
                            torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
         
     | 
| 25 | 
         
            -
                    )
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
                elif schedule == "cosine":
         
     | 
| 28 | 
         
            -
                    timesteps = (
         
     | 
| 29 | 
         
            -
                            torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
         
     | 
| 30 | 
         
            -
                    )
         
     | 
| 31 | 
         
            -
                    alphas = timesteps / (1 + cosine_s) * np.pi / 2
         
     | 
| 32 | 
         
            -
                    alphas = torch.cos(alphas).pow(2)
         
     | 
| 33 | 
         
            -
                    alphas = alphas / alphas[0]
         
     | 
| 34 | 
         
            -
                    betas = 1 - alphas[1:] / alphas[:-1]
         
     | 
| 35 | 
         
            -
                    betas = np.clip(betas, a_min=0, a_max=0.999)
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                elif schedule == "sqrt_linear":
         
     | 
| 38 | 
         
            -
                    betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
         
     | 
| 39 | 
         
            -
                elif schedule == "sqrt":
         
     | 
| 40 | 
         
            -
                    betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
         
     | 
| 41 | 
         
            -
                else:
         
     | 
| 42 | 
         
            -
                    raise ValueError(f"schedule '{schedule}' unknown.")
         
     | 
| 43 | 
         
            -
                return betas.numpy()
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
            def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
         
     | 
| 47 | 
         
            -
                if ddim_discr_method == 'uniform':
         
     | 
| 48 | 
         
            -
                    c = num_ddpm_timesteps // num_ddim_timesteps
         
     | 
| 49 | 
         
            -
                    ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
         
     | 
| 50 | 
         
            -
                elif ddim_discr_method == 'quad':
         
     | 
| 51 | 
         
            -
                    ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
         
     | 
| 52 | 
         
            -
                else:
         
     | 
| 53 | 
         
            -
                    raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                # assert ddim_timesteps.shape[0] == num_ddim_timesteps
         
     | 
| 56 | 
         
            -
                # add one to get the final alpha values right (the ones from first scale to data during sampling)
         
     | 
| 57 | 
         
            -
                steps_out = ddim_timesteps + 1
         
     | 
| 58 | 
         
            -
                if verbose:
         
     | 
| 59 | 
         
            -
                    print(f'Selected timesteps for ddim sampler: {steps_out}')
         
     | 
| 60 | 
         
            -
                return steps_out
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
            def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
         
     | 
| 64 | 
         
            -
                # select alphas for computing the variance schedule
         
     | 
| 65 | 
         
            -
                alphas = alphacums[ddim_timesteps]
         
     | 
| 66 | 
         
            -
                alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                # according the the formula provided in https://arxiv.org/abs/2010.02502
         
     | 
| 69 | 
         
            -
                sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
         
     | 
| 70 | 
         
            -
                if verbose:
         
     | 
| 71 | 
         
            -
                    print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
         
     | 
| 72 | 
         
            -
                    print(f'For the chosen value of eta, which is {eta}, '
         
     | 
| 73 | 
         
            -
                          f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
         
     | 
| 74 | 
         
            -
                return sigmas, alphas, alphas_prev
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
            def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
         
     | 
| 78 | 
         
            -
                """
         
     | 
| 79 | 
         
            -
                Create a beta schedule that discretizes the given alpha_t_bar function,
         
     | 
| 80 | 
         
            -
                which defines the cumulative product of (1-beta) over time from t = [0,1].
         
     | 
| 81 | 
         
            -
                :param num_diffusion_timesteps: the number of betas to produce.
         
     | 
| 82 | 
         
            -
                :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
         
     | 
| 83 | 
         
            -
                                  produces the cumulative product of (1-beta) up to that
         
     | 
| 84 | 
         
            -
                                  part of the diffusion process.
         
     | 
| 85 | 
         
            -
                :param max_beta: the maximum beta to use; use values lower than 1 to
         
     | 
| 86 | 
         
            -
                                 prevent singularities.
         
     | 
| 87 | 
         
            -
                """
         
     | 
| 88 | 
         
            -
                betas = []
         
     | 
| 89 | 
         
            -
                for i in range(num_diffusion_timesteps):
         
     | 
| 90 | 
         
            -
                    t1 = i / num_diffusion_timesteps
         
     | 
| 91 | 
         
            -
                    t2 = (i + 1) / num_diffusion_timesteps
         
     | 
| 92 | 
         
            -
                    betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
         
     | 
| 93 | 
         
            -
                return np.array(betas)
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
            def extract_into_tensor(a, t, x_shape):
         
     | 
| 97 | 
         
            -
                b, *_ = t.shape
         
     | 
| 98 | 
         
            -
                out = a.gather(-1, t)
         
     | 
| 99 | 
         
            -
                return out.reshape(b, *((1,) * (len(x_shape) - 1)))
         
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
            def checkpoint(func, inputs, params, flag):
         
     | 
| 103 | 
         
            -
                """
         
     | 
| 104 | 
         
            -
                Evaluate a function without caching intermediate activations, allowing for
         
     | 
| 105 | 
         
            -
                reduced memory at the expense of extra compute in the backward pass.
         
     | 
| 106 | 
         
            -
                :param func: the function to evaluate.
         
     | 
| 107 | 
         
            -
                :param inputs: the argument sequence to pass to `func`.
         
     | 
| 108 | 
         
            -
                :param params: a sequence of parameters `func` depends on but does not
         
     | 
| 109 | 
         
            -
                               explicitly take as arguments.
         
     | 
| 110 | 
         
            -
                :param flag: if False, disable gradient checkpointing.
         
     | 
| 111 | 
         
            -
                """
         
     | 
| 112 | 
         
            -
                if flag:
         
     | 
| 113 | 
         
            -
                    args = tuple(inputs) + tuple(params)
         
     | 
| 114 | 
         
            -
                    return CheckpointFunction.apply(func, len(inputs), *args)
         
     | 
| 115 | 
         
            -
                else:
         
     | 
| 116 | 
         
            -
                    return func(*inputs)
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
            class CheckpointFunction(torch.autograd.Function):
         
     | 
| 120 | 
         
            -
                @staticmethod
         
     | 
| 121 | 
         
            -
                def forward(ctx, run_function, length, *args):
         
     | 
| 122 | 
         
            -
                    ctx.run_function = run_function
         
     | 
| 123 | 
         
            -
                    ctx.input_tensors = list(args[:length])
         
     | 
| 124 | 
         
            -
                    ctx.input_params = list(args[length:])
         
     | 
| 125 | 
         
            -
                    ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
         
     | 
| 126 | 
         
            -
                                               "dtype": torch.get_autocast_gpu_dtype(),
         
     | 
| 127 | 
         
            -
                                               "cache_enabled": torch.is_autocast_cache_enabled()}
         
     | 
| 128 | 
         
            -
                    with torch.no_grad():
         
     | 
| 129 | 
         
            -
                        output_tensors = ctx.run_function(*ctx.input_tensors)
         
     | 
| 130 | 
         
            -
                    return output_tensors
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                @staticmethod
         
     | 
| 133 | 
         
            -
                def backward(ctx, *output_grads):
         
     | 
| 134 | 
         
            -
                    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
         
     | 
| 135 | 
         
            -
                    with torch.enable_grad(), \
         
     | 
| 136 | 
         
            -
                            torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
         
     | 
| 137 | 
         
            -
                        # Fixes a bug where the first op in run_function modifies the
         
     | 
| 138 | 
         
            -
                        # Tensor storage in place, which is not allowed for detach()'d
         
     | 
| 139 | 
         
            -
                        # Tensors.
         
     | 
| 140 | 
         
            -
                        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
         
     | 
| 141 | 
         
            -
                        output_tensors = ctx.run_function(*shallow_copies)
         
     | 
| 142 | 
         
            -
                    input_grads = torch.autograd.grad(
         
     | 
| 143 | 
         
            -
                        output_tensors,
         
     | 
| 144 | 
         
            -
                        ctx.input_tensors + ctx.input_params,
         
     | 
| 145 | 
         
            -
                        output_grads,
         
     | 
| 146 | 
         
            -
                        allow_unused=True,
         
     | 
| 147 | 
         
            -
                    )
         
     | 
| 148 | 
         
            -
                    del ctx.input_tensors
         
     | 
| 149 | 
         
            -
                    del ctx.input_params
         
     | 
| 150 | 
         
            -
                    del output_tensors
         
     | 
| 151 | 
         
            -
                    return (None, None) + input_grads
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         
     | 
| 155 | 
         
            -
                """
         
     | 
| 156 | 
         
            -
                Create sinusoidal timestep embeddings.
         
     | 
| 157 | 
         
            -
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         
     | 
| 158 | 
         
            -
                                  These may be fractional.
         
     | 
| 159 | 
         
            -
                :param dim: the dimension of the output.
         
     | 
| 160 | 
         
            -
                :param max_period: controls the minimum frequency of the embeddings.
         
     | 
| 161 | 
         
            -
                :return: an [N x dim] Tensor of positional embeddings.
         
     | 
| 162 | 
         
            -
                """
         
     | 
| 163 | 
         
            -
                if not repeat_only:
         
     | 
| 164 | 
         
            -
                    half = dim // 2
         
     | 
| 165 | 
         
            -
                    freqs = torch.exp(
         
     | 
| 166 | 
         
            -
                        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
         
     | 
| 167 | 
         
            -
                    ).to(device=timesteps.device)
         
     | 
| 168 | 
         
            -
                    args = timesteps[:, None].float() * freqs[None]
         
     | 
| 169 | 
         
            -
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         
     | 
| 170 | 
         
            -
                    if dim % 2:
         
     | 
| 171 | 
         
            -
                        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
         
     | 
| 172 | 
         
            -
                else:
         
     | 
| 173 | 
         
            -
                    embedding = repeat(timesteps, 'b -> b d', d=dim)
         
     | 
| 174 | 
         
            -
                return embedding
         
     | 
| 175 | 
         
            -
             
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
            def zero_module(module):
         
     | 
| 178 | 
         
            -
                """
         
     | 
| 179 | 
         
            -
                Zero out the parameters of a module and return it.
         
     | 
| 180 | 
         
            -
                """
         
     | 
| 181 | 
         
            -
                for p in module.parameters():
         
     | 
| 182 | 
         
            -
                    p.detach().zero_()
         
     | 
| 183 | 
         
            -
                return module
         
     | 
| 184 | 
         
            -
             
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
            def scale_module(module, scale):
         
     | 
| 187 | 
         
            -
                """
         
     | 
| 188 | 
         
            -
                Scale the parameters of a module and return it.
         
     | 
| 189 | 
         
            -
                """
         
     | 
| 190 | 
         
            -
                for p in module.parameters():
         
     | 
| 191 | 
         
            -
                    p.detach().mul_(scale)
         
     | 
| 192 | 
         
            -
                return module
         
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
            def mean_flat(tensor):
         
     | 
| 196 | 
         
            -
                """
         
     | 
| 197 | 
         
            -
                Take the mean over all non-batch dimensions.
         
     | 
| 198 | 
         
            -
                """
         
     | 
| 199 | 
         
            -
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
            def normalization(channels):
         
     | 
| 203 | 
         
            -
                """
         
     | 
| 204 | 
         
            -
                Make a standard normalization layer.
         
     | 
| 205 | 
         
            -
                :param channels: number of input channels.
         
     | 
| 206 | 
         
            -
                :return: an nn.Module for normalization.
         
     | 
| 207 | 
         
            -
                """
         
     | 
| 208 | 
         
            -
                return GroupNorm32(32, channels)
         
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
            # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
         
     | 
| 212 | 
         
            -
            class SiLU(nn.Module):
         
     | 
| 213 | 
         
            -
                def forward(self, x):
         
     | 
| 214 | 
         
            -
                    return x * torch.sigmoid(x)
         
     | 
| 215 | 
         
            -
             
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
            class GroupNorm32(nn.GroupNorm):
         
     | 
| 218 | 
         
            -
                def forward(self, x):
         
     | 
| 219 | 
         
            -
                    return super().forward(x.float()).type(x.dtype)
         
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
            def conv_nd(dims, *args, **kwargs):
         
     | 
| 222 | 
         
            -
                """
         
     | 
| 223 | 
         
            -
                Create a 1D, 2D, or 3D convolution module.
         
     | 
| 224 | 
         
            -
                """
         
     | 
| 225 | 
         
            -
                if dims == 1:
         
     | 
| 226 | 
         
            -
                    return nn.Conv1d(*args, **kwargs)
         
     | 
| 227 | 
         
            -
                elif dims == 2:
         
     | 
| 228 | 
         
            -
                    return nn.Conv2d(*args, **kwargs)
         
     | 
| 229 | 
         
            -
                elif dims == 3:
         
     | 
| 230 | 
         
            -
                    return nn.Conv3d(*args, **kwargs)
         
     | 
| 231 | 
         
            -
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 232 | 
         
            -
             
     | 
| 233 | 
         
            -
             
     | 
| 234 | 
         
            -
            def linear(*args, **kwargs):
         
     | 
| 235 | 
         
            -
                """
         
     | 
| 236 | 
         
            -
                Create a linear module.
         
     | 
| 237 | 
         
            -
                """
         
     | 
| 238 | 
         
            -
                return nn.Linear(*args, **kwargs)
         
     | 
| 239 | 
         
            -
             
     | 
| 240 | 
         
            -
             
     | 
| 241 | 
         
            -
            def avg_pool_nd(dims, *args, **kwargs):
         
     | 
| 242 | 
         
            -
                """
         
     | 
| 243 | 
         
            -
                Create a 1D, 2D, or 3D average pooling module.
         
     | 
| 244 | 
         
            -
                """
         
     | 
| 245 | 
         
            -
                if dims == 1:
         
     | 
| 246 | 
         
            -
                    return nn.AvgPool1d(*args, **kwargs)
         
     | 
| 247 | 
         
            -
                elif dims == 2:
         
     | 
| 248 | 
         
            -
                    return nn.AvgPool2d(*args, **kwargs)
         
     | 
| 249 | 
         
            -
                elif dims == 3:
         
     | 
| 250 | 
         
            -
                    return nn.AvgPool3d(*args, **kwargs)
         
     | 
| 251 | 
         
            -
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
             
     | 
| 254 | 
         
            -
            class HybridConditioner(nn.Module):
         
     | 
| 255 | 
         
            -
             
     | 
| 256 | 
         
            -
                def __init__(self, c_concat_config, c_crossattn_config):
         
     | 
| 257 | 
         
            -
                    super().__init__()
         
     | 
| 258 | 
         
            -
                    self.concat_conditioner = instantiate_from_config(c_concat_config)
         
     | 
| 259 | 
         
            -
                    self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
                def forward(self, c_concat, c_crossattn):
         
     | 
| 262 | 
         
            -
                    c_concat = self.concat_conditioner(c_concat)
         
     | 
| 263 | 
         
            -
                    c_crossattn = self.crossattn_conditioner(c_crossattn)
         
     | 
| 264 | 
         
            -
                    return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
         
     | 
| 265 | 
         
            -
             
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
            def noise_like(shape, device, repeat=False):
         
     | 
| 268 | 
         
            -
                repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
         
     | 
| 269 | 
         
            -
                noise = lambda: torch.randn(shape, device=device)
         
     | 
| 270 | 
         
            -
                return repeat_noise() if repeat else noise()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/distributions/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/modules/distributions/distributions.py
    DELETED
    
    | 
         @@ -1,92 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import numpy as np
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            class AbstractDistribution:
         
     | 
| 6 | 
         
            -
                def sample(self):
         
     | 
| 7 | 
         
            -
                    raise NotImplementedError()
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
                def mode(self):
         
     | 
| 10 | 
         
            -
                    raise NotImplementedError()
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            class DiracDistribution(AbstractDistribution):
         
     | 
| 14 | 
         
            -
                def __init__(self, value):
         
     | 
| 15 | 
         
            -
                    self.value = value
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
                def sample(self):
         
     | 
| 18 | 
         
            -
                    return self.value
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
                def mode(self):
         
     | 
| 21 | 
         
            -
                    return self.value
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            class DiagonalGaussianDistribution(object):
         
     | 
| 25 | 
         
            -
                def __init__(self, parameters, deterministic=False):
         
     | 
| 26 | 
         
            -
                    self.parameters = parameters
         
     | 
| 27 | 
         
            -
                    self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
         
     | 
| 28 | 
         
            -
                    self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
         
     | 
| 29 | 
         
            -
                    self.deterministic = deterministic
         
     | 
| 30 | 
         
            -
                    self.std = torch.exp(0.5 * self.logvar)
         
     | 
| 31 | 
         
            -
                    self.var = torch.exp(self.logvar)
         
     | 
| 32 | 
         
            -
                    if self.deterministic:
         
     | 
| 33 | 
         
            -
                        self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
                def sample(self):
         
     | 
| 36 | 
         
            -
                    x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
         
     | 
| 37 | 
         
            -
                    return x
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                def kl(self, other=None):
         
     | 
| 40 | 
         
            -
                    if self.deterministic:
         
     | 
| 41 | 
         
            -
                        return torch.Tensor([0.])
         
     | 
| 42 | 
         
            -
                    else:
         
     | 
| 43 | 
         
            -
                        if other is None:
         
     | 
| 44 | 
         
            -
                            return 0.5 * torch.sum(torch.pow(self.mean, 2)
         
     | 
| 45 | 
         
            -
                                                   + self.var - 1.0 - self.logvar,
         
     | 
| 46 | 
         
            -
                                                   dim=[1, 2, 3])
         
     | 
| 47 | 
         
            -
                        else:
         
     | 
| 48 | 
         
            -
                            return 0.5 * torch.sum(
         
     | 
| 49 | 
         
            -
                                torch.pow(self.mean - other.mean, 2) / other.var
         
     | 
| 50 | 
         
            -
                                + self.var / other.var - 1.0 - self.logvar + other.logvar,
         
     | 
| 51 | 
         
            -
                                dim=[1, 2, 3])
         
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
                def nll(self, sample, dims=[1,2,3]):
         
     | 
| 54 | 
         
            -
                    if self.deterministic:
         
     | 
| 55 | 
         
            -
                        return torch.Tensor([0.])
         
     | 
| 56 | 
         
            -
                    logtwopi = np.log(2.0 * np.pi)
         
     | 
| 57 | 
         
            -
                    return 0.5 * torch.sum(
         
     | 
| 58 | 
         
            -
                        logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
         
     | 
| 59 | 
         
            -
                        dim=dims)
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
                def mode(self):
         
     | 
| 62 | 
         
            -
                    return self.mean
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
            def normal_kl(mean1, logvar1, mean2, logvar2):
         
     | 
| 66 | 
         
            -
                """
         
     | 
| 67 | 
         
            -
                source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
         
     | 
| 68 | 
         
            -
                Compute the KL divergence between two gaussians.
         
     | 
| 69 | 
         
            -
                Shapes are automatically broadcasted, so batches can be compared to
         
     | 
| 70 | 
         
            -
                scalars, among other use cases.
         
     | 
| 71 | 
         
            -
                """
         
     | 
| 72 | 
         
            -
                tensor = None
         
     | 
| 73 | 
         
            -
                for obj in (mean1, logvar1, mean2, logvar2):
         
     | 
| 74 | 
         
            -
                    if isinstance(obj, torch.Tensor):
         
     | 
| 75 | 
         
            -
                        tensor = obj
         
     | 
| 76 | 
         
            -
                        break
         
     | 
| 77 | 
         
            -
                assert tensor is not None, "at least one argument must be a Tensor"
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                # Force variances to be Tensors. Broadcasting helps convert scalars to
         
     | 
| 80 | 
         
            -
                # Tensors, but it does not work for torch.exp().
         
     | 
| 81 | 
         
            -
                logvar1, logvar2 = [
         
     | 
| 82 | 
         
            -
                    x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
         
     | 
| 83 | 
         
            -
                    for x in (logvar1, logvar2)
         
     | 
| 84 | 
         
            -
                ]
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
                return 0.5 * (
         
     | 
| 87 | 
         
            -
                    -1.0
         
     | 
| 88 | 
         
            -
                    + logvar2
         
     | 
| 89 | 
         
            -
                    - logvar1
         
     | 
| 90 | 
         
            -
                    + torch.exp(logvar1 - logvar2)
         
     | 
| 91 | 
         
            -
                    + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
         
     | 
| 92 | 
         
            -
                )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/ema.py
    DELETED
    
    | 
         @@ -1,80 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            from torch import nn
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            class LitEma(nn.Module):
         
     | 
| 6 | 
         
            -
                def __init__(self, model, decay=0.9999, use_num_upates=True):
         
     | 
| 7 | 
         
            -
                    super().__init__()
         
     | 
| 8 | 
         
            -
                    if decay < 0.0 or decay > 1.0:
         
     | 
| 9 | 
         
            -
                        raise ValueError('Decay must be between 0 and 1')
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
                    self.m_name2s_name = {}
         
     | 
| 12 | 
         
            -
                    self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
         
     | 
| 13 | 
         
            -
                    self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
         
     | 
| 14 | 
         
            -
                    else torch.tensor(-1, dtype=torch.int))
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
                    for name, p in model.named_parameters():
         
     | 
| 17 | 
         
            -
                        if p.requires_grad:
         
     | 
| 18 | 
         
            -
                            # remove as '.'-character is not allowed in buffers
         
     | 
| 19 | 
         
            -
                            s_name = name.replace('.', '')
         
     | 
| 20 | 
         
            -
                            self.m_name2s_name.update({name: s_name})
         
     | 
| 21 | 
         
            -
                            self.register_buffer(s_name, p.clone().detach().data)
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
                    self.collected_params = []
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
                def reset_num_updates(self):
         
     | 
| 26 | 
         
            -
                    del self.num_updates
         
     | 
| 27 | 
         
            -
                    self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
                def forward(self, model):
         
     | 
| 30 | 
         
            -
                    decay = self.decay
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
                    if self.num_updates >= 0:
         
     | 
| 33 | 
         
            -
                        self.num_updates += 1
         
     | 
| 34 | 
         
            -
                        decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
                    one_minus_decay = 1.0 - decay
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
                    with torch.no_grad():
         
     | 
| 39 | 
         
            -
                        m_param = dict(model.named_parameters())
         
     | 
| 40 | 
         
            -
                        shadow_params = dict(self.named_buffers())
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                        for key in m_param:
         
     | 
| 43 | 
         
            -
                            if m_param[key].requires_grad:
         
     | 
| 44 | 
         
            -
                                sname = self.m_name2s_name[key]
         
     | 
| 45 | 
         
            -
                                shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
         
     | 
| 46 | 
         
            -
                                shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
         
     | 
| 47 | 
         
            -
                            else:
         
     | 
| 48 | 
         
            -
                                assert not key in self.m_name2s_name
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
                def copy_to(self, model):
         
     | 
| 51 | 
         
            -
                    m_param = dict(model.named_parameters())
         
     | 
| 52 | 
         
            -
                    shadow_params = dict(self.named_buffers())
         
     | 
| 53 | 
         
            -
                    for key in m_param:
         
     | 
| 54 | 
         
            -
                        if m_param[key].requires_grad:
         
     | 
| 55 | 
         
            -
                            m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
         
     | 
| 56 | 
         
            -
                        else:
         
     | 
| 57 | 
         
            -
                            assert not key in self.m_name2s_name
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                def store(self, parameters):
         
     | 
| 60 | 
         
            -
                    """
         
     | 
| 61 | 
         
            -
                    Save the current parameters for restoring later.
         
     | 
| 62 | 
         
            -
                    Args:
         
     | 
| 63 | 
         
            -
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 64 | 
         
            -
                        temporarily stored.
         
     | 
| 65 | 
         
            -
                    """
         
     | 
| 66 | 
         
            -
                    self.collected_params = [param.clone() for param in parameters]
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
                def restore(self, parameters):
         
     | 
| 69 | 
         
            -
                    """
         
     | 
| 70 | 
         
            -
                    Restore the parameters stored with the `store` method.
         
     | 
| 71 | 
         
            -
                    Useful to validate the model with EMA parameters without affecting the
         
     | 
| 72 | 
         
            -
                    original optimization process. Store the parameters before the
         
     | 
| 73 | 
         
            -
                    `copy_to` method. After validation (or model saving), use this to
         
     | 
| 74 | 
         
            -
                    restore the former parameters.
         
     | 
| 75 | 
         
            -
                    Args:
         
     | 
| 76 | 
         
            -
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 77 | 
         
            -
                        updated with the stored parameters.
         
     | 
| 78 | 
         
            -
                    """
         
     | 
| 79 | 
         
            -
                    for c_param, param in zip(self.collected_params, parameters):
         
     | 
| 80 | 
         
            -
                        param.data.copy_(c_param.data)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/encoders/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/modules/encoders/modules.py
    DELETED
    
    | 
         @@ -1,213 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn as nn
         
     | 
| 3 | 
         
            -
            from torch.utils.checkpoint import checkpoint
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            import open_clip
         
     | 
| 8 | 
         
            -
            from ldm.util import default, count_params
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            class AbstractEncoder(nn.Module):
         
     | 
| 12 | 
         
            -
                def __init__(self):
         
     | 
| 13 | 
         
            -
                    super().__init__()
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
                def encode(self, *args, **kwargs):
         
     | 
| 16 | 
         
            -
                    raise NotImplementedError
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            class IdentityEncoder(AbstractEncoder):
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                def encode(self, x):
         
     | 
| 22 | 
         
            -
                    return x
         
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
            class ClassEmbedder(nn.Module):
         
     | 
| 26 | 
         
            -
                def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
         
     | 
| 27 | 
         
            -
                    super().__init__()
         
     | 
| 28 | 
         
            -
                    self.key = key
         
     | 
| 29 | 
         
            -
                    self.embedding = nn.Embedding(n_classes, embed_dim)
         
     | 
| 30 | 
         
            -
                    self.n_classes = n_classes
         
     | 
| 31 | 
         
            -
                    self.ucg_rate = ucg_rate
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
                def forward(self, batch, key=None, disable_dropout=False):
         
     | 
| 34 | 
         
            -
                    if key is None:
         
     | 
| 35 | 
         
            -
                        key = self.key
         
     | 
| 36 | 
         
            -
                    # this is for use in crossattn
         
     | 
| 37 | 
         
            -
                    c = batch[key][:, None]
         
     | 
| 38 | 
         
            -
                    if self.ucg_rate > 0. and not disable_dropout:
         
     | 
| 39 | 
         
            -
                        mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
         
     | 
| 40 | 
         
            -
                        c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
         
     | 
| 41 | 
         
            -
                        c = c.long()
         
     | 
| 42 | 
         
            -
                    c = self.embedding(c)
         
     | 
| 43 | 
         
            -
                    return c
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
                def get_unconditional_conditioning(self, bs, device="cuda"):
         
     | 
| 46 | 
         
            -
                    uc_class = self.n_classes - 1  # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
         
     | 
| 47 | 
         
            -
                    uc = torch.ones((bs,), device=device) * uc_class
         
     | 
| 48 | 
         
            -
                    uc = {self.key: uc}
         
     | 
| 49 | 
         
            -
                    return uc
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
            def disabled_train(self, mode=True):
         
     | 
| 53 | 
         
            -
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 54 | 
         
            -
                does not change anymore."""
         
     | 
| 55 | 
         
            -
                return self
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
            class FrozenT5Embedder(AbstractEncoder):
         
     | 
| 59 | 
         
            -
                """Uses the T5 transformer encoder for text"""
         
     | 
| 60 | 
         
            -
                def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
         
     | 
| 61 | 
         
            -
                    super().__init__()
         
     | 
| 62 | 
         
            -
                    self.tokenizer = T5Tokenizer.from_pretrained(version)
         
     | 
| 63 | 
         
            -
                    self.transformer = T5EncoderModel.from_pretrained(version)
         
     | 
| 64 | 
         
            -
                    self.device = device
         
     | 
| 65 | 
         
            -
                    self.max_length = max_length   # TODO: typical value?
         
     | 
| 66 | 
         
            -
                    if freeze:
         
     | 
| 67 | 
         
            -
                        self.freeze()
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                def freeze(self):
         
     | 
| 70 | 
         
            -
                    self.transformer = self.transformer.eval()
         
     | 
| 71 | 
         
            -
                    #self.train = disabled_train
         
     | 
| 72 | 
         
            -
                    for param in self.parameters():
         
     | 
| 73 | 
         
            -
                        param.requires_grad = False
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                def forward(self, text):
         
     | 
| 76 | 
         
            -
                    batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
         
     | 
| 77 | 
         
            -
                                                    return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
         
     | 
| 78 | 
         
            -
                    tokens = batch_encoding["input_ids"].to(self.device)
         
     | 
| 79 | 
         
            -
                    outputs = self.transformer(input_ids=tokens)
         
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
                    z = outputs.last_hidden_state
         
     | 
| 82 | 
         
            -
                    return z
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
                def encode(self, text):
         
     | 
| 85 | 
         
            -
                    return self(text)
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
            class FrozenCLIPEmbedder(AbstractEncoder):
         
     | 
| 89 | 
         
            -
                """Uses the CLIP transformer encoder for text (from huggingface)"""
         
     | 
| 90 | 
         
            -
                LAYERS = [
         
     | 
| 91 | 
         
            -
                    "last",
         
     | 
| 92 | 
         
            -
                    "pooled",
         
     | 
| 93 | 
         
            -
                    "hidden"
         
     | 
| 94 | 
         
            -
                ]
         
     | 
| 95 | 
         
            -
                def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
         
     | 
| 96 | 
         
            -
                             freeze=True, layer="last", layer_idx=None):  # clip-vit-base-patch32
         
     | 
| 97 | 
         
            -
                    super().__init__()
         
     | 
| 98 | 
         
            -
                    assert layer in self.LAYERS
         
     | 
| 99 | 
         
            -
                    self.tokenizer = CLIPTokenizer.from_pretrained(version)
         
     | 
| 100 | 
         
            -
                    self.transformer = CLIPTextModel.from_pretrained(version)
         
     | 
| 101 | 
         
            -
                    self.device = device
         
     | 
| 102 | 
         
            -
                    self.max_length = max_length
         
     | 
| 103 | 
         
            -
                    if freeze:
         
     | 
| 104 | 
         
            -
                        self.freeze()
         
     | 
| 105 | 
         
            -
                    self.layer = layer
         
     | 
| 106 | 
         
            -
                    self.layer_idx = layer_idx
         
     | 
| 107 | 
         
            -
                    if layer == "hidden":
         
     | 
| 108 | 
         
            -
                        assert layer_idx is not None
         
     | 
| 109 | 
         
            -
                        assert 0 <= abs(layer_idx) <= 12
         
     | 
| 110 | 
         
            -
             
     | 
| 111 | 
         
            -
                def freeze(self):
         
     | 
| 112 | 
         
            -
                    self.transformer = self.transformer.eval()
         
     | 
| 113 | 
         
            -
                    #self.train = disabled_train
         
     | 
| 114 | 
         
            -
                    for param in self.parameters():
         
     | 
| 115 | 
         
            -
                        param.requires_grad = False
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                def forward(self, text):
         
     | 
| 118 | 
         
            -
                    batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
         
     | 
| 119 | 
         
            -
                                                    return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
         
     | 
| 120 | 
         
            -
                    tokens = batch_encoding["input_ids"].to(self.device)
         
     | 
| 121 | 
         
            -
                    outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
         
     | 
| 122 | 
         
            -
                    if self.layer == "last":
         
     | 
| 123 | 
         
            -
                        z = outputs.last_hidden_state
         
     | 
| 124 | 
         
            -
                    elif self.layer == "pooled":
         
     | 
| 125 | 
         
            -
                        z = outputs.pooler_output[:, None, :]
         
     | 
| 126 | 
         
            -
                    else:
         
     | 
| 127 | 
         
            -
                        z = outputs.hidden_states[self.layer_idx]
         
     | 
| 128 | 
         
            -
                    return z
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
                def encode(self, text):
         
     | 
| 131 | 
         
            -
                    return self(text)
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
            class FrozenOpenCLIPEmbedder(AbstractEncoder):
         
     | 
| 135 | 
         
            -
                """
         
     | 
| 136 | 
         
            -
                Uses the OpenCLIP transformer encoder for text
         
     | 
| 137 | 
         
            -
                """
         
     | 
| 138 | 
         
            -
                LAYERS = [
         
     | 
| 139 | 
         
            -
                    #"pooled",
         
     | 
| 140 | 
         
            -
                    "last",
         
     | 
| 141 | 
         
            -
                    "penultimate"
         
     | 
| 142 | 
         
            -
                ]
         
     | 
| 143 | 
         
            -
                def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
         
     | 
| 144 | 
         
            -
                             freeze=True, layer="last"):
         
     | 
| 145 | 
         
            -
                    super().__init__()
         
     | 
| 146 | 
         
            -
                    assert layer in self.LAYERS
         
     | 
| 147 | 
         
            -
                    model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
         
     | 
| 148 | 
         
            -
                    del model.visual
         
     | 
| 149 | 
         
            -
                    self.model = model
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                    self.device = device
         
     | 
| 152 | 
         
            -
                    self.max_length = max_length
         
     | 
| 153 | 
         
            -
                    if freeze:
         
     | 
| 154 | 
         
            -
                        self.freeze()
         
     | 
| 155 | 
         
            -
                    self.layer = layer
         
     | 
| 156 | 
         
            -
                    if self.layer == "last":
         
     | 
| 157 | 
         
            -
                        self.layer_idx = 0
         
     | 
| 158 | 
         
            -
                    elif self.layer == "penultimate":
         
     | 
| 159 | 
         
            -
                        self.layer_idx = 1
         
     | 
| 160 | 
         
            -
                    else:
         
     | 
| 161 | 
         
            -
                        raise NotImplementedError()
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                def freeze(self):
         
     | 
| 164 | 
         
            -
                    self.model = self.model.eval()
         
     | 
| 165 | 
         
            -
                    for param in self.parameters():
         
     | 
| 166 | 
         
            -
                        param.requires_grad = False
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                def forward(self, text):
         
     | 
| 169 | 
         
            -
                    tokens = open_clip.tokenize(text)
         
     | 
| 170 | 
         
            -
                    z = self.encode_with_transformer(tokens.to(self.device))
         
     | 
| 171 | 
         
            -
                    return z
         
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
                def encode_with_transformer(self, text):
         
     | 
| 174 | 
         
            -
                    x = self.model.token_embedding(text)  # [batch_size, n_ctx, d_model]
         
     | 
| 175 | 
         
            -
                    x = x + self.model.positional_embedding
         
     | 
| 176 | 
         
            -
                    x = x.permute(1, 0, 2)  # NLD -> LND
         
     | 
| 177 | 
         
            -
                    x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
         
     | 
| 178 | 
         
            -
                    x = x.permute(1, 0, 2)  # LND -> NLD
         
     | 
| 179 | 
         
            -
                    x = self.model.ln_final(x)
         
     | 
| 180 | 
         
            -
                    return x
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
                def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
         
     | 
| 183 | 
         
            -
                    for i, r in enumerate(self.model.transformer.resblocks):
         
     | 
| 184 | 
         
            -
                        if i == len(self.model.transformer.resblocks) - self.layer_idx:
         
     | 
| 185 | 
         
            -
                            break
         
     | 
| 186 | 
         
            -
                        if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
         
     | 
| 187 | 
         
            -
                            x = checkpoint(r, x, attn_mask)
         
     | 
| 188 | 
         
            -
                        else:
         
     | 
| 189 | 
         
            -
                            x = r(x, attn_mask=attn_mask)
         
     | 
| 190 | 
         
            -
                    return x
         
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
                def encode(self, text):
         
     | 
| 193 | 
         
            -
                    return self(text)
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
            class FrozenCLIPT5Encoder(AbstractEncoder):
         
     | 
| 197 | 
         
            -
                def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
         
     | 
| 198 | 
         
            -
                             clip_max_length=77, t5_max_length=77):
         
     | 
| 199 | 
         
            -
                    super().__init__()
         
     | 
| 200 | 
         
            -
                    self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
         
     | 
| 201 | 
         
            -
                    self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
         
     | 
| 202 | 
         
            -
                    print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
         
     | 
| 203 | 
         
            -
                          f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
                def encode(self, text):
         
     | 
| 206 | 
         
            -
                    return self(text)
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
                def forward(self, text):
         
     | 
| 209 | 
         
            -
                    clip_z = self.clip_encoder.encode(text)
         
     | 
| 210 | 
         
            -
                    t5_z = self.t5_encoder.encode(text)
         
     | 
| 211 | 
         
            -
                    return [clip_z, t5_z]
         
     | 
| 212 | 
         
            -
             
     | 
| 213 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/image_degradation/__init__.py
    DELETED
    
    | 
         @@ -1,2 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
         
     | 
| 2 | 
         
            -
            from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/image_degradation/bsrgan.py
    DELETED
    
    | 
         @@ -1,730 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # -*- coding: utf-8 -*-
         
     | 
| 2 | 
         
            -
            """
         
     | 
| 3 | 
         
            -
            # --------------------------------------------
         
     | 
| 4 | 
         
            -
            # Super-Resolution
         
     | 
| 5 | 
         
            -
            # --------------------------------------------
         
     | 
| 6 | 
         
            -
            #
         
     | 
| 7 | 
         
            -
            # Kai Zhang (cskaizhang@gmail.com)
         
     | 
| 8 | 
         
            -
            # https://github.com/cszn
         
     | 
| 9 | 
         
            -
            # From 2019/03--2021/08
         
     | 
| 10 | 
         
            -
            # --------------------------------------------
         
     | 
| 11 | 
         
            -
            """
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
            import numpy as np
         
     | 
| 14 | 
         
            -
            import cv2
         
     | 
| 15 | 
         
            -
            import torch
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            from functools import partial
         
     | 
| 18 | 
         
            -
            import random
         
     | 
| 19 | 
         
            -
            from scipy import ndimage
         
     | 
| 20 | 
         
            -
            import scipy
         
     | 
| 21 | 
         
            -
            import scipy.stats as ss
         
     | 
| 22 | 
         
            -
            from scipy.interpolate import interp2d
         
     | 
| 23 | 
         
            -
            from scipy.linalg import orth
         
     | 
| 24 | 
         
            -
            import albumentations
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            import ldm.modules.image_degradation.utils_image as util
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            def modcrop_np(img, sf):
         
     | 
| 30 | 
         
            -
                '''
         
     | 
| 31 | 
         
            -
                Args:
         
     | 
| 32 | 
         
            -
                    img: numpy image, WxH or WxHxC
         
     | 
| 33 | 
         
            -
                    sf: scale factor
         
     | 
| 34 | 
         
            -
                Return:
         
     | 
| 35 | 
         
            -
                    cropped image
         
     | 
| 36 | 
         
            -
                '''
         
     | 
| 37 | 
         
            -
                w, h = img.shape[:2]
         
     | 
| 38 | 
         
            -
                im = np.copy(img)
         
     | 
| 39 | 
         
            -
                return im[:w - w % sf, :h - h % sf, ...]
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
            """
         
     | 
| 43 | 
         
            -
            # --------------------------------------------
         
     | 
| 44 | 
         
            -
            # anisotropic Gaussian kernels
         
     | 
| 45 | 
         
            -
            # --------------------------------------------
         
     | 
| 46 | 
         
            -
            """
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
            def analytic_kernel(k):
         
     | 
| 50 | 
         
            -
                """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
         
     | 
| 51 | 
         
            -
                k_size = k.shape[0]
         
     | 
| 52 | 
         
            -
                # Calculate the big kernels size
         
     | 
| 53 | 
         
            -
                big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
         
     | 
| 54 | 
         
            -
                # Loop over the small kernel to fill the big one
         
     | 
| 55 | 
         
            -
                for r in range(k_size):
         
     | 
| 56 | 
         
            -
                    for c in range(k_size):
         
     | 
| 57 | 
         
            -
                        big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
         
     | 
| 58 | 
         
            -
                # Crop the edges of the big kernel to ignore very small values and increase run time of SR
         
     | 
| 59 | 
         
            -
                crop = k_size // 2
         
     | 
| 60 | 
         
            -
                cropped_big_k = big_k[crop:-crop, crop:-crop]
         
     | 
| 61 | 
         
            -
                # Normalize to 1
         
     | 
| 62 | 
         
            -
                return cropped_big_k / cropped_big_k.sum()
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
            def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
         
     | 
| 66 | 
         
            -
                """ generate an anisotropic Gaussian kernel
         
     | 
| 67 | 
         
            -
                Args:
         
     | 
| 68 | 
         
            -
                    ksize : e.g., 15, kernel size
         
     | 
| 69 | 
         
            -
                    theta : [0,  pi], rotation angle range
         
     | 
| 70 | 
         
            -
                    l1    : [0.1,50], scaling of eigenvalues
         
     | 
| 71 | 
         
            -
                    l2    : [0.1,l1], scaling of eigenvalues
         
     | 
| 72 | 
         
            -
                    If l1 = l2, will get an isotropic Gaussian kernel.
         
     | 
| 73 | 
         
            -
                Returns:
         
     | 
| 74 | 
         
            -
                    k     : kernel
         
     | 
| 75 | 
         
            -
                """
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
                v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
         
     | 
| 78 | 
         
            -
                V = np.array([[v[0], v[1]], [v[1], -v[0]]])
         
     | 
| 79 | 
         
            -
                D = np.array([[l1, 0], [0, l2]])
         
     | 
| 80 | 
         
            -
                Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
         
     | 
| 81 | 
         
            -
                k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                return k
         
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
            def gm_blur_kernel(mean, cov, size=15):
         
     | 
| 87 | 
         
            -
                center = size / 2.0 + 0.5
         
     | 
| 88 | 
         
            -
                k = np.zeros([size, size])
         
     | 
| 89 | 
         
            -
                for y in range(size):
         
     | 
| 90 | 
         
            -
                    for x in range(size):
         
     | 
| 91 | 
         
            -
                        cy = y - center + 1
         
     | 
| 92 | 
         
            -
                        cx = x - center + 1
         
     | 
| 93 | 
         
            -
                        k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
                k = k / np.sum(k)
         
     | 
| 96 | 
         
            -
                return k
         
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
            def shift_pixel(x, sf, upper_left=True):
         
     | 
| 100 | 
         
            -
                """shift pixel for super-resolution with different scale factors
         
     | 
| 101 | 
         
            -
                Args:
         
     | 
| 102 | 
         
            -
                    x: WxHxC or WxH
         
     | 
| 103 | 
         
            -
                    sf: scale factor
         
     | 
| 104 | 
         
            -
                    upper_left: shift direction
         
     | 
| 105 | 
         
            -
                """
         
     | 
| 106 | 
         
            -
                h, w = x.shape[:2]
         
     | 
| 107 | 
         
            -
                shift = (sf - 1) * 0.5
         
     | 
| 108 | 
         
            -
                xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
         
     | 
| 109 | 
         
            -
                if upper_left:
         
     | 
| 110 | 
         
            -
                    x1 = xv + shift
         
     | 
| 111 | 
         
            -
                    y1 = yv + shift
         
     | 
| 112 | 
         
            -
                else:
         
     | 
| 113 | 
         
            -
                    x1 = xv - shift
         
     | 
| 114 | 
         
            -
                    y1 = yv - shift
         
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
                x1 = np.clip(x1, 0, w - 1)
         
     | 
| 117 | 
         
            -
                y1 = np.clip(y1, 0, h - 1)
         
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
                if x.ndim == 2:
         
     | 
| 120 | 
         
            -
                    x = interp2d(xv, yv, x)(x1, y1)
         
     | 
| 121 | 
         
            -
                if x.ndim == 3:
         
     | 
| 122 | 
         
            -
                    for i in range(x.shape[-1]):
         
     | 
| 123 | 
         
            -
                        x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                return x
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
            def blur(x, k):
         
     | 
| 129 | 
         
            -
                '''
         
     | 
| 130 | 
         
            -
                x: image, NxcxHxW
         
     | 
| 131 | 
         
            -
                k: kernel, Nx1xhxw
         
     | 
| 132 | 
         
            -
                '''
         
     | 
| 133 | 
         
            -
                n, c = x.shape[:2]
         
     | 
| 134 | 
         
            -
                p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
         
     | 
| 135 | 
         
            -
                x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
         
     | 
| 136 | 
         
            -
                k = k.repeat(1, c, 1, 1)
         
     | 
| 137 | 
         
            -
                k = k.view(-1, 1, k.shape[2], k.shape[3])
         
     | 
| 138 | 
         
            -
                x = x.view(1, -1, x.shape[2], x.shape[3])
         
     | 
| 139 | 
         
            -
                x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
         
     | 
| 140 | 
         
            -
                x = x.view(n, c, x.shape[2], x.shape[3])
         
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
                return x
         
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
            def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
         
     | 
| 146 | 
         
            -
                """"
         
     | 
| 147 | 
         
            -
                # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
         
     | 
| 148 | 
         
            -
                # Kai Zhang
         
     | 
| 149 | 
         
            -
                # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
         
     | 
| 150 | 
         
            -
                # max_var = 2.5 * sf
         
     | 
| 151 | 
         
            -
                """
         
     | 
| 152 | 
         
            -
                # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
         
     | 
| 153 | 
         
            -
                lambda_1 = min_var + np.random.rand() * (max_var - min_var)
         
     | 
| 154 | 
         
            -
                lambda_2 = min_var + np.random.rand() * (max_var - min_var)
         
     | 
| 155 | 
         
            -
                theta = np.random.rand() * np.pi  # random theta
         
     | 
| 156 | 
         
            -
                noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
         
     | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
                # Set COV matrix using Lambdas and Theta
         
     | 
| 159 | 
         
            -
                LAMBDA = np.diag([lambda_1, lambda_2])
         
     | 
| 160 | 
         
            -
                Q = np.array([[np.cos(theta), -np.sin(theta)],
         
     | 
| 161 | 
         
            -
                              [np.sin(theta), np.cos(theta)]])
         
     | 
| 162 | 
         
            -
                SIGMA = Q @ LAMBDA @ Q.T
         
     | 
| 163 | 
         
            -
                INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
                # Set expectation position (shifting kernel for aligned image)
         
     | 
| 166 | 
         
            -
                MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
         
     | 
| 167 | 
         
            -
                MU = MU[None, None, :, None]
         
     | 
| 168 | 
         
            -
             
     | 
| 169 | 
         
            -
                # Create meshgrid for Gaussian
         
     | 
| 170 | 
         
            -
                [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
         
     | 
| 171 | 
         
            -
                Z = np.stack([X, Y], 2)[:, :, :, None]
         
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
                # Calcualte Gaussian for every pixel of the kernel
         
     | 
| 174 | 
         
            -
                ZZ = Z - MU
         
     | 
| 175 | 
         
            -
                ZZ_t = ZZ.transpose(0, 1, 3, 2)
         
     | 
| 176 | 
         
            -
                raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
         
     | 
| 177 | 
         
            -
             
     | 
| 178 | 
         
            -
                # shift the kernel so it will be centered
         
     | 
| 179 | 
         
            -
                # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
                # Normalize the kernel and return
         
     | 
| 182 | 
         
            -
                # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
         
     | 
| 183 | 
         
            -
                kernel = raw_kernel / np.sum(raw_kernel)
         
     | 
| 184 | 
         
            -
                return kernel
         
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
            def fspecial_gaussian(hsize, sigma):
         
     | 
| 188 | 
         
            -
                hsize = [hsize, hsize]
         
     | 
| 189 | 
         
            -
                siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
         
     | 
| 190 | 
         
            -
                std = sigma
         
     | 
| 191 | 
         
            -
                [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
         
     | 
| 192 | 
         
            -
                arg = -(x * x + y * y) / (2 * std * std)
         
     | 
| 193 | 
         
            -
                h = np.exp(arg)
         
     | 
| 194 | 
         
            -
                h[h < scipy.finfo(float).eps * h.max()] = 0
         
     | 
| 195 | 
         
            -
                sumh = h.sum()
         
     | 
| 196 | 
         
            -
                if sumh != 0:
         
     | 
| 197 | 
         
            -
                    h = h / sumh
         
     | 
| 198 | 
         
            -
                return h
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
            def fspecial_laplacian(alpha):
         
     | 
| 202 | 
         
            -
                alpha = max([0, min([alpha, 1])])
         
     | 
| 203 | 
         
            -
                h1 = alpha / (alpha + 1)
         
     | 
| 204 | 
         
            -
                h2 = (1 - alpha) / (alpha + 1)
         
     | 
| 205 | 
         
            -
                h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
         
     | 
| 206 | 
         
            -
                h = np.array(h)
         
     | 
| 207 | 
         
            -
                return h
         
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
            def fspecial(filter_type, *args, **kwargs):
         
     | 
| 211 | 
         
            -
                '''
         
     | 
| 212 | 
         
            -
                python code from:
         
     | 
| 213 | 
         
            -
                https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
         
     | 
| 214 | 
         
            -
                '''
         
     | 
| 215 | 
         
            -
                if filter_type == 'gaussian':
         
     | 
| 216 | 
         
            -
                    return fspecial_gaussian(*args, **kwargs)
         
     | 
| 217 | 
         
            -
                if filter_type == 'laplacian':
         
     | 
| 218 | 
         
            -
                    return fspecial_laplacian(*args, **kwargs)
         
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
            """
         
     | 
| 222 | 
         
            -
            # --------------------------------------------
         
     | 
| 223 | 
         
            -
            # degradation models
         
     | 
| 224 | 
         
            -
            # --------------------------------------------
         
     | 
| 225 | 
         
            -
            """
         
     | 
| 226 | 
         
            -
             
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
            -
            def bicubic_degradation(x, sf=3):
         
     | 
| 229 | 
         
            -
                '''
         
     | 
| 230 | 
         
            -
                Args:
         
     | 
| 231 | 
         
            -
                    x: HxWxC image, [0, 1]
         
     | 
| 232 | 
         
            -
                    sf: down-scale factor
         
     | 
| 233 | 
         
            -
                Return:
         
     | 
| 234 | 
         
            -
                    bicubicly downsampled LR image
         
     | 
| 235 | 
         
            -
                '''
         
     | 
| 236 | 
         
            -
                x = util.imresize_np(x, scale=1 / sf)
         
     | 
| 237 | 
         
            -
                return x
         
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
             
     | 
| 240 | 
         
            -
            def srmd_degradation(x, k, sf=3):
         
     | 
| 241 | 
         
            -
                ''' blur + bicubic downsampling
         
     | 
| 242 | 
         
            -
                Args:
         
     | 
| 243 | 
         
            -
                    x: HxWxC image, [0, 1]
         
     | 
| 244 | 
         
            -
                    k: hxw, double
         
     | 
| 245 | 
         
            -
                    sf: down-scale factor
         
     | 
| 246 | 
         
            -
                Return:
         
     | 
| 247 | 
         
            -
                    downsampled LR image
         
     | 
| 248 | 
         
            -
                Reference:
         
     | 
| 249 | 
         
            -
                    @inproceedings{zhang2018learning,
         
     | 
| 250 | 
         
            -
                      title={Learning a single convolutional super-resolution network for multiple degradations},
         
     | 
| 251 | 
         
            -
                      author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
         
     | 
| 252 | 
         
            -
                      booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
         
     | 
| 253 | 
         
            -
                      pages={3262--3271},
         
     | 
| 254 | 
         
            -
                      year={2018}
         
     | 
| 255 | 
         
            -
                    }
         
     | 
| 256 | 
         
            -
                '''
         
     | 
| 257 | 
         
            -
                x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
         
     | 
| 258 | 
         
            -
                x = bicubic_degradation(x, sf=sf)
         
     | 
| 259 | 
         
            -
                return x
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
             
     | 
| 262 | 
         
            -
            def dpsr_degradation(x, k, sf=3):
         
     | 
| 263 | 
         
            -
                ''' bicubic downsampling + blur
         
     | 
| 264 | 
         
            -
                Args:
         
     | 
| 265 | 
         
            -
                    x: HxWxC image, [0, 1]
         
     | 
| 266 | 
         
            -
                    k: hxw, double
         
     | 
| 267 | 
         
            -
                    sf: down-scale factor
         
     | 
| 268 | 
         
            -
                Return:
         
     | 
| 269 | 
         
            -
                    downsampled LR image
         
     | 
| 270 | 
         
            -
                Reference:
         
     | 
| 271 | 
         
            -
                    @inproceedings{zhang2019deep,
         
     | 
| 272 | 
         
            -
                      title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
         
     | 
| 273 | 
         
            -
                      author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
         
     | 
| 274 | 
         
            -
                      booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
         
     | 
| 275 | 
         
            -
                      pages={1671--1681},
         
     | 
| 276 | 
         
            -
                      year={2019}
         
     | 
| 277 | 
         
            -
                    }
         
     | 
| 278 | 
         
            -
                '''
         
     | 
| 279 | 
         
            -
                x = bicubic_degradation(x, sf=sf)
         
     | 
| 280 | 
         
            -
                x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
         
     | 
| 281 | 
         
            -
                return x
         
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
             
     | 
| 284 | 
         
            -
            def classical_degradation(x, k, sf=3):
         
     | 
| 285 | 
         
            -
                ''' blur + downsampling
         
     | 
| 286 | 
         
            -
                Args:
         
     | 
| 287 | 
         
            -
                    x: HxWxC image, [0, 1]/[0, 255]
         
     | 
| 288 | 
         
            -
                    k: hxw, double
         
     | 
| 289 | 
         
            -
                    sf: down-scale factor
         
     | 
| 290 | 
         
            -
                Return:
         
     | 
| 291 | 
         
            -
                    downsampled LR image
         
     | 
| 292 | 
         
            -
                '''
         
     | 
| 293 | 
         
            -
                x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
         
     | 
| 294 | 
         
            -
                # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
         
     | 
| 295 | 
         
            -
                st = 0
         
     | 
| 296 | 
         
            -
                return x[st::sf, st::sf, ...]
         
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
             
     | 
| 299 | 
         
            -
            def add_sharpening(img, weight=0.5, radius=50, threshold=10):
         
     | 
| 300 | 
         
            -
                """USM sharpening. borrowed from real-ESRGAN
         
     | 
| 301 | 
         
            -
                Input image: I; Blurry image: B.
         
     | 
| 302 | 
         
            -
                1. K = I + weight * (I - B)
         
     | 
| 303 | 
         
            -
                2. Mask = 1 if abs(I - B) > threshold, else: 0
         
     | 
| 304 | 
         
            -
                3. Blur mask:
         
     | 
| 305 | 
         
            -
                4. Out = Mask * K + (1 - Mask) * I
         
     | 
| 306 | 
         
            -
                Args:
         
     | 
| 307 | 
         
            -
                    img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
         
     | 
| 308 | 
         
            -
                    weight (float): Sharp weight. Default: 1.
         
     | 
| 309 | 
         
            -
                    radius (float): Kernel size of Gaussian blur. Default: 50.
         
     | 
| 310 | 
         
            -
                    threshold (int):
         
     | 
| 311 | 
         
            -
                """
         
     | 
| 312 | 
         
            -
                if radius % 2 == 0:
         
     | 
| 313 | 
         
            -
                    radius += 1
         
     | 
| 314 | 
         
            -
                blur = cv2.GaussianBlur(img, (radius, radius), 0)
         
     | 
| 315 | 
         
            -
                residual = img - blur
         
     | 
| 316 | 
         
            -
                mask = np.abs(residual) * 255 > threshold
         
     | 
| 317 | 
         
            -
                mask = mask.astype('float32')
         
     | 
| 318 | 
         
            -
                soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
         
     | 
| 319 | 
         
            -
             
     | 
| 320 | 
         
            -
                K = img + weight * residual
         
     | 
| 321 | 
         
            -
                K = np.clip(K, 0, 1)
         
     | 
| 322 | 
         
            -
                return soft_mask * K + (1 - soft_mask) * img
         
     | 
| 323 | 
         
            -
             
     | 
| 324 | 
         
            -
             
     | 
| 325 | 
         
            -
            def add_blur(img, sf=4):
         
     | 
| 326 | 
         
            -
                wd2 = 4.0 + sf
         
     | 
| 327 | 
         
            -
                wd = 2.0 + 0.2 * sf
         
     | 
| 328 | 
         
            -
                if random.random() < 0.5:
         
     | 
| 329 | 
         
            -
                    l1 = wd2 * random.random()
         
     | 
| 330 | 
         
            -
                    l2 = wd2 * random.random()
         
     | 
| 331 | 
         
            -
                    k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
         
     | 
| 332 | 
         
            -
                else:
         
     | 
| 333 | 
         
            -
                    k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
         
     | 
| 334 | 
         
            -
                img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
         
     | 
| 335 | 
         
            -
             
     | 
| 336 | 
         
            -
                return img
         
     | 
| 337 | 
         
            -
             
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
            def add_resize(img, sf=4):
         
     | 
| 340 | 
         
            -
                rnum = np.random.rand()
         
     | 
| 341 | 
         
            -
                if rnum > 0.8:  # up
         
     | 
| 342 | 
         
            -
                    sf1 = random.uniform(1, 2)
         
     | 
| 343 | 
         
            -
                elif rnum < 0.7:  # down
         
     | 
| 344 | 
         
            -
                    sf1 = random.uniform(0.5 / sf, 1)
         
     | 
| 345 | 
         
            -
                else:
         
     | 
| 346 | 
         
            -
                    sf1 = 1.0
         
     | 
| 347 | 
         
            -
                img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
         
     | 
| 348 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 349 | 
         
            -
             
     | 
| 350 | 
         
            -
                return img
         
     | 
| 351 | 
         
            -
             
     | 
| 352 | 
         
            -
             
     | 
| 353 | 
         
            -
            # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
         
     | 
| 354 | 
         
            -
            #     noise_level = random.randint(noise_level1, noise_level2)
         
     | 
| 355 | 
         
            -
            #     rnum = np.random.rand()
         
     | 
| 356 | 
         
            -
            #     if rnum > 0.6:  # add color Gaussian noise
         
     | 
| 357 | 
         
            -
            #         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
         
     | 
| 358 | 
         
            -
            #     elif rnum < 0.4:  # add grayscale Gaussian noise
         
     | 
| 359 | 
         
            -
            #         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
         
     | 
| 360 | 
         
            -
            #     else:  # add  noise
         
     | 
| 361 | 
         
            -
            #         L = noise_level2 / 255.
         
     | 
| 362 | 
         
            -
            #         D = np.diag(np.random.rand(3))
         
     | 
| 363 | 
         
            -
            #         U = orth(np.random.rand(3, 3))
         
     | 
| 364 | 
         
            -
            #         conv = np.dot(np.dot(np.transpose(U), D), U)
         
     | 
| 365 | 
         
            -
            #         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
         
     | 
| 366 | 
         
            -
            #     img = np.clip(img, 0.0, 1.0)
         
     | 
| 367 | 
         
            -
            #     return img
         
     | 
| 368 | 
         
            -
             
     | 
| 369 | 
         
            -
            def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
         
     | 
| 370 | 
         
            -
                noise_level = random.randint(noise_level1, noise_level2)
         
     | 
| 371 | 
         
            -
                rnum = np.random.rand()
         
     | 
| 372 | 
         
            -
                if rnum > 0.6:  # add color Gaussian noise
         
     | 
| 373 | 
         
            -
                    img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
         
     | 
| 374 | 
         
            -
                elif rnum < 0.4:  # add grayscale Gaussian noise
         
     | 
| 375 | 
         
            -
                    img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
         
     | 
| 376 | 
         
            -
                else:  # add  noise
         
     | 
| 377 | 
         
            -
                    L = noise_level2 / 255.
         
     | 
| 378 | 
         
            -
                    D = np.diag(np.random.rand(3))
         
     | 
| 379 | 
         
            -
                    U = orth(np.random.rand(3, 3))
         
     | 
| 380 | 
         
            -
                    conv = np.dot(np.dot(np.transpose(U), D), U)
         
     | 
| 381 | 
         
            -
                    img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
         
     | 
| 382 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 383 | 
         
            -
                return img
         
     | 
| 384 | 
         
            -
             
     | 
| 385 | 
         
            -
             
     | 
| 386 | 
         
            -
            def add_speckle_noise(img, noise_level1=2, noise_level2=25):
         
     | 
| 387 | 
         
            -
                noise_level = random.randint(noise_level1, noise_level2)
         
     | 
| 388 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 389 | 
         
            -
                rnum = random.random()
         
     | 
| 390 | 
         
            -
                if rnum > 0.6:
         
     | 
| 391 | 
         
            -
                    img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
         
     | 
| 392 | 
         
            -
                elif rnum < 0.4:
         
     | 
| 393 | 
         
            -
                    img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
         
     | 
| 394 | 
         
            -
                else:
         
     | 
| 395 | 
         
            -
                    L = noise_level2 / 255.
         
     | 
| 396 | 
         
            -
                    D = np.diag(np.random.rand(3))
         
     | 
| 397 | 
         
            -
                    U = orth(np.random.rand(3, 3))
         
     | 
| 398 | 
         
            -
                    conv = np.dot(np.dot(np.transpose(U), D), U)
         
     | 
| 399 | 
         
            -
                    img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
         
     | 
| 400 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 401 | 
         
            -
                return img
         
     | 
| 402 | 
         
            -
             
     | 
| 403 | 
         
            -
             
     | 
| 404 | 
         
            -
            def add_Poisson_noise(img):
         
     | 
| 405 | 
         
            -
                img = np.clip((img * 255.0).round(), 0, 255) / 255.
         
     | 
| 406 | 
         
            -
                vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
         
     | 
| 407 | 
         
            -
                if random.random() < 0.5:
         
     | 
| 408 | 
         
            -
                    img = np.random.poisson(img * vals).astype(np.float32) / vals
         
     | 
| 409 | 
         
            -
                else:
         
     | 
| 410 | 
         
            -
                    img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
         
     | 
| 411 | 
         
            -
                    img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
         
     | 
| 412 | 
         
            -
                    noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
         
     | 
| 413 | 
         
            -
                    img += noise_gray[:, :, np.newaxis]
         
     | 
| 414 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 415 | 
         
            -
                return img
         
     | 
| 416 | 
         
            -
             
     | 
| 417 | 
         
            -
             
     | 
| 418 | 
         
            -
            def add_JPEG_noise(img):
         
     | 
| 419 | 
         
            -
                quality_factor = random.randint(30, 95)
         
     | 
| 420 | 
         
            -
                img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
         
     | 
| 421 | 
         
            -
                result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
         
     | 
| 422 | 
         
            -
                img = cv2.imdecode(encimg, 1)
         
     | 
| 423 | 
         
            -
                img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
         
     | 
| 424 | 
         
            -
                return img
         
     | 
| 425 | 
         
            -
             
     | 
| 426 | 
         
            -
             
     | 
| 427 | 
         
            -
            def random_crop(lq, hq, sf=4, lq_patchsize=64):
         
     | 
| 428 | 
         
            -
                h, w = lq.shape[:2]
         
     | 
| 429 | 
         
            -
                rnd_h = random.randint(0, h - lq_patchsize)
         
     | 
| 430 | 
         
            -
                rnd_w = random.randint(0, w - lq_patchsize)
         
     | 
| 431 | 
         
            -
                lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
         
     | 
| 432 | 
         
            -
             
     | 
| 433 | 
         
            -
                rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
         
     | 
| 434 | 
         
            -
                hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
         
     | 
| 435 | 
         
            -
                return lq, hq
         
     | 
| 436 | 
         
            -
             
     | 
| 437 | 
         
            -
             
     | 
| 438 | 
         
            -
            def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
         
     | 
| 439 | 
         
            -
                """
         
     | 
| 440 | 
         
            -
                This is the degradation model of BSRGAN from the paper
         
     | 
| 441 | 
         
            -
                "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
         
     | 
| 442 | 
         
            -
                ----------
         
     | 
| 443 | 
         
            -
                img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
         
     | 
| 444 | 
         
            -
                sf: scale factor
         
     | 
| 445 | 
         
            -
                isp_model: camera ISP model
         
     | 
| 446 | 
         
            -
                Returns
         
     | 
| 447 | 
         
            -
                -------
         
     | 
| 448 | 
         
            -
                img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
         
     | 
| 449 | 
         
            -
                hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
         
     | 
| 450 | 
         
            -
                """
         
     | 
| 451 | 
         
            -
                isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
         
     | 
| 452 | 
         
            -
                sf_ori = sf
         
     | 
| 453 | 
         
            -
             
     | 
| 454 | 
         
            -
                h1, w1 = img.shape[:2]
         
     | 
| 455 | 
         
            -
                img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
         
     | 
| 456 | 
         
            -
                h, w = img.shape[:2]
         
     | 
| 457 | 
         
            -
             
     | 
| 458 | 
         
            -
                if h < lq_patchsize * sf or w < lq_patchsize * sf:
         
     | 
| 459 | 
         
            -
                    raise ValueError(f'img size ({h1}X{w1}) is too small!')
         
     | 
| 460 | 
         
            -
             
     | 
| 461 | 
         
            -
                hq = img.copy()
         
     | 
| 462 | 
         
            -
             
     | 
| 463 | 
         
            -
                if sf == 4 and random.random() < scale2_prob:  # downsample1
         
     | 
| 464 | 
         
            -
                    if np.random.rand() < 0.5:
         
     | 
| 465 | 
         
            -
                        img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
         
     | 
| 466 | 
         
            -
                                         interpolation=random.choice([1, 2, 3]))
         
     | 
| 467 | 
         
            -
                    else:
         
     | 
| 468 | 
         
            -
                        img = util.imresize_np(img, 1 / 2, True)
         
     | 
| 469 | 
         
            -
                    img = np.clip(img, 0.0, 1.0)
         
     | 
| 470 | 
         
            -
                    sf = 2
         
     | 
| 471 | 
         
            -
             
     | 
| 472 | 
         
            -
                shuffle_order = random.sample(range(7), 7)
         
     | 
| 473 | 
         
            -
                idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
         
     | 
| 474 | 
         
            -
                if idx1 > idx2:  # keep downsample3 last
         
     | 
| 475 | 
         
            -
                    shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
         
     | 
| 476 | 
         
            -
             
     | 
| 477 | 
         
            -
                for i in shuffle_order:
         
     | 
| 478 | 
         
            -
             
     | 
| 479 | 
         
            -
                    if i == 0:
         
     | 
| 480 | 
         
            -
                        img = add_blur(img, sf=sf)
         
     | 
| 481 | 
         
            -
             
     | 
| 482 | 
         
            -
                    elif i == 1:
         
     | 
| 483 | 
         
            -
                        img = add_blur(img, sf=sf)
         
     | 
| 484 | 
         
            -
             
     | 
| 485 | 
         
            -
                    elif i == 2:
         
     | 
| 486 | 
         
            -
                        a, b = img.shape[1], img.shape[0]
         
     | 
| 487 | 
         
            -
                        # downsample2
         
     | 
| 488 | 
         
            -
                        if random.random() < 0.75:
         
     | 
| 489 | 
         
            -
                            sf1 = random.uniform(1, 2 * sf)
         
     | 
| 490 | 
         
            -
                            img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
         
     | 
| 491 | 
         
            -
                                             interpolation=random.choice([1, 2, 3]))
         
     | 
| 492 | 
         
            -
                        else:
         
     | 
| 493 | 
         
            -
                            k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
         
     | 
| 494 | 
         
            -
                            k_shifted = shift_pixel(k, sf)
         
     | 
| 495 | 
         
            -
                            k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
         
     | 
| 496 | 
         
            -
                            img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
         
     | 
| 497 | 
         
            -
                            img = img[0::sf, 0::sf, ...]  # nearest downsampling
         
     | 
| 498 | 
         
            -
                        img = np.clip(img, 0.0, 1.0)
         
     | 
| 499 | 
         
            -
             
     | 
| 500 | 
         
            -
                    elif i == 3:
         
     | 
| 501 | 
         
            -
                        # downsample3
         
     | 
| 502 | 
         
            -
                        img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
         
     | 
| 503 | 
         
            -
                        img = np.clip(img, 0.0, 1.0)
         
     | 
| 504 | 
         
            -
             
     | 
| 505 | 
         
            -
                    elif i == 4:
         
     | 
| 506 | 
         
            -
                        # add Gaussian noise
         
     | 
| 507 | 
         
            -
                        img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
         
     | 
| 508 | 
         
            -
             
     | 
| 509 | 
         
            -
                    elif i == 5:
         
     | 
| 510 | 
         
            -
                        # add JPEG noise
         
     | 
| 511 | 
         
            -
                        if random.random() < jpeg_prob:
         
     | 
| 512 | 
         
            -
                            img = add_JPEG_noise(img)
         
     | 
| 513 | 
         
            -
             
     | 
| 514 | 
         
            -
                    elif i == 6:
         
     | 
| 515 | 
         
            -
                        # add processed camera sensor noise
         
     | 
| 516 | 
         
            -
                        if random.random() < isp_prob and isp_model is not None:
         
     | 
| 517 | 
         
            -
                            with torch.no_grad():
         
     | 
| 518 | 
         
            -
                                img, hq = isp_model.forward(img.copy(), hq)
         
     | 
| 519 | 
         
            -
             
     | 
| 520 | 
         
            -
                # add final JPEG compression noise
         
     | 
| 521 | 
         
            -
                img = add_JPEG_noise(img)
         
     | 
| 522 | 
         
            -
             
     | 
| 523 | 
         
            -
                # random crop
         
     | 
| 524 | 
         
            -
                img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
         
     | 
| 525 | 
         
            -
             
     | 
| 526 | 
         
            -
                return img, hq
         
     | 
| 527 | 
         
            -
             
     | 
| 528 | 
         
            -
             
     | 
| 529 | 
         
            -
            # todo no isp_model?
         
     | 
| 530 | 
         
            -
            def degradation_bsrgan_variant(image, sf=4, isp_model=None):
         
     | 
| 531 | 
         
            -
                """
         
     | 
| 532 | 
         
            -
                This is the degradation model of BSRGAN from the paper
         
     | 
| 533 | 
         
            -
                "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
         
     | 
| 534 | 
         
            -
                ----------
         
     | 
| 535 | 
         
            -
                sf: scale factor
         
     | 
| 536 | 
         
            -
                isp_model: camera ISP model
         
     | 
| 537 | 
         
            -
                Returns
         
     | 
| 538 | 
         
            -
                -------
         
     | 
| 539 | 
         
            -
                img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
         
     | 
| 540 | 
         
            -
                hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
         
     | 
| 541 | 
         
            -
                """
         
     | 
| 542 | 
         
            -
                image = util.uint2single(image)
         
     | 
| 543 | 
         
            -
                isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
         
     | 
| 544 | 
         
            -
                sf_ori = sf
         
     | 
| 545 | 
         
            -
             
     | 
| 546 | 
         
            -
                h1, w1 = image.shape[:2]
         
     | 
| 547 | 
         
            -
                image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
         
     | 
| 548 | 
         
            -
                h, w = image.shape[:2]
         
     | 
| 549 | 
         
            -
             
     | 
| 550 | 
         
            -
                hq = image.copy()
         
     | 
| 551 | 
         
            -
             
     | 
| 552 | 
         
            -
                if sf == 4 and random.random() < scale2_prob:  # downsample1
         
     | 
| 553 | 
         
            -
                    if np.random.rand() < 0.5:
         
     | 
| 554 | 
         
            -
                        image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
         
     | 
| 555 | 
         
            -
                                           interpolation=random.choice([1, 2, 3]))
         
     | 
| 556 | 
         
            -
                    else:
         
     | 
| 557 | 
         
            -
                        image = util.imresize_np(image, 1 / 2, True)
         
     | 
| 558 | 
         
            -
                    image = np.clip(image, 0.0, 1.0)
         
     | 
| 559 | 
         
            -
                    sf = 2
         
     | 
| 560 | 
         
            -
             
     | 
| 561 | 
         
            -
                shuffle_order = random.sample(range(7), 7)
         
     | 
| 562 | 
         
            -
                idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
         
     | 
| 563 | 
         
            -
                if idx1 > idx2:  # keep downsample3 last
         
     | 
| 564 | 
         
            -
                    shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
         
     | 
| 565 | 
         
            -
             
     | 
| 566 | 
         
            -
                for i in shuffle_order:
         
     | 
| 567 | 
         
            -
             
     | 
| 568 | 
         
            -
                    if i == 0:
         
     | 
| 569 | 
         
            -
                        image = add_blur(image, sf=sf)
         
     | 
| 570 | 
         
            -
             
     | 
| 571 | 
         
            -
                    elif i == 1:
         
     | 
| 572 | 
         
            -
                        image = add_blur(image, sf=sf)
         
     | 
| 573 | 
         
            -
             
     | 
| 574 | 
         
            -
                    elif i == 2:
         
     | 
| 575 | 
         
            -
                        a, b = image.shape[1], image.shape[0]
         
     | 
| 576 | 
         
            -
                        # downsample2
         
     | 
| 577 | 
         
            -
                        if random.random() < 0.75:
         
     | 
| 578 | 
         
            -
                            sf1 = random.uniform(1, 2 * sf)
         
     | 
| 579 | 
         
            -
                            image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
         
     | 
| 580 | 
         
            -
                                               interpolation=random.choice([1, 2, 3]))
         
     | 
| 581 | 
         
            -
                        else:
         
     | 
| 582 | 
         
            -
                            k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
         
     | 
| 583 | 
         
            -
                            k_shifted = shift_pixel(k, sf)
         
     | 
| 584 | 
         
            -
                            k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
         
     | 
| 585 | 
         
            -
                            image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
         
     | 
| 586 | 
         
            -
                            image = image[0::sf, 0::sf, ...]  # nearest downsampling
         
     | 
| 587 | 
         
            -
                        image = np.clip(image, 0.0, 1.0)
         
     | 
| 588 | 
         
            -
             
     | 
| 589 | 
         
            -
                    elif i == 3:
         
     | 
| 590 | 
         
            -
                        # downsample3
         
     | 
| 591 | 
         
            -
                        image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
         
     | 
| 592 | 
         
            -
                        image = np.clip(image, 0.0, 1.0)
         
     | 
| 593 | 
         
            -
             
     | 
| 594 | 
         
            -
                    elif i == 4:
         
     | 
| 595 | 
         
            -
                        # add Gaussian noise
         
     | 
| 596 | 
         
            -
                        image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
         
     | 
| 597 | 
         
            -
             
     | 
| 598 | 
         
            -
                    elif i == 5:
         
     | 
| 599 | 
         
            -
                        # add JPEG noise
         
     | 
| 600 | 
         
            -
                        if random.random() < jpeg_prob:
         
     | 
| 601 | 
         
            -
                            image = add_JPEG_noise(image)
         
     | 
| 602 | 
         
            -
             
     | 
| 603 | 
         
            -
                    # elif i == 6:
         
     | 
| 604 | 
         
            -
                    #     # add processed camera sensor noise
         
     | 
| 605 | 
         
            -
                    #     if random.random() < isp_prob and isp_model is not None:
         
     | 
| 606 | 
         
            -
                    #         with torch.no_grad():
         
     | 
| 607 | 
         
            -
                    #             img, hq = isp_model.forward(img.copy(), hq)
         
     | 
| 608 | 
         
            -
             
     | 
| 609 | 
         
            -
                # add final JPEG compression noise
         
     | 
| 610 | 
         
            -
                image = add_JPEG_noise(image)
         
     | 
| 611 | 
         
            -
                image = util.single2uint(image)
         
     | 
| 612 | 
         
            -
                example = {"image":image}
         
     | 
| 613 | 
         
            -
                return example
         
     | 
| 614 | 
         
            -
             
     | 
| 615 | 
         
            -
             
     | 
| 616 | 
         
            -
            # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
         
     | 
| 617 | 
         
            -
            def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
         
     | 
| 618 | 
         
            -
                """
         
     | 
| 619 | 
         
            -
                This is an extended degradation model by combining
         
     | 
| 620 | 
         
            -
                the degradation models of BSRGAN and Real-ESRGAN
         
     | 
| 621 | 
         
            -
                ----------
         
     | 
| 622 | 
         
            -
                img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
         
     | 
| 623 | 
         
            -
                sf: scale factor
         
     | 
| 624 | 
         
            -
                use_shuffle: the degradation shuffle
         
     | 
| 625 | 
         
            -
                use_sharp: sharpening the img
         
     | 
| 626 | 
         
            -
                Returns
         
     | 
| 627 | 
         
            -
                -------
         
     | 
| 628 | 
         
            -
                img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
         
     | 
| 629 | 
         
            -
                hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
         
     | 
| 630 | 
         
            -
                """
         
     | 
| 631 | 
         
            -
             
     | 
| 632 | 
         
            -
                h1, w1 = img.shape[:2]
         
     | 
| 633 | 
         
            -
                img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
         
     | 
| 634 | 
         
            -
                h, w = img.shape[:2]
         
     | 
| 635 | 
         
            -
             
     | 
| 636 | 
         
            -
                if h < lq_patchsize * sf or w < lq_patchsize * sf:
         
     | 
| 637 | 
         
            -
                    raise ValueError(f'img size ({h1}X{w1}) is too small!')
         
     | 
| 638 | 
         
            -
             
     | 
| 639 | 
         
            -
                if use_sharp:
         
     | 
| 640 | 
         
            -
                    img = add_sharpening(img)
         
     | 
| 641 | 
         
            -
                hq = img.copy()
         
     | 
| 642 | 
         
            -
             
     | 
| 643 | 
         
            -
                if random.random() < shuffle_prob:
         
     | 
| 644 | 
         
            -
                    shuffle_order = random.sample(range(13), 13)
         
     | 
| 645 | 
         
            -
                else:
         
     | 
| 646 | 
         
            -
                    shuffle_order = list(range(13))
         
     | 
| 647 | 
         
            -
                    # local shuffle for noise, JPEG is always the last one
         
     | 
| 648 | 
         
            -
                    shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
         
     | 
| 649 | 
         
            -
                    shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
         
     | 
| 650 | 
         
            -
             
     | 
| 651 | 
         
            -
                poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
         
     | 
| 652 | 
         
            -
             
     | 
| 653 | 
         
            -
                for i in shuffle_order:
         
     | 
| 654 | 
         
            -
                    if i == 0:
         
     | 
| 655 | 
         
            -
                        img = add_blur(img, sf=sf)
         
     | 
| 656 | 
         
            -
                    elif i == 1:
         
     | 
| 657 | 
         
            -
                        img = add_resize(img, sf=sf)
         
     | 
| 658 | 
         
            -
                    elif i == 2:
         
     | 
| 659 | 
         
            -
                        img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
         
     | 
| 660 | 
         
            -
                    elif i == 3:
         
     | 
| 661 | 
         
            -
                        if random.random() < poisson_prob:
         
     | 
| 662 | 
         
            -
                            img = add_Poisson_noise(img)
         
     | 
| 663 | 
         
            -
                    elif i == 4:
         
     | 
| 664 | 
         
            -
                        if random.random() < speckle_prob:
         
     | 
| 665 | 
         
            -
                            img = add_speckle_noise(img)
         
     | 
| 666 | 
         
            -
                    elif i == 5:
         
     | 
| 667 | 
         
            -
                        if random.random() < isp_prob and isp_model is not None:
         
     | 
| 668 | 
         
            -
                            with torch.no_grad():
         
     | 
| 669 | 
         
            -
                                img, hq = isp_model.forward(img.copy(), hq)
         
     | 
| 670 | 
         
            -
                    elif i == 6:
         
     | 
| 671 | 
         
            -
                        img = add_JPEG_noise(img)
         
     | 
| 672 | 
         
            -
                    elif i == 7:
         
     | 
| 673 | 
         
            -
                        img = add_blur(img, sf=sf)
         
     | 
| 674 | 
         
            -
                    elif i == 8:
         
     | 
| 675 | 
         
            -
                        img = add_resize(img, sf=sf)
         
     | 
| 676 | 
         
            -
                    elif i == 9:
         
     | 
| 677 | 
         
            -
                        img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
         
     | 
| 678 | 
         
            -
                    elif i == 10:
         
     | 
| 679 | 
         
            -
                        if random.random() < poisson_prob:
         
     | 
| 680 | 
         
            -
                            img = add_Poisson_noise(img)
         
     | 
| 681 | 
         
            -
                    elif i == 11:
         
     | 
| 682 | 
         
            -
                        if random.random() < speckle_prob:
         
     | 
| 683 | 
         
            -
                            img = add_speckle_noise(img)
         
     | 
| 684 | 
         
            -
                    elif i == 12:
         
     | 
| 685 | 
         
            -
                        if random.random() < isp_prob and isp_model is not None:
         
     | 
| 686 | 
         
            -
                            with torch.no_grad():
         
     | 
| 687 | 
         
            -
                                img, hq = isp_model.forward(img.copy(), hq)
         
     | 
| 688 | 
         
            -
                    else:
         
     | 
| 689 | 
         
            -
                        print('check the shuffle!')
         
     | 
| 690 | 
         
            -
             
     | 
| 691 | 
         
            -
                # resize to desired size
         
     | 
| 692 | 
         
            -
                img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
         
     | 
| 693 | 
         
            -
                                 interpolation=random.choice([1, 2, 3]))
         
     | 
| 694 | 
         
            -
             
     | 
| 695 | 
         
            -
                # add final JPEG compression noise
         
     | 
| 696 | 
         
            -
                img = add_JPEG_noise(img)
         
     | 
| 697 | 
         
            -
             
     | 
| 698 | 
         
            -
                # random crop
         
     | 
| 699 | 
         
            -
                img, hq = random_crop(img, hq, sf, lq_patchsize)
         
     | 
| 700 | 
         
            -
             
     | 
| 701 | 
         
            -
                return img, hq
         
     | 
| 702 | 
         
            -
             
     | 
| 703 | 
         
            -
             
     | 
| 704 | 
         
            -
            if __name__ == '__main__':
         
     | 
| 705 | 
         
            -
            	print("hey")
         
     | 
| 706 | 
         
            -
            	img = util.imread_uint('utils/test.png', 3)
         
     | 
| 707 | 
         
            -
            	print(img)
         
     | 
| 708 | 
         
            -
            	img = util.uint2single(img)
         
     | 
| 709 | 
         
            -
            	print(img)
         
     | 
| 710 | 
         
            -
            	img = img[:448, :448]
         
     | 
| 711 | 
         
            -
            	h = img.shape[0] // 4
         
     | 
| 712 | 
         
            -
            	print("resizing to", h)
         
     | 
| 713 | 
         
            -
            	sf = 4
         
     | 
| 714 | 
         
            -
            	deg_fn = partial(degradation_bsrgan_variant, sf=sf)
         
     | 
| 715 | 
         
            -
            	for i in range(20):
         
     | 
| 716 | 
         
            -
            		print(i)
         
     | 
| 717 | 
         
            -
            		img_lq = deg_fn(img)
         
     | 
| 718 | 
         
            -
            		print(img_lq)
         
     | 
| 719 | 
         
            -
            		img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
         
     | 
| 720 | 
         
            -
            		print(img_lq.shape)
         
     | 
| 721 | 
         
            -
            		print("bicubic", img_lq_bicubic.shape)
         
     | 
| 722 | 
         
            -
            		print(img_hq.shape)
         
     | 
| 723 | 
         
            -
            		lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
         
     | 
| 724 | 
         
            -
            		                        interpolation=0)
         
     | 
| 725 | 
         
            -
            		lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
         
     | 
| 726 | 
         
            -
            		                        interpolation=0)
         
     | 
| 727 | 
         
            -
            		img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
         
     | 
| 728 | 
         
            -
            		util.imsave(img_concat, str(i) + '.png')
         
     | 
| 729 | 
         
            -
             
     | 
| 730 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/image_degradation/bsrgan_light.py
    DELETED
    
    | 
         @@ -1,651 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # -*- coding: utf-8 -*-
         
     | 
| 2 | 
         
            -
            import numpy as np
         
     | 
| 3 | 
         
            -
            import cv2
         
     | 
| 4 | 
         
            -
            import torch
         
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            from functools import partial
         
     | 
| 7 | 
         
            -
            import random
         
     | 
| 8 | 
         
            -
            from scipy import ndimage
         
     | 
| 9 | 
         
            -
            import scipy
         
     | 
| 10 | 
         
            -
            import scipy.stats as ss
         
     | 
| 11 | 
         
            -
            from scipy.interpolate import interp2d
         
     | 
| 12 | 
         
            -
            from scipy.linalg import orth
         
     | 
| 13 | 
         
            -
            import albumentations
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            import ldm.modules.image_degradation.utils_image as util
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
            """
         
     | 
| 18 | 
         
            -
            # --------------------------------------------
         
     | 
| 19 | 
         
            -
            # Super-Resolution
         
     | 
| 20 | 
         
            -
            # --------------------------------------------
         
     | 
| 21 | 
         
            -
            #
         
     | 
| 22 | 
         
            -
            # Kai Zhang (cskaizhang@gmail.com)
         
     | 
| 23 | 
         
            -
            # https://github.com/cszn
         
     | 
| 24 | 
         
            -
            # From 2019/03--2021/08
         
     | 
| 25 | 
         
            -
            # --------------------------------------------
         
     | 
| 26 | 
         
            -
            """
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            def modcrop_np(img, sf):
         
     | 
| 29 | 
         
            -
                '''
         
     | 
| 30 | 
         
            -
                Args:
         
     | 
| 31 | 
         
            -
                    img: numpy image, WxH or WxHxC
         
     | 
| 32 | 
         
            -
                    sf: scale factor
         
     | 
| 33 | 
         
            -
                Return:
         
     | 
| 34 | 
         
            -
                    cropped image
         
     | 
| 35 | 
         
            -
                '''
         
     | 
| 36 | 
         
            -
                w, h = img.shape[:2]
         
     | 
| 37 | 
         
            -
                im = np.copy(img)
         
     | 
| 38 | 
         
            -
                return im[:w - w % sf, :h - h % sf, ...]
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
            """
         
     | 
| 42 | 
         
            -
            # --------------------------------------------
         
     | 
| 43 | 
         
            -
            # anisotropic Gaussian kernels
         
     | 
| 44 | 
         
            -
            # --------------------------------------------
         
     | 
| 45 | 
         
            -
            """
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
            def analytic_kernel(k):
         
     | 
| 49 | 
         
            -
                """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
         
     | 
| 50 | 
         
            -
                k_size = k.shape[0]
         
     | 
| 51 | 
         
            -
                # Calculate the big kernels size
         
     | 
| 52 | 
         
            -
                big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
         
     | 
| 53 | 
         
            -
                # Loop over the small kernel to fill the big one
         
     | 
| 54 | 
         
            -
                for r in range(k_size):
         
     | 
| 55 | 
         
            -
                    for c in range(k_size):
         
     | 
| 56 | 
         
            -
                        big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
         
     | 
| 57 | 
         
            -
                # Crop the edges of the big kernel to ignore very small values and increase run time of SR
         
     | 
| 58 | 
         
            -
                crop = k_size // 2
         
     | 
| 59 | 
         
            -
                cropped_big_k = big_k[crop:-crop, crop:-crop]
         
     | 
| 60 | 
         
            -
                # Normalize to 1
         
     | 
| 61 | 
         
            -
                return cropped_big_k / cropped_big_k.sum()
         
     | 
| 62 | 
         
            -
             
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
            def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
         
     | 
| 65 | 
         
            -
                """ generate an anisotropic Gaussian kernel
         
     | 
| 66 | 
         
            -
                Args:
         
     | 
| 67 | 
         
            -
                    ksize : e.g., 15, kernel size
         
     | 
| 68 | 
         
            -
                    theta : [0,  pi], rotation angle range
         
     | 
| 69 | 
         
            -
                    l1    : [0.1,50], scaling of eigenvalues
         
     | 
| 70 | 
         
            -
                    l2    : [0.1,l1], scaling of eigenvalues
         
     | 
| 71 | 
         
            -
                    If l1 = l2, will get an isotropic Gaussian kernel.
         
     | 
| 72 | 
         
            -
                Returns:
         
     | 
| 73 | 
         
            -
                    k     : kernel
         
     | 
| 74 | 
         
            -
                """
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
         
     | 
| 77 | 
         
            -
                V = np.array([[v[0], v[1]], [v[1], -v[0]]])
         
     | 
| 78 | 
         
            -
                D = np.array([[l1, 0], [0, l2]])
         
     | 
| 79 | 
         
            -
                Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
         
     | 
| 80 | 
         
            -
                k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
                return k
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
            def gm_blur_kernel(mean, cov, size=15):
         
     | 
| 86 | 
         
            -
                center = size / 2.0 + 0.5
         
     | 
| 87 | 
         
            -
                k = np.zeros([size, size])
         
     | 
| 88 | 
         
            -
                for y in range(size):
         
     | 
| 89 | 
         
            -
                    for x in range(size):
         
     | 
| 90 | 
         
            -
                        cy = y - center + 1
         
     | 
| 91 | 
         
            -
                        cx = x - center + 1
         
     | 
| 92 | 
         
            -
                        k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
                k = k / np.sum(k)
         
     | 
| 95 | 
         
            -
                return k
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
            def shift_pixel(x, sf, upper_left=True):
         
     | 
| 99 | 
         
            -
                """shift pixel for super-resolution with different scale factors
         
     | 
| 100 | 
         
            -
                Args:
         
     | 
| 101 | 
         
            -
                    x: WxHxC or WxH
         
     | 
| 102 | 
         
            -
                    sf: scale factor
         
     | 
| 103 | 
         
            -
                    upper_left: shift direction
         
     | 
| 104 | 
         
            -
                """
         
     | 
| 105 | 
         
            -
                h, w = x.shape[:2]
         
     | 
| 106 | 
         
            -
                shift = (sf - 1) * 0.5
         
     | 
| 107 | 
         
            -
                xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
         
     | 
| 108 | 
         
            -
                if upper_left:
         
     | 
| 109 | 
         
            -
                    x1 = xv + shift
         
     | 
| 110 | 
         
            -
                    y1 = yv + shift
         
     | 
| 111 | 
         
            -
                else:
         
     | 
| 112 | 
         
            -
                    x1 = xv - shift
         
     | 
| 113 | 
         
            -
                    y1 = yv - shift
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
                x1 = np.clip(x1, 0, w - 1)
         
     | 
| 116 | 
         
            -
                y1 = np.clip(y1, 0, h - 1)
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
                if x.ndim == 2:
         
     | 
| 119 | 
         
            -
                    x = interp2d(xv, yv, x)(x1, y1)
         
     | 
| 120 | 
         
            -
                if x.ndim == 3:
         
     | 
| 121 | 
         
            -
                    for i in range(x.shape[-1]):
         
     | 
| 122 | 
         
            -
                        x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
         
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
                return x
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
            def blur(x, k):
         
     | 
| 128 | 
         
            -
                '''
         
     | 
| 129 | 
         
            -
                x: image, NxcxHxW
         
     | 
| 130 | 
         
            -
                k: kernel, Nx1xhxw
         
     | 
| 131 | 
         
            -
                '''
         
     | 
| 132 | 
         
            -
                n, c = x.shape[:2]
         
     | 
| 133 | 
         
            -
                p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
         
     | 
| 134 | 
         
            -
                x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
         
     | 
| 135 | 
         
            -
                k = k.repeat(1, c, 1, 1)
         
     | 
| 136 | 
         
            -
                k = k.view(-1, 1, k.shape[2], k.shape[3])
         
     | 
| 137 | 
         
            -
                x = x.view(1, -1, x.shape[2], x.shape[3])
         
     | 
| 138 | 
         
            -
                x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
         
     | 
| 139 | 
         
            -
                x = x.view(n, c, x.shape[2], x.shape[3])
         
     | 
| 140 | 
         
            -
             
     | 
| 141 | 
         
            -
                return x
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
            def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
         
     | 
| 145 | 
         
            -
                """"
         
     | 
| 146 | 
         
            -
                # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
         
     | 
| 147 | 
         
            -
                # Kai Zhang
         
     | 
| 148 | 
         
            -
                # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
         
     | 
| 149 | 
         
            -
                # max_var = 2.5 * sf
         
     | 
| 150 | 
         
            -
                """
         
     | 
| 151 | 
         
            -
                # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
         
     | 
| 152 | 
         
            -
                lambda_1 = min_var + np.random.rand() * (max_var - min_var)
         
     | 
| 153 | 
         
            -
                lambda_2 = min_var + np.random.rand() * (max_var - min_var)
         
     | 
| 154 | 
         
            -
                theta = np.random.rand() * np.pi  # random theta
         
     | 
| 155 | 
         
            -
                noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
         
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
                # Set COV matrix using Lambdas and Theta
         
     | 
| 158 | 
         
            -
                LAMBDA = np.diag([lambda_1, lambda_2])
         
     | 
| 159 | 
         
            -
                Q = np.array([[np.cos(theta), -np.sin(theta)],
         
     | 
| 160 | 
         
            -
                              [np.sin(theta), np.cos(theta)]])
         
     | 
| 161 | 
         
            -
                SIGMA = Q @ LAMBDA @ Q.T
         
     | 
| 162 | 
         
            -
                INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
         
     | 
| 163 | 
         
            -
             
     | 
| 164 | 
         
            -
                # Set expectation position (shifting kernel for aligned image)
         
     | 
| 165 | 
         
            -
                MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
         
     | 
| 166 | 
         
            -
                MU = MU[None, None, :, None]
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                # Create meshgrid for Gaussian
         
     | 
| 169 | 
         
            -
                [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
         
     | 
| 170 | 
         
            -
                Z = np.stack([X, Y], 2)[:, :, :, None]
         
     | 
| 171 | 
         
            -
             
     | 
| 172 | 
         
            -
                # Calcualte Gaussian for every pixel of the kernel
         
     | 
| 173 | 
         
            -
                ZZ = Z - MU
         
     | 
| 174 | 
         
            -
                ZZ_t = ZZ.transpose(0, 1, 3, 2)
         
     | 
| 175 | 
         
            -
                raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                # shift the kernel so it will be centered
         
     | 
| 178 | 
         
            -
                # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                # Normalize the kernel and return
         
     | 
| 181 | 
         
            -
                # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
         
     | 
| 182 | 
         
            -
                kernel = raw_kernel / np.sum(raw_kernel)
         
     | 
| 183 | 
         
            -
                return kernel
         
     | 
| 184 | 
         
            -
             
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
            def fspecial_gaussian(hsize, sigma):
         
     | 
| 187 | 
         
            -
                hsize = [hsize, hsize]
         
     | 
| 188 | 
         
            -
                siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
         
     | 
| 189 | 
         
            -
                std = sigma
         
     | 
| 190 | 
         
            -
                [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
         
     | 
| 191 | 
         
            -
                arg = -(x * x + y * y) / (2 * std * std)
         
     | 
| 192 | 
         
            -
                h = np.exp(arg)
         
     | 
| 193 | 
         
            -
                h[h < scipy.finfo(float).eps * h.max()] = 0
         
     | 
| 194 | 
         
            -
                sumh = h.sum()
         
     | 
| 195 | 
         
            -
                if sumh != 0:
         
     | 
| 196 | 
         
            -
                    h = h / sumh
         
     | 
| 197 | 
         
            -
                return h
         
     | 
| 198 | 
         
            -
             
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
            def fspecial_laplacian(alpha):
         
     | 
| 201 | 
         
            -
                alpha = max([0, min([alpha, 1])])
         
     | 
| 202 | 
         
            -
                h1 = alpha / (alpha + 1)
         
     | 
| 203 | 
         
            -
                h2 = (1 - alpha) / (alpha + 1)
         
     | 
| 204 | 
         
            -
                h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
         
     | 
| 205 | 
         
            -
                h = np.array(h)
         
     | 
| 206 | 
         
            -
                return h
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
            def fspecial(filter_type, *args, **kwargs):
         
     | 
| 210 | 
         
            -
                '''
         
     | 
| 211 | 
         
            -
                python code from:
         
     | 
| 212 | 
         
            -
                https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
         
     | 
| 213 | 
         
            -
                '''
         
     | 
| 214 | 
         
            -
                if filter_type == 'gaussian':
         
     | 
| 215 | 
         
            -
                    return fspecial_gaussian(*args, **kwargs)
         
     | 
| 216 | 
         
            -
                if filter_type == 'laplacian':
         
     | 
| 217 | 
         
            -
                    return fspecial_laplacian(*args, **kwargs)
         
     | 
| 218 | 
         
            -
             
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
            """
         
     | 
| 221 | 
         
            -
            # --------------------------------------------
         
     | 
| 222 | 
         
            -
            # degradation models
         
     | 
| 223 | 
         
            -
            # --------------------------------------------
         
     | 
| 224 | 
         
            -
            """
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
             
     | 
| 227 | 
         
            -
            def bicubic_degradation(x, sf=3):
         
     | 
| 228 | 
         
            -
                '''
         
     | 
| 229 | 
         
            -
                Args:
         
     | 
| 230 | 
         
            -
                    x: HxWxC image, [0, 1]
         
     | 
| 231 | 
         
            -
                    sf: down-scale factor
         
     | 
| 232 | 
         
            -
                Return:
         
     | 
| 233 | 
         
            -
                    bicubicly downsampled LR image
         
     | 
| 234 | 
         
            -
                '''
         
     | 
| 235 | 
         
            -
                x = util.imresize_np(x, scale=1 / sf)
         
     | 
| 236 | 
         
            -
                return x
         
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
            def srmd_degradation(x, k, sf=3):
         
     | 
| 240 | 
         
            -
                ''' blur + bicubic downsampling
         
     | 
| 241 | 
         
            -
                Args:
         
     | 
| 242 | 
         
            -
                    x: HxWxC image, [0, 1]
         
     | 
| 243 | 
         
            -
                    k: hxw, double
         
     | 
| 244 | 
         
            -
                    sf: down-scale factor
         
     | 
| 245 | 
         
            -
                Return:
         
     | 
| 246 | 
         
            -
                    downsampled LR image
         
     | 
| 247 | 
         
            -
                Reference:
         
     | 
| 248 | 
         
            -
                    @inproceedings{zhang2018learning,
         
     | 
| 249 | 
         
            -
                      title={Learning a single convolutional super-resolution network for multiple degradations},
         
     | 
| 250 | 
         
            -
                      author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
         
     | 
| 251 | 
         
            -
                      booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
         
     | 
| 252 | 
         
            -
                      pages={3262--3271},
         
     | 
| 253 | 
         
            -
                      year={2018}
         
     | 
| 254 | 
         
            -
                    }
         
     | 
| 255 | 
         
            -
                '''
         
     | 
| 256 | 
         
            -
                x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
         
     | 
| 257 | 
         
            -
                x = bicubic_degradation(x, sf=sf)
         
     | 
| 258 | 
         
            -
                return x
         
     | 
| 259 | 
         
            -
             
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
            def dpsr_degradation(x, k, sf=3):
         
     | 
| 262 | 
         
            -
                ''' bicubic downsampling + blur
         
     | 
| 263 | 
         
            -
                Args:
         
     | 
| 264 | 
         
            -
                    x: HxWxC image, [0, 1]
         
     | 
| 265 | 
         
            -
                    k: hxw, double
         
     | 
| 266 | 
         
            -
                    sf: down-scale factor
         
     | 
| 267 | 
         
            -
                Return:
         
     | 
| 268 | 
         
            -
                    downsampled LR image
         
     | 
| 269 | 
         
            -
                Reference:
         
     | 
| 270 | 
         
            -
                    @inproceedings{zhang2019deep,
         
     | 
| 271 | 
         
            -
                      title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
         
     | 
| 272 | 
         
            -
                      author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
         
     | 
| 273 | 
         
            -
                      booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
         
     | 
| 274 | 
         
            -
                      pages={1671--1681},
         
     | 
| 275 | 
         
            -
                      year={2019}
         
     | 
| 276 | 
         
            -
                    }
         
     | 
| 277 | 
         
            -
                '''
         
     | 
| 278 | 
         
            -
                x = bicubic_degradation(x, sf=sf)
         
     | 
| 279 | 
         
            -
                x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
         
     | 
| 280 | 
         
            -
                return x
         
     | 
| 281 | 
         
            -
             
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
            def classical_degradation(x, k, sf=3):
         
     | 
| 284 | 
         
            -
                ''' blur + downsampling
         
     | 
| 285 | 
         
            -
                Args:
         
     | 
| 286 | 
         
            -
                    x: HxWxC image, [0, 1]/[0, 255]
         
     | 
| 287 | 
         
            -
                    k: hxw, double
         
     | 
| 288 | 
         
            -
                    sf: down-scale factor
         
     | 
| 289 | 
         
            -
                Return:
         
     | 
| 290 | 
         
            -
                    downsampled LR image
         
     | 
| 291 | 
         
            -
                '''
         
     | 
| 292 | 
         
            -
                x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
         
     | 
| 293 | 
         
            -
                # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
         
     | 
| 294 | 
         
            -
                st = 0
         
     | 
| 295 | 
         
            -
                return x[st::sf, st::sf, ...]
         
     | 
| 296 | 
         
            -
             
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
            def add_sharpening(img, weight=0.5, radius=50, threshold=10):
         
     | 
| 299 | 
         
            -
                """USM sharpening. borrowed from real-ESRGAN
         
     | 
| 300 | 
         
            -
                Input image: I; Blurry image: B.
         
     | 
| 301 | 
         
            -
                1. K = I + weight * (I - B)
         
     | 
| 302 | 
         
            -
                2. Mask = 1 if abs(I - B) > threshold, else: 0
         
     | 
| 303 | 
         
            -
                3. Blur mask:
         
     | 
| 304 | 
         
            -
                4. Out = Mask * K + (1 - Mask) * I
         
     | 
| 305 | 
         
            -
                Args:
         
     | 
| 306 | 
         
            -
                    img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
         
     | 
| 307 | 
         
            -
                    weight (float): Sharp weight. Default: 1.
         
     | 
| 308 | 
         
            -
                    radius (float): Kernel size of Gaussian blur. Default: 50.
         
     | 
| 309 | 
         
            -
                    threshold (int):
         
     | 
| 310 | 
         
            -
                """
         
     | 
| 311 | 
         
            -
                if radius % 2 == 0:
         
     | 
| 312 | 
         
            -
                    radius += 1
         
     | 
| 313 | 
         
            -
                blur = cv2.GaussianBlur(img, (radius, radius), 0)
         
     | 
| 314 | 
         
            -
                residual = img - blur
         
     | 
| 315 | 
         
            -
                mask = np.abs(residual) * 255 > threshold
         
     | 
| 316 | 
         
            -
                mask = mask.astype('float32')
         
     | 
| 317 | 
         
            -
                soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
         
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
                K = img + weight * residual
         
     | 
| 320 | 
         
            -
                K = np.clip(K, 0, 1)
         
     | 
| 321 | 
         
            -
                return soft_mask * K + (1 - soft_mask) * img
         
     | 
| 322 | 
         
            -
             
     | 
| 323 | 
         
            -
             
     | 
| 324 | 
         
            -
            def add_blur(img, sf=4):
         
     | 
| 325 | 
         
            -
                wd2 = 4.0 + sf
         
     | 
| 326 | 
         
            -
                wd = 2.0 + 0.2 * sf
         
     | 
| 327 | 
         
            -
             
     | 
| 328 | 
         
            -
                wd2 = wd2/4
         
     | 
| 329 | 
         
            -
                wd = wd/4
         
     | 
| 330 | 
         
            -
             
     | 
| 331 | 
         
            -
                if random.random() < 0.5:
         
     | 
| 332 | 
         
            -
                    l1 = wd2 * random.random()
         
     | 
| 333 | 
         
            -
                    l2 = wd2 * random.random()
         
     | 
| 334 | 
         
            -
                    k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
         
     | 
| 335 | 
         
            -
                else:
         
     | 
| 336 | 
         
            -
                    k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
         
     | 
| 337 | 
         
            -
                img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
         
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
                return img
         
     | 
| 340 | 
         
            -
             
     | 
| 341 | 
         
            -
             
     | 
| 342 | 
         
            -
            def add_resize(img, sf=4):
         
     | 
| 343 | 
         
            -
                rnum = np.random.rand()
         
     | 
| 344 | 
         
            -
                if rnum > 0.8:  # up
         
     | 
| 345 | 
         
            -
                    sf1 = random.uniform(1, 2)
         
     | 
| 346 | 
         
            -
                elif rnum < 0.7:  # down
         
     | 
| 347 | 
         
            -
                    sf1 = random.uniform(0.5 / sf, 1)
         
     | 
| 348 | 
         
            -
                else:
         
     | 
| 349 | 
         
            -
                    sf1 = 1.0
         
     | 
| 350 | 
         
            -
                img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
         
     | 
| 351 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 352 | 
         
            -
             
     | 
| 353 | 
         
            -
                return img
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
             
     | 
| 356 | 
         
            -
            # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
         
     | 
| 357 | 
         
            -
            #     noise_level = random.randint(noise_level1, noise_level2)
         
     | 
| 358 | 
         
            -
            #     rnum = np.random.rand()
         
     | 
| 359 | 
         
            -
            #     if rnum > 0.6:  # add color Gaussian noise
         
     | 
| 360 | 
         
            -
            #         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
         
     | 
| 361 | 
         
            -
            #     elif rnum < 0.4:  # add grayscale Gaussian noise
         
     | 
| 362 | 
         
            -
            #         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
         
     | 
| 363 | 
         
            -
            #     else:  # add  noise
         
     | 
| 364 | 
         
            -
            #         L = noise_level2 / 255.
         
     | 
| 365 | 
         
            -
            #         D = np.diag(np.random.rand(3))
         
     | 
| 366 | 
         
            -
            #         U = orth(np.random.rand(3, 3))
         
     | 
| 367 | 
         
            -
            #         conv = np.dot(np.dot(np.transpose(U), D), U)
         
     | 
| 368 | 
         
            -
            #         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
         
     | 
| 369 | 
         
            -
            #     img = np.clip(img, 0.0, 1.0)
         
     | 
| 370 | 
         
            -
            #     return img
         
     | 
| 371 | 
         
            -
             
     | 
| 372 | 
         
            -
            def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
         
     | 
| 373 | 
         
            -
                noise_level = random.randint(noise_level1, noise_level2)
         
     | 
| 374 | 
         
            -
                rnum = np.random.rand()
         
     | 
| 375 | 
         
            -
                if rnum > 0.6:  # add color Gaussian noise
         
     | 
| 376 | 
         
            -
                    img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
         
     | 
| 377 | 
         
            -
                elif rnum < 0.4:  # add grayscale Gaussian noise
         
     | 
| 378 | 
         
            -
                    img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
         
     | 
| 379 | 
         
            -
                else:  # add  noise
         
     | 
| 380 | 
         
            -
                    L = noise_level2 / 255.
         
     | 
| 381 | 
         
            -
                    D = np.diag(np.random.rand(3))
         
     | 
| 382 | 
         
            -
                    U = orth(np.random.rand(3, 3))
         
     | 
| 383 | 
         
            -
                    conv = np.dot(np.dot(np.transpose(U), D), U)
         
     | 
| 384 | 
         
            -
                    img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
         
     | 
| 385 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 386 | 
         
            -
                return img
         
     | 
| 387 | 
         
            -
             
     | 
| 388 | 
         
            -
             
     | 
| 389 | 
         
            -
            def add_speckle_noise(img, noise_level1=2, noise_level2=25):
         
     | 
| 390 | 
         
            -
                noise_level = random.randint(noise_level1, noise_level2)
         
     | 
| 391 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 392 | 
         
            -
                rnum = random.random()
         
     | 
| 393 | 
         
            -
                if rnum > 0.6:
         
     | 
| 394 | 
         
            -
                    img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
         
     | 
| 395 | 
         
            -
                elif rnum < 0.4:
         
     | 
| 396 | 
         
            -
                    img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
         
     | 
| 397 | 
         
            -
                else:
         
     | 
| 398 | 
         
            -
                    L = noise_level2 / 255.
         
     | 
| 399 | 
         
            -
                    D = np.diag(np.random.rand(3))
         
     | 
| 400 | 
         
            -
                    U = orth(np.random.rand(3, 3))
         
     | 
| 401 | 
         
            -
                    conv = np.dot(np.dot(np.transpose(U), D), U)
         
     | 
| 402 | 
         
            -
                    img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
         
     | 
| 403 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 404 | 
         
            -
                return img
         
     | 
| 405 | 
         
            -
             
     | 
| 406 | 
         
            -
             
     | 
| 407 | 
         
            -
            def add_Poisson_noise(img):
         
     | 
| 408 | 
         
            -
                img = np.clip((img * 255.0).round(), 0, 255) / 255.
         
     | 
| 409 | 
         
            -
                vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
         
     | 
| 410 | 
         
            -
                if random.random() < 0.5:
         
     | 
| 411 | 
         
            -
                    img = np.random.poisson(img * vals).astype(np.float32) / vals
         
     | 
| 412 | 
         
            -
                else:
         
     | 
| 413 | 
         
            -
                    img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
         
     | 
| 414 | 
         
            -
                    img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
         
     | 
| 415 | 
         
            -
                    noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
         
     | 
| 416 | 
         
            -
                    img += noise_gray[:, :, np.newaxis]
         
     | 
| 417 | 
         
            -
                img = np.clip(img, 0.0, 1.0)
         
     | 
| 418 | 
         
            -
                return img
         
     | 
| 419 | 
         
            -
             
     | 
| 420 | 
         
            -
             
     | 
| 421 | 
         
            -
            def add_JPEG_noise(img):
         
     | 
| 422 | 
         
            -
                quality_factor = random.randint(80, 95)
         
     | 
| 423 | 
         
            -
                img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
         
     | 
| 424 | 
         
            -
                result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
         
     | 
| 425 | 
         
            -
                img = cv2.imdecode(encimg, 1)
         
     | 
| 426 | 
         
            -
                img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
         
     | 
| 427 | 
         
            -
                return img
         
     | 
| 428 | 
         
            -
             
     | 
| 429 | 
         
            -
             
     | 
| 430 | 
         
            -
            def random_crop(lq, hq, sf=4, lq_patchsize=64):
         
     | 
| 431 | 
         
            -
                h, w = lq.shape[:2]
         
     | 
| 432 | 
         
            -
                rnd_h = random.randint(0, h - lq_patchsize)
         
     | 
| 433 | 
         
            -
                rnd_w = random.randint(0, w - lq_patchsize)
         
     | 
| 434 | 
         
            -
                lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
         
     | 
| 435 | 
         
            -
             
     | 
| 436 | 
         
            -
                rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
         
     | 
| 437 | 
         
            -
                hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
         
     | 
| 438 | 
         
            -
                return lq, hq
         
     | 
| 439 | 
         
            -
             
     | 
| 440 | 
         
            -
             
     | 
| 441 | 
         
            -
            def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
         
     | 
| 442 | 
         
            -
                """
         
     | 
| 443 | 
         
            -
                This is the degradation model of BSRGAN from the paper
         
     | 
| 444 | 
         
            -
                "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
         
     | 
| 445 | 
         
            -
                ----------
         
     | 
| 446 | 
         
            -
                img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
         
     | 
| 447 | 
         
            -
                sf: scale factor
         
     | 
| 448 | 
         
            -
                isp_model: camera ISP model
         
     | 
| 449 | 
         
            -
                Returns
         
     | 
| 450 | 
         
            -
                -------
         
     | 
| 451 | 
         
            -
                img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
         
     | 
| 452 | 
         
            -
                hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
         
     | 
| 453 | 
         
            -
                """
         
     | 
| 454 | 
         
            -
                isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
         
     | 
| 455 | 
         
            -
                sf_ori = sf
         
     | 
| 456 | 
         
            -
             
     | 
| 457 | 
         
            -
                h1, w1 = img.shape[:2]
         
     | 
| 458 | 
         
            -
                img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
         
     | 
| 459 | 
         
            -
                h, w = img.shape[:2]
         
     | 
| 460 | 
         
            -
             
     | 
| 461 | 
         
            -
                if h < lq_patchsize * sf or w < lq_patchsize * sf:
         
     | 
| 462 | 
         
            -
                    raise ValueError(f'img size ({h1}X{w1}) is too small!')
         
     | 
| 463 | 
         
            -
             
     | 
| 464 | 
         
            -
                hq = img.copy()
         
     | 
| 465 | 
         
            -
             
     | 
| 466 | 
         
            -
                if sf == 4 and random.random() < scale2_prob:  # downsample1
         
     | 
| 467 | 
         
            -
                    if np.random.rand() < 0.5:
         
     | 
| 468 | 
         
            -
                        img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
         
     | 
| 469 | 
         
            -
                                         interpolation=random.choice([1, 2, 3]))
         
     | 
| 470 | 
         
            -
                    else:
         
     | 
| 471 | 
         
            -
                        img = util.imresize_np(img, 1 / 2, True)
         
     | 
| 472 | 
         
            -
                    img = np.clip(img, 0.0, 1.0)
         
     | 
| 473 | 
         
            -
                    sf = 2
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
            -
                shuffle_order = random.sample(range(7), 7)
         
     | 
| 476 | 
         
            -
                idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
         
     | 
| 477 | 
         
            -
                if idx1 > idx2:  # keep downsample3 last
         
     | 
| 478 | 
         
            -
                    shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
         
     | 
| 479 | 
         
            -
             
     | 
| 480 | 
         
            -
                for i in shuffle_order:
         
     | 
| 481 | 
         
            -
             
     | 
| 482 | 
         
            -
                    if i == 0:
         
     | 
| 483 | 
         
            -
                        img = add_blur(img, sf=sf)
         
     | 
| 484 | 
         
            -
             
     | 
| 485 | 
         
            -
                    elif i == 1:
         
     | 
| 486 | 
         
            -
                        img = add_blur(img, sf=sf)
         
     | 
| 487 | 
         
            -
             
     | 
| 488 | 
         
            -
                    elif i == 2:
         
     | 
| 489 | 
         
            -
                        a, b = img.shape[1], img.shape[0]
         
     | 
| 490 | 
         
            -
                        # downsample2
         
     | 
| 491 | 
         
            -
                        if random.random() < 0.75:
         
     | 
| 492 | 
         
            -
                            sf1 = random.uniform(1, 2 * sf)
         
     | 
| 493 | 
         
            -
                            img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
         
     | 
| 494 | 
         
            -
                                             interpolation=random.choice([1, 2, 3]))
         
     | 
| 495 | 
         
            -
                        else:
         
     | 
| 496 | 
         
            -
                            k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
         
     | 
| 497 | 
         
            -
                            k_shifted = shift_pixel(k, sf)
         
     | 
| 498 | 
         
            -
                            k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
         
     | 
| 499 | 
         
            -
                            img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
         
     | 
| 500 | 
         
            -
                            img = img[0::sf, 0::sf, ...]  # nearest downsampling
         
     | 
| 501 | 
         
            -
                        img = np.clip(img, 0.0, 1.0)
         
     | 
| 502 | 
         
            -
             
     | 
| 503 | 
         
            -
                    elif i == 3:
         
     | 
| 504 | 
         
            -
                        # downsample3
         
     | 
| 505 | 
         
            -
                        img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
         
     | 
| 506 | 
         
            -
                        img = np.clip(img, 0.0, 1.0)
         
     | 
| 507 | 
         
            -
             
     | 
| 508 | 
         
            -
                    elif i == 4:
         
     | 
| 509 | 
         
            -
                        # add Gaussian noise
         
     | 
| 510 | 
         
            -
                        img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
         
     | 
| 511 | 
         
            -
             
     | 
| 512 | 
         
            -
                    elif i == 5:
         
     | 
| 513 | 
         
            -
                        # add JPEG noise
         
     | 
| 514 | 
         
            -
                        if random.random() < jpeg_prob:
         
     | 
| 515 | 
         
            -
                            img = add_JPEG_noise(img)
         
     | 
| 516 | 
         
            -
             
     | 
| 517 | 
         
            -
                    elif i == 6:
         
     | 
| 518 | 
         
            -
                        # add processed camera sensor noise
         
     | 
| 519 | 
         
            -
                        if random.random() < isp_prob and isp_model is not None:
         
     | 
| 520 | 
         
            -
                            with torch.no_grad():
         
     | 
| 521 | 
         
            -
                                img, hq = isp_model.forward(img.copy(), hq)
         
     | 
| 522 | 
         
            -
             
     | 
| 523 | 
         
            -
                # add final JPEG compression noise
         
     | 
| 524 | 
         
            -
                img = add_JPEG_noise(img)
         
     | 
| 525 | 
         
            -
             
     | 
| 526 | 
         
            -
                # random crop
         
     | 
| 527 | 
         
            -
                img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
         
     | 
| 528 | 
         
            -
             
     | 
| 529 | 
         
            -
                return img, hq
         
     | 
| 530 | 
         
            -
             
     | 
| 531 | 
         
            -
             
     | 
| 532 | 
         
            -
            # todo no isp_model?
         
     | 
| 533 | 
         
            -
            def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
         
     | 
| 534 | 
         
            -
                """
         
     | 
| 535 | 
         
            -
                This is the degradation model of BSRGAN from the paper
         
     | 
| 536 | 
         
            -
                "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
         
     | 
| 537 | 
         
            -
                ----------
         
     | 
| 538 | 
         
            -
                sf: scale factor
         
     | 
| 539 | 
         
            -
                isp_model: camera ISP model
         
     | 
| 540 | 
         
            -
                Returns
         
     | 
| 541 | 
         
            -
                -------
         
     | 
| 542 | 
         
            -
                img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
         
     | 
| 543 | 
         
            -
                hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
         
     | 
| 544 | 
         
            -
                """
         
     | 
| 545 | 
         
            -
                image = util.uint2single(image)
         
     | 
| 546 | 
         
            -
                isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
         
     | 
| 547 | 
         
            -
                sf_ori = sf
         
     | 
| 548 | 
         
            -
             
     | 
| 549 | 
         
            -
                h1, w1 = image.shape[:2]
         
     | 
| 550 | 
         
            -
                image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
         
     | 
| 551 | 
         
            -
                h, w = image.shape[:2]
         
     | 
| 552 | 
         
            -
             
     | 
| 553 | 
         
            -
                hq = image.copy()
         
     | 
| 554 | 
         
            -
             
     | 
| 555 | 
         
            -
                if sf == 4 and random.random() < scale2_prob:  # downsample1
         
     | 
| 556 | 
         
            -
                    if np.random.rand() < 0.5:
         
     | 
| 557 | 
         
            -
                        image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
         
     | 
| 558 | 
         
            -
                                           interpolation=random.choice([1, 2, 3]))
         
     | 
| 559 | 
         
            -
                    else:
         
     | 
| 560 | 
         
            -
                        image = util.imresize_np(image, 1 / 2, True)
         
     | 
| 561 | 
         
            -
                    image = np.clip(image, 0.0, 1.0)
         
     | 
| 562 | 
         
            -
                    sf = 2
         
     | 
| 563 | 
         
            -
             
     | 
| 564 | 
         
            -
                shuffle_order = random.sample(range(7), 7)
         
     | 
| 565 | 
         
            -
                idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
         
     | 
| 566 | 
         
            -
                if idx1 > idx2:  # keep downsample3 last
         
     | 
| 567 | 
         
            -
                    shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
         
     | 
| 568 | 
         
            -
             
     | 
| 569 | 
         
            -
                for i in shuffle_order:
         
     | 
| 570 | 
         
            -
             
     | 
| 571 | 
         
            -
                    if i == 0:
         
     | 
| 572 | 
         
            -
                        image = add_blur(image, sf=sf)
         
     | 
| 573 | 
         
            -
             
     | 
| 574 | 
         
            -
                    # elif i == 1:
         
     | 
| 575 | 
         
            -
                    #     image = add_blur(image, sf=sf)
         
     | 
| 576 | 
         
            -
             
     | 
| 577 | 
         
            -
                    if i == 0:
         
     | 
| 578 | 
         
            -
                        pass
         
     | 
| 579 | 
         
            -
             
     | 
| 580 | 
         
            -
                    elif i == 2:
         
     | 
| 581 | 
         
            -
                        a, b = image.shape[1], image.shape[0]
         
     | 
| 582 | 
         
            -
                        # downsample2
         
     | 
| 583 | 
         
            -
                        if random.random() < 0.8:
         
     | 
| 584 | 
         
            -
                            sf1 = random.uniform(1, 2 * sf)
         
     | 
| 585 | 
         
            -
                            image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
         
     | 
| 586 | 
         
            -
                                               interpolation=random.choice([1, 2, 3]))
         
     | 
| 587 | 
         
            -
                        else:
         
     | 
| 588 | 
         
            -
                            k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
         
     | 
| 589 | 
         
            -
                            k_shifted = shift_pixel(k, sf)
         
     | 
| 590 | 
         
            -
                            k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
         
     | 
| 591 | 
         
            -
                            image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
         
     | 
| 592 | 
         
            -
                            image = image[0::sf, 0::sf, ...]  # nearest downsampling
         
     | 
| 593 | 
         
            -
             
     | 
| 594 | 
         
            -
                        image = np.clip(image, 0.0, 1.0)
         
     | 
| 595 | 
         
            -
             
     | 
| 596 | 
         
            -
                    elif i == 3:
         
     | 
| 597 | 
         
            -
                        # downsample3
         
     | 
| 598 | 
         
            -
                        image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
         
     | 
| 599 | 
         
            -
                        image = np.clip(image, 0.0, 1.0)
         
     | 
| 600 | 
         
            -
             
     | 
| 601 | 
         
            -
                    elif i == 4:
         
     | 
| 602 | 
         
            -
                        # add Gaussian noise
         
     | 
| 603 | 
         
            -
                        image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
         
     | 
| 604 | 
         
            -
             
     | 
| 605 | 
         
            -
                    elif i == 5:
         
     | 
| 606 | 
         
            -
                        # add JPEG noise
         
     | 
| 607 | 
         
            -
                        if random.random() < jpeg_prob:
         
     | 
| 608 | 
         
            -
                            image = add_JPEG_noise(image)
         
     | 
| 609 | 
         
            -
                    #
         
     | 
| 610 | 
         
            -
                    # elif i == 6:
         
     | 
| 611 | 
         
            -
                    #     # add processed camera sensor noise
         
     | 
| 612 | 
         
            -
                    #     if random.random() < isp_prob and isp_model is not None:
         
     | 
| 613 | 
         
            -
                    #         with torch.no_grad():
         
     | 
| 614 | 
         
            -
                    #             img, hq = isp_model.forward(img.copy(), hq)
         
     | 
| 615 | 
         
            -
             
     | 
| 616 | 
         
            -
                # add final JPEG compression noise
         
     | 
| 617 | 
         
            -
                image = add_JPEG_noise(image)
         
     | 
| 618 | 
         
            -
                image = util.single2uint(image)
         
     | 
| 619 | 
         
            -
                if up:
         
     | 
| 620 | 
         
            -
                    image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC)  # todo: random, as above? want to condition on it then
         
     | 
| 621 | 
         
            -
                example = {"image": image}
         
     | 
| 622 | 
         
            -
                return example
         
     | 
| 623 | 
         
            -
             
     | 
| 624 | 
         
            -
             
     | 
| 625 | 
         
            -
             
     | 
| 626 | 
         
            -
             
     | 
| 627 | 
         
            -
            if __name__ == '__main__':
         
     | 
| 628 | 
         
            -
                print("hey")
         
     | 
| 629 | 
         
            -
                img = util.imread_uint('utils/test.png', 3)
         
     | 
| 630 | 
         
            -
                img = img[:448, :448]
         
     | 
| 631 | 
         
            -
                h = img.shape[0] // 4
         
     | 
| 632 | 
         
            -
                print("resizing to", h)
         
     | 
| 633 | 
         
            -
                sf = 4
         
     | 
| 634 | 
         
            -
                deg_fn = partial(degradation_bsrgan_variant, sf=sf)
         
     | 
| 635 | 
         
            -
                for i in range(20):
         
     | 
| 636 | 
         
            -
                    print(i)
         
     | 
| 637 | 
         
            -
                    img_hq = img
         
     | 
| 638 | 
         
            -
                    img_lq = deg_fn(img)["image"]
         
     | 
| 639 | 
         
            -
                    img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
         
     | 
| 640 | 
         
            -
                    print(img_lq)
         
     | 
| 641 | 
         
            -
                    img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
         
     | 
| 642 | 
         
            -
                    print(img_lq.shape)
         
     | 
| 643 | 
         
            -
                    print("bicubic", img_lq_bicubic.shape)
         
     | 
| 644 | 
         
            -
                    print(img_hq.shape)
         
     | 
| 645 | 
         
            -
                    lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
         
     | 
| 646 | 
         
            -
                                            interpolation=0)
         
     | 
| 647 | 
         
            -
                    lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
         
     | 
| 648 | 
         
            -
                                                    (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
         
     | 
| 649 | 
         
            -
                                                    interpolation=0)
         
     | 
| 650 | 
         
            -
                    img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
         
     | 
| 651 | 
         
            -
                    util.imsave(img_concat, str(i) + '.png')
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/image_degradation/utils/test.png
    DELETED
    
    | 
         Binary file (441 kB) 
     | 
| 
         | 
    	
        ldm/modules/image_degradation/utils_image.py
    DELETED
    
    | 
         @@ -1,916 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import os
         
     | 
| 2 | 
         
            -
            import math
         
     | 
| 3 | 
         
            -
            import random
         
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            import torch
         
     | 
| 6 | 
         
            -
            import cv2
         
     | 
| 7 | 
         
            -
            from torchvision.utils import make_grid
         
     | 
| 8 | 
         
            -
            from datetime import datetime
         
     | 
| 9 | 
         
            -
            #import matplotlib.pyplot as plt   # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            '''
         
     | 
| 16 | 
         
            -
            # --------------------------------------------
         
     | 
| 17 | 
         
            -
            # Kai Zhang (github: https://github.com/cszn)
         
     | 
| 18 | 
         
            -
            # 03/Mar/2019
         
     | 
| 19 | 
         
            -
            # --------------------------------------------
         
     | 
| 20 | 
         
            -
            # https://github.com/twhui/SRGAN-pyTorch
         
     | 
| 21 | 
         
            -
            # https://github.com/xinntao/BasicSR
         
     | 
| 22 | 
         
            -
            # --------------------------------------------
         
     | 
| 23 | 
         
            -
            '''
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            def is_image_file(filename):
         
     | 
| 30 | 
         
            -
                return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            def get_timestamp():
         
     | 
| 34 | 
         
            -
                return datetime.now().strftime('%y%m%d-%H%M%S')
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            def imshow(x, title=None, cbar=False, figsize=None):
         
     | 
| 38 | 
         
            -
                plt.figure(figsize=figsize)
         
     | 
| 39 | 
         
            -
                plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
         
     | 
| 40 | 
         
            -
                if title:
         
     | 
| 41 | 
         
            -
                    plt.title(title)
         
     | 
| 42 | 
         
            -
                if cbar:
         
     | 
| 43 | 
         
            -
                    plt.colorbar()
         
     | 
| 44 | 
         
            -
                plt.show()
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            def surf(Z, cmap='rainbow', figsize=None):
         
     | 
| 48 | 
         
            -
                plt.figure(figsize=figsize)
         
     | 
| 49 | 
         
            -
                ax3 = plt.axes(projection='3d')
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                w, h = Z.shape[:2]
         
     | 
| 52 | 
         
            -
                xx = np.arange(0,w,1)
         
     | 
| 53 | 
         
            -
                yy = np.arange(0,h,1)
         
     | 
| 54 | 
         
            -
                X, Y = np.meshgrid(xx, yy)
         
     | 
| 55 | 
         
            -
                ax3.plot_surface(X,Y,Z,cmap=cmap)
         
     | 
| 56 | 
         
            -
                #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
         
     | 
| 57 | 
         
            -
                plt.show()
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
            '''
         
     | 
| 61 | 
         
            -
            # --------------------------------------------
         
     | 
| 62 | 
         
            -
            # get image pathes
         
     | 
| 63 | 
         
            -
            # --------------------------------------------
         
     | 
| 64 | 
         
            -
            '''
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
            def get_image_paths(dataroot):
         
     | 
| 68 | 
         
            -
                paths = None  # return None if dataroot is None
         
     | 
| 69 | 
         
            -
                if dataroot is not None:
         
     | 
| 70 | 
         
            -
                    paths = sorted(_get_paths_from_images(dataroot))
         
     | 
| 71 | 
         
            -
                return paths
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
            def _get_paths_from_images(path):
         
     | 
| 75 | 
         
            -
                assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
         
     | 
| 76 | 
         
            -
                images = []
         
     | 
| 77 | 
         
            -
                for dirpath, _, fnames in sorted(os.walk(path)):
         
     | 
| 78 | 
         
            -
                    for fname in sorted(fnames):
         
     | 
| 79 | 
         
            -
                        if is_image_file(fname):
         
     | 
| 80 | 
         
            -
                            img_path = os.path.join(dirpath, fname)
         
     | 
| 81 | 
         
            -
                            images.append(img_path)
         
     | 
| 82 | 
         
            -
                assert images, '{:s} has no valid image file'.format(path)
         
     | 
| 83 | 
         
            -
                return images
         
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
            '''
         
     | 
| 87 | 
         
            -
            # --------------------------------------------
         
     | 
| 88 | 
         
            -
            # split large images into small images 
         
     | 
| 89 | 
         
            -
            # --------------------------------------------
         
     | 
| 90 | 
         
            -
            '''
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
            def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
         
     | 
| 94 | 
         
            -
                w, h = img.shape[:2]
         
     | 
| 95 | 
         
            -
                patches = []
         
     | 
| 96 | 
         
            -
                if w > p_max and h > p_max:
         
     | 
| 97 | 
         
            -
                    w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
         
     | 
| 98 | 
         
            -
                    h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
         
     | 
| 99 | 
         
            -
                    w1.append(w-p_size)
         
     | 
| 100 | 
         
            -
                    h1.append(h-p_size)
         
     | 
| 101 | 
         
            -
            #        print(w1)
         
     | 
| 102 | 
         
            -
            #        print(h1)
         
     | 
| 103 | 
         
            -
                    for i in w1:
         
     | 
| 104 | 
         
            -
                        for j in h1:
         
     | 
| 105 | 
         
            -
                            patches.append(img[i:i+p_size, j:j+p_size,:])
         
     | 
| 106 | 
         
            -
                else:
         
     | 
| 107 | 
         
            -
                    patches.append(img)
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                return patches
         
     | 
| 110 | 
         
            -
             
     | 
| 111 | 
         
            -
             
     | 
| 112 | 
         
            -
            def imssave(imgs, img_path):
         
     | 
| 113 | 
         
            -
                """
         
     | 
| 114 | 
         
            -
                imgs: list, N images of size WxHxC
         
     | 
| 115 | 
         
            -
                """
         
     | 
| 116 | 
         
            -
                img_name, ext = os.path.splitext(os.path.basename(img_path))
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
                for i, img in enumerate(imgs):
         
     | 
| 119 | 
         
            -
                    if img.ndim == 3:
         
     | 
| 120 | 
         
            -
                        img = img[:, :, [2, 1, 0]]
         
     | 
| 121 | 
         
            -
                    new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
         
     | 
| 122 | 
         
            -
                    cv2.imwrite(new_path, img)
         
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
            def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
         
     | 
| 126 | 
         
            -
                """
         
     | 
| 127 | 
         
            -
                split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
         
     | 
| 128 | 
         
            -
                and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
         
     | 
| 129 | 
         
            -
                will be splitted.
         
     | 
| 130 | 
         
            -
                Args:
         
     | 
| 131 | 
         
            -
                    original_dataroot:
         
     | 
| 132 | 
         
            -
                    taget_dataroot:
         
     | 
| 133 | 
         
            -
                    p_size: size of small images
         
     | 
| 134 | 
         
            -
                    p_overlap: patch size in training is a good choice
         
     | 
| 135 | 
         
            -
                    p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
         
     | 
| 136 | 
         
            -
                """
         
     | 
| 137 | 
         
            -
                paths = get_image_paths(original_dataroot)
         
     | 
| 138 | 
         
            -
                for img_path in paths:
         
     | 
| 139 | 
         
            -
                    # img_name, ext = os.path.splitext(os.path.basename(img_path))
         
     | 
| 140 | 
         
            -
                    img = imread_uint(img_path, n_channels=n_channels)
         
     | 
| 141 | 
         
            -
                    patches = patches_from_image(img, p_size, p_overlap, p_max)
         
     | 
| 142 | 
         
            -
                    imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
         
     | 
| 143 | 
         
            -
                    #if original_dataroot == taget_dataroot:
         
     | 
| 144 | 
         
            -
                    #del img_path
         
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
            '''
         
     | 
| 147 | 
         
            -
            # --------------------------------------------
         
     | 
| 148 | 
         
            -
            # makedir
         
     | 
| 149 | 
         
            -
            # --------------------------------------------
         
     | 
| 150 | 
         
            -
            '''
         
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
            def mkdir(path):
         
     | 
| 154 | 
         
            -
                if not os.path.exists(path):
         
     | 
| 155 | 
         
            -
                    os.makedirs(path)
         
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
            def mkdirs(paths):
         
     | 
| 159 | 
         
            -
                if isinstance(paths, str):
         
     | 
| 160 | 
         
            -
                    mkdir(paths)
         
     | 
| 161 | 
         
            -
                else:
         
     | 
| 162 | 
         
            -
                    for path in paths:
         
     | 
| 163 | 
         
            -
                        mkdir(path)
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
            def mkdir_and_rename(path):
         
     | 
| 167 | 
         
            -
                if os.path.exists(path):
         
     | 
| 168 | 
         
            -
                    new_name = path + '_archived_' + get_timestamp()
         
     | 
| 169 | 
         
            -
                    print('Path already exists. Rename it to [{:s}]'.format(new_name))
         
     | 
| 170 | 
         
            -
                    os.rename(path, new_name)
         
     | 
| 171 | 
         
            -
                os.makedirs(path)
         
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
             
     | 
| 174 | 
         
            -
            '''
         
     | 
| 175 | 
         
            -
            # --------------------------------------------
         
     | 
| 176 | 
         
            -
            # read image from path
         
     | 
| 177 | 
         
            -
            # opencv is fast, but read BGR numpy image
         
     | 
| 178 | 
         
            -
            # --------------------------------------------
         
     | 
| 179 | 
         
            -
            '''
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
            # --------------------------------------------
         
     | 
| 183 | 
         
            -
            # get uint8 image of size HxWxn_channles (RGB)
         
     | 
| 184 | 
         
            -
            # --------------------------------------------
         
     | 
| 185 | 
         
            -
            def imread_uint(path, n_channels=3):
         
     | 
| 186 | 
         
            -
                #  input: path
         
     | 
| 187 | 
         
            -
                # output: HxWx3(RGB or GGG), or HxWx1 (G)
         
     | 
| 188 | 
         
            -
                if n_channels == 1:
         
     | 
| 189 | 
         
            -
                    img = cv2.imread(path, 0)  # cv2.IMREAD_GRAYSCALE
         
     | 
| 190 | 
         
            -
                    img = np.expand_dims(img, axis=2)  # HxWx1
         
     | 
| 191 | 
         
            -
                elif n_channels == 3:
         
     | 
| 192 | 
         
            -
                    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # BGR or G
         
     | 
| 193 | 
         
            -
                    if img.ndim == 2:
         
     | 
| 194 | 
         
            -
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)  # GGG
         
     | 
| 195 | 
         
            -
                    else:
         
     | 
| 196 | 
         
            -
                        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB
         
     | 
| 197 | 
         
            -
                return img
         
     | 
| 198 | 
         
            -
             
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
            # --------------------------------------------
         
     | 
| 201 | 
         
            -
            # matlab's imwrite
         
     | 
| 202 | 
         
            -
            # --------------------------------------------
         
     | 
| 203 | 
         
            -
            def imsave(img, img_path):
         
     | 
| 204 | 
         
            -
                img = np.squeeze(img)
         
     | 
| 205 | 
         
            -
                if img.ndim == 3:
         
     | 
| 206 | 
         
            -
                    img = img[:, :, [2, 1, 0]]
         
     | 
| 207 | 
         
            -
                cv2.imwrite(img_path, img)
         
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
            def imwrite(img, img_path):
         
     | 
| 210 | 
         
            -
                img = np.squeeze(img)
         
     | 
| 211 | 
         
            -
                if img.ndim == 3:
         
     | 
| 212 | 
         
            -
                    img = img[:, :, [2, 1, 0]]
         
     | 
| 213 | 
         
            -
                cv2.imwrite(img_path, img)
         
     | 
| 214 | 
         
            -
             
     | 
| 215 | 
         
            -
             
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
            # --------------------------------------------
         
     | 
| 218 | 
         
            -
            # get single image of size HxWxn_channles (BGR)
         
     | 
| 219 | 
         
            -
            # --------------------------------------------
         
     | 
| 220 | 
         
            -
            def read_img(path):
         
     | 
| 221 | 
         
            -
                # read image by cv2
         
     | 
| 222 | 
         
            -
                # return: Numpy float32, HWC, BGR, [0,1]
         
     | 
| 223 | 
         
            -
                img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # cv2.IMREAD_GRAYSCALE
         
     | 
| 224 | 
         
            -
                img = img.astype(np.float32) / 255.
         
     | 
| 225 | 
         
            -
                if img.ndim == 2:
         
     | 
| 226 | 
         
            -
                    img = np.expand_dims(img, axis=2)
         
     | 
| 227 | 
         
            -
                # some images have 4 channels
         
     | 
| 228 | 
         
            -
                if img.shape[2] > 3:
         
     | 
| 229 | 
         
            -
                    img = img[:, :, :3]
         
     | 
| 230 | 
         
            -
                return img
         
     | 
| 231 | 
         
            -
             
     | 
| 232 | 
         
            -
             
     | 
| 233 | 
         
            -
            '''
         
     | 
| 234 | 
         
            -
            # --------------------------------------------
         
     | 
| 235 | 
         
            -
            # image format conversion
         
     | 
| 236 | 
         
            -
            # --------------------------------------------
         
     | 
| 237 | 
         
            -
            # numpy(single) <--->  numpy(unit)
         
     | 
| 238 | 
         
            -
            # numpy(single) <--->  tensor
         
     | 
| 239 | 
         
            -
            # numpy(unit)   <--->  tensor
         
     | 
| 240 | 
         
            -
            # --------------------------------------------
         
     | 
| 241 | 
         
            -
            '''
         
     | 
| 242 | 
         
            -
             
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
            # --------------------------------------------
         
     | 
| 245 | 
         
            -
            # numpy(single) [0, 1] <--->  numpy(unit)
         
     | 
| 246 | 
         
            -
            # --------------------------------------------
         
     | 
| 247 | 
         
            -
             
     | 
| 248 | 
         
            -
             
     | 
| 249 | 
         
            -
            def uint2single(img):
         
     | 
| 250 | 
         
            -
             
     | 
| 251 | 
         
            -
                return np.float32(img/255.)
         
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
             
     | 
| 254 | 
         
            -
            def single2uint(img):
         
     | 
| 255 | 
         
            -
             
     | 
| 256 | 
         
            -
                return np.uint8((img.clip(0, 1)*255.).round())
         
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
             
     | 
| 259 | 
         
            -
            def uint162single(img):
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
                return np.float32(img/65535.)
         
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
             
     | 
| 264 | 
         
            -
            def single2uint16(img):
         
     | 
| 265 | 
         
            -
             
     | 
| 266 | 
         
            -
                return np.uint16((img.clip(0, 1)*65535.).round())
         
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
             
     | 
| 269 | 
         
            -
            # --------------------------------------------
         
     | 
| 270 | 
         
            -
            # numpy(unit) (HxWxC or HxW) <--->  tensor
         
     | 
| 271 | 
         
            -
            # --------------------------------------------
         
     | 
| 272 | 
         
            -
             
     | 
| 273 | 
         
            -
             
     | 
| 274 | 
         
            -
            # convert uint to 4-dimensional torch tensor
         
     | 
| 275 | 
         
            -
            def uint2tensor4(img):
         
     | 
| 276 | 
         
            -
                if img.ndim == 2:
         
     | 
| 277 | 
         
            -
                    img = np.expand_dims(img, axis=2)
         
     | 
| 278 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
         
     | 
| 279 | 
         
            -
             
     | 
| 280 | 
         
            -
             
     | 
| 281 | 
         
            -
            # convert uint to 3-dimensional torch tensor
         
     | 
| 282 | 
         
            -
            def uint2tensor3(img):
         
     | 
| 283 | 
         
            -
                if img.ndim == 2:
         
     | 
| 284 | 
         
            -
                    img = np.expand_dims(img, axis=2)
         
     | 
| 285 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
         
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
             
     | 
| 288 | 
         
            -
            # convert 2/3/4-dimensional torch tensor to uint
         
     | 
| 289 | 
         
            -
            def tensor2uint(img):
         
     | 
| 290 | 
         
            -
                img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
         
     | 
| 291 | 
         
            -
                if img.ndim == 3:
         
     | 
| 292 | 
         
            -
                    img = np.transpose(img, (1, 2, 0))
         
     | 
| 293 | 
         
            -
                return np.uint8((img*255.0).round())
         
     | 
| 294 | 
         
            -
             
     | 
| 295 | 
         
            -
             
     | 
| 296 | 
         
            -
            # --------------------------------------------
         
     | 
| 297 | 
         
            -
            # numpy(single) (HxWxC) <--->  tensor
         
     | 
| 298 | 
         
            -
            # --------------------------------------------
         
     | 
| 299 | 
         
            -
             
     | 
| 300 | 
         
            -
             
     | 
| 301 | 
         
            -
            # convert single (HxWxC) to 3-dimensional torch tensor
         
     | 
| 302 | 
         
            -
            def single2tensor3(img):
         
     | 
| 303 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
         
     | 
| 304 | 
         
            -
             
     | 
| 305 | 
         
            -
             
     | 
| 306 | 
         
            -
            # convert single (HxWxC) to 4-dimensional torch tensor
         
     | 
| 307 | 
         
            -
            def single2tensor4(img):
         
     | 
| 308 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
         
     | 
| 309 | 
         
            -
             
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
            # convert torch tensor to single
         
     | 
| 312 | 
         
            -
            def tensor2single(img):
         
     | 
| 313 | 
         
            -
                img = img.data.squeeze().float().cpu().numpy()
         
     | 
| 314 | 
         
            -
                if img.ndim == 3:
         
     | 
| 315 | 
         
            -
                    img = np.transpose(img, (1, 2, 0))
         
     | 
| 316 | 
         
            -
             
     | 
| 317 | 
         
            -
                return img
         
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
            # convert torch tensor to single
         
     | 
| 320 | 
         
            -
            def tensor2single3(img):
         
     | 
| 321 | 
         
            -
                img = img.data.squeeze().float().cpu().numpy()
         
     | 
| 322 | 
         
            -
                if img.ndim == 3:
         
     | 
| 323 | 
         
            -
                    img = np.transpose(img, (1, 2, 0))
         
     | 
| 324 | 
         
            -
                elif img.ndim == 2:
         
     | 
| 325 | 
         
            -
                    img = np.expand_dims(img, axis=2)
         
     | 
| 326 | 
         
            -
                return img
         
     | 
| 327 | 
         
            -
             
     | 
| 328 | 
         
            -
             
     | 
| 329 | 
         
            -
            def single2tensor5(img):
         
     | 
| 330 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
         
     | 
| 331 | 
         
            -
             
     | 
| 332 | 
         
            -
             
     | 
| 333 | 
         
            -
            def single32tensor5(img):
         
     | 
| 334 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
         
     | 
| 335 | 
         
            -
             
     | 
| 336 | 
         
            -
             
     | 
| 337 | 
         
            -
            def single42tensor4(img):
         
     | 
| 338 | 
         
            -
                return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
         
     | 
| 339 | 
         
            -
             
     | 
| 340 | 
         
            -
             
     | 
| 341 | 
         
            -
            # from skimage.io import imread, imsave
         
     | 
| 342 | 
         
            -
            def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
         
     | 
| 343 | 
         
            -
                '''
         
     | 
| 344 | 
         
            -
                Converts a torch Tensor into an image Numpy array of BGR channel order
         
     | 
| 345 | 
         
            -
                Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
         
     | 
| 346 | 
         
            -
                Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
         
     | 
| 347 | 
         
            -
                '''
         
     | 
| 348 | 
         
            -
                tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # squeeze first, then clamp
         
     | 
| 349 | 
         
            -
                tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
         
     | 
| 350 | 
         
            -
                n_dim = tensor.dim()
         
     | 
| 351 | 
         
            -
                if n_dim == 4:
         
     | 
| 352 | 
         
            -
                    n_img = len(tensor)
         
     | 
| 353 | 
         
            -
                    img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
         
     | 
| 354 | 
         
            -
                    img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
         
     | 
| 355 | 
         
            -
                elif n_dim == 3:
         
     | 
| 356 | 
         
            -
                    img_np = tensor.numpy()
         
     | 
| 357 | 
         
            -
                    img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
         
     | 
| 358 | 
         
            -
                elif n_dim == 2:
         
     | 
| 359 | 
         
            -
                    img_np = tensor.numpy()
         
     | 
| 360 | 
         
            -
                else:
         
     | 
| 361 | 
         
            -
                    raise TypeError(
         
     | 
| 362 | 
         
            -
                        'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
         
     | 
| 363 | 
         
            -
                if out_type == np.uint8:
         
     | 
| 364 | 
         
            -
                    img_np = (img_np * 255.0).round()
         
     | 
| 365 | 
         
            -
                    # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
         
     | 
| 366 | 
         
            -
                return img_np.astype(out_type)
         
     | 
| 367 | 
         
            -
             
     | 
| 368 | 
         
            -
             
     | 
| 369 | 
         
            -
            '''
         
     | 
| 370 | 
         
            -
            # --------------------------------------------
         
     | 
| 371 | 
         
            -
            # Augmentation, flipe and/or rotate
         
     | 
| 372 | 
         
            -
            # --------------------------------------------
         
     | 
| 373 | 
         
            -
            # The following two are enough.
         
     | 
| 374 | 
         
            -
            # (1) augmet_img: numpy image of WxHxC or WxH
         
     | 
| 375 | 
         
            -
            # (2) augment_img_tensor4: tensor image 1xCxWxH
         
     | 
| 376 | 
         
            -
            # --------------------------------------------
         
     | 
| 377 | 
         
            -
            '''
         
     | 
| 378 | 
         
            -
             
     | 
| 379 | 
         
            -
             
     | 
| 380 | 
         
            -
            def augment_img(img, mode=0):
         
     | 
| 381 | 
         
            -
                '''Kai Zhang (github: https://github.com/cszn)
         
     | 
| 382 | 
         
            -
                '''
         
     | 
| 383 | 
         
            -
                if mode == 0:
         
     | 
| 384 | 
         
            -
                    return img
         
     | 
| 385 | 
         
            -
                elif mode == 1:
         
     | 
| 386 | 
         
            -
                    return np.flipud(np.rot90(img))
         
     | 
| 387 | 
         
            -
                elif mode == 2:
         
     | 
| 388 | 
         
            -
                    return np.flipud(img)
         
     | 
| 389 | 
         
            -
                elif mode == 3:
         
     | 
| 390 | 
         
            -
                    return np.rot90(img, k=3)
         
     | 
| 391 | 
         
            -
                elif mode == 4:
         
     | 
| 392 | 
         
            -
                    return np.flipud(np.rot90(img, k=2))
         
     | 
| 393 | 
         
            -
                elif mode == 5:
         
     | 
| 394 | 
         
            -
                    return np.rot90(img)
         
     | 
| 395 | 
         
            -
                elif mode == 6:
         
     | 
| 396 | 
         
            -
                    return np.rot90(img, k=2)
         
     | 
| 397 | 
         
            -
                elif mode == 7:
         
     | 
| 398 | 
         
            -
                    return np.flipud(np.rot90(img, k=3))
         
     | 
| 399 | 
         
            -
             
     | 
| 400 | 
         
            -
             
     | 
| 401 | 
         
            -
            def augment_img_tensor4(img, mode=0):
         
     | 
| 402 | 
         
            -
                '''Kai Zhang (github: https://github.com/cszn)
         
     | 
| 403 | 
         
            -
                '''
         
     | 
| 404 | 
         
            -
                if mode == 0:
         
     | 
| 405 | 
         
            -
                    return img
         
     | 
| 406 | 
         
            -
                elif mode == 1:
         
     | 
| 407 | 
         
            -
                    return img.rot90(1, [2, 3]).flip([2])
         
     | 
| 408 | 
         
            -
                elif mode == 2:
         
     | 
| 409 | 
         
            -
                    return img.flip([2])
         
     | 
| 410 | 
         
            -
                elif mode == 3:
         
     | 
| 411 | 
         
            -
                    return img.rot90(3, [2, 3])
         
     | 
| 412 | 
         
            -
                elif mode == 4:
         
     | 
| 413 | 
         
            -
                    return img.rot90(2, [2, 3]).flip([2])
         
     | 
| 414 | 
         
            -
                elif mode == 5:
         
     | 
| 415 | 
         
            -
                    return img.rot90(1, [2, 3])
         
     | 
| 416 | 
         
            -
                elif mode == 6:
         
     | 
| 417 | 
         
            -
                    return img.rot90(2, [2, 3])
         
     | 
| 418 | 
         
            -
                elif mode == 7:
         
     | 
| 419 | 
         
            -
                    return img.rot90(3, [2, 3]).flip([2])
         
     | 
| 420 | 
         
            -
             
     | 
| 421 | 
         
            -
             
     | 
| 422 | 
         
            -
            def augment_img_tensor(img, mode=0):
         
     | 
| 423 | 
         
            -
                '''Kai Zhang (github: https://github.com/cszn)
         
     | 
| 424 | 
         
            -
                '''
         
     | 
| 425 | 
         
            -
                img_size = img.size()
         
     | 
| 426 | 
         
            -
                img_np = img.data.cpu().numpy()
         
     | 
| 427 | 
         
            -
                if len(img_size) == 3:
         
     | 
| 428 | 
         
            -
                    img_np = np.transpose(img_np, (1, 2, 0))
         
     | 
| 429 | 
         
            -
                elif len(img_size) == 4:
         
     | 
| 430 | 
         
            -
                    img_np = np.transpose(img_np, (2, 3, 1, 0))
         
     | 
| 431 | 
         
            -
                img_np = augment_img(img_np, mode=mode)
         
     | 
| 432 | 
         
            -
                img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
         
     | 
| 433 | 
         
            -
                if len(img_size) == 3:
         
     | 
| 434 | 
         
            -
                    img_tensor = img_tensor.permute(2, 0, 1)
         
     | 
| 435 | 
         
            -
                elif len(img_size) == 4:
         
     | 
| 436 | 
         
            -
                    img_tensor = img_tensor.permute(3, 2, 0, 1)
         
     | 
| 437 | 
         
            -
             
     | 
| 438 | 
         
            -
                return img_tensor.type_as(img)
         
     | 
| 439 | 
         
            -
             
     | 
| 440 | 
         
            -
             
     | 
| 441 | 
         
            -
            def augment_img_np3(img, mode=0):
         
     | 
| 442 | 
         
            -
                if mode == 0:
         
     | 
| 443 | 
         
            -
                    return img
         
     | 
| 444 | 
         
            -
                elif mode == 1:
         
     | 
| 445 | 
         
            -
                    return img.transpose(1, 0, 2)
         
     | 
| 446 | 
         
            -
                elif mode == 2:
         
     | 
| 447 | 
         
            -
                    return img[::-1, :, :]
         
     | 
| 448 | 
         
            -
                elif mode == 3:
         
     | 
| 449 | 
         
            -
                    img = img[::-1, :, :]
         
     | 
| 450 | 
         
            -
                    img = img.transpose(1, 0, 2)
         
     | 
| 451 | 
         
            -
                    return img
         
     | 
| 452 | 
         
            -
                elif mode == 4:
         
     | 
| 453 | 
         
            -
                    return img[:, ::-1, :]
         
     | 
| 454 | 
         
            -
                elif mode == 5:
         
     | 
| 455 | 
         
            -
                    img = img[:, ::-1, :]
         
     | 
| 456 | 
         
            -
                    img = img.transpose(1, 0, 2)
         
     | 
| 457 | 
         
            -
                    return img
         
     | 
| 458 | 
         
            -
                elif mode == 6:
         
     | 
| 459 | 
         
            -
                    img = img[:, ::-1, :]
         
     | 
| 460 | 
         
            -
                    img = img[::-1, :, :]
         
     | 
| 461 | 
         
            -
                    return img
         
     | 
| 462 | 
         
            -
                elif mode == 7:
         
     | 
| 463 | 
         
            -
                    img = img[:, ::-1, :]
         
     | 
| 464 | 
         
            -
                    img = img[::-1, :, :]
         
     | 
| 465 | 
         
            -
                    img = img.transpose(1, 0, 2)
         
     | 
| 466 | 
         
            -
                    return img
         
     | 
| 467 | 
         
            -
             
     | 
| 468 | 
         
            -
             
     | 
| 469 | 
         
            -
            def augment_imgs(img_list, hflip=True, rot=True):
         
     | 
| 470 | 
         
            -
                # horizontal flip OR rotate
         
     | 
| 471 | 
         
            -
                hflip = hflip and random.random() < 0.5
         
     | 
| 472 | 
         
            -
                vflip = rot and random.random() < 0.5
         
     | 
| 473 | 
         
            -
                rot90 = rot and random.random() < 0.5
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
            -
                def _augment(img):
         
     | 
| 476 | 
         
            -
                    if hflip:
         
     | 
| 477 | 
         
            -
                        img = img[:, ::-1, :]
         
     | 
| 478 | 
         
            -
                    if vflip:
         
     | 
| 479 | 
         
            -
                        img = img[::-1, :, :]
         
     | 
| 480 | 
         
            -
                    if rot90:
         
     | 
| 481 | 
         
            -
                        img = img.transpose(1, 0, 2)
         
     | 
| 482 | 
         
            -
                    return img
         
     | 
| 483 | 
         
            -
             
     | 
| 484 | 
         
            -
                return [_augment(img) for img in img_list]
         
     | 
| 485 | 
         
            -
             
     | 
| 486 | 
         
            -
             
     | 
| 487 | 
         
            -
            '''
         
     | 
| 488 | 
         
            -
            # --------------------------------------------
         
     | 
| 489 | 
         
            -
            # modcrop and shave
         
     | 
| 490 | 
         
            -
            # --------------------------------------------
         
     | 
| 491 | 
         
            -
            '''
         
     | 
| 492 | 
         
            -
             
     | 
| 493 | 
         
            -
             
     | 
| 494 | 
         
            -
            def modcrop(img_in, scale):
         
     | 
| 495 | 
         
            -
                # img_in: Numpy, HWC or HW
         
     | 
| 496 | 
         
            -
                img = np.copy(img_in)
         
     | 
| 497 | 
         
            -
                if img.ndim == 2:
         
     | 
| 498 | 
         
            -
                    H, W = img.shape
         
     | 
| 499 | 
         
            -
                    H_r, W_r = H % scale, W % scale
         
     | 
| 500 | 
         
            -
                    img = img[:H - H_r, :W - W_r]
         
     | 
| 501 | 
         
            -
                elif img.ndim == 3:
         
     | 
| 502 | 
         
            -
                    H, W, C = img.shape
         
     | 
| 503 | 
         
            -
                    H_r, W_r = H % scale, W % scale
         
     | 
| 504 | 
         
            -
                    img = img[:H - H_r, :W - W_r, :]
         
     | 
| 505 | 
         
            -
                else:
         
     | 
| 506 | 
         
            -
                    raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
         
     | 
| 507 | 
         
            -
                return img
         
     | 
| 508 | 
         
            -
             
     | 
| 509 | 
         
            -
             
     | 
| 510 | 
         
            -
            def shave(img_in, border=0):
         
     | 
| 511 | 
         
            -
                # img_in: Numpy, HWC or HW
         
     | 
| 512 | 
         
            -
                img = np.copy(img_in)
         
     | 
| 513 | 
         
            -
                h, w = img.shape[:2]
         
     | 
| 514 | 
         
            -
                img = img[border:h-border, border:w-border]
         
     | 
| 515 | 
         
            -
                return img
         
     | 
| 516 | 
         
            -
             
     | 
| 517 | 
         
            -
             
     | 
| 518 | 
         
            -
            '''
         
     | 
| 519 | 
         
            -
            # --------------------------------------------
         
     | 
| 520 | 
         
            -
            # image processing process on numpy image
         
     | 
| 521 | 
         
            -
            # channel_convert(in_c, tar_type, img_list):
         
     | 
| 522 | 
         
            -
            # rgb2ycbcr(img, only_y=True):
         
     | 
| 523 | 
         
            -
            # bgr2ycbcr(img, only_y=True):
         
     | 
| 524 | 
         
            -
            # ycbcr2rgb(img):
         
     | 
| 525 | 
         
            -
            # --------------------------------------------
         
     | 
| 526 | 
         
            -
            '''
         
     | 
| 527 | 
         
            -
             
     | 
| 528 | 
         
            -
             
     | 
| 529 | 
         
            -
            def rgb2ycbcr(img, only_y=True):
         
     | 
| 530 | 
         
            -
                '''same as matlab rgb2ycbcr
         
     | 
| 531 | 
         
            -
                only_y: only return Y channel
         
     | 
| 532 | 
         
            -
                Input:
         
     | 
| 533 | 
         
            -
                    uint8, [0, 255]
         
     | 
| 534 | 
         
            -
                    float, [0, 1]
         
     | 
| 535 | 
         
            -
                '''
         
     | 
| 536 | 
         
            -
                in_img_type = img.dtype
         
     | 
| 537 | 
         
            -
                img.astype(np.float32)
         
     | 
| 538 | 
         
            -
                if in_img_type != np.uint8:
         
     | 
| 539 | 
         
            -
                    img *= 255.
         
     | 
| 540 | 
         
            -
                # convert
         
     | 
| 541 | 
         
            -
                if only_y:
         
     | 
| 542 | 
         
            -
                    rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
         
     | 
| 543 | 
         
            -
                else:
         
     | 
| 544 | 
         
            -
                    rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
         
     | 
| 545 | 
         
            -
                                          [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
         
     | 
| 546 | 
         
            -
                if in_img_type == np.uint8:
         
     | 
| 547 | 
         
            -
                    rlt = rlt.round()
         
     | 
| 548 | 
         
            -
                else:
         
     | 
| 549 | 
         
            -
                    rlt /= 255.
         
     | 
| 550 | 
         
            -
                return rlt.astype(in_img_type)
         
     | 
| 551 | 
         
            -
             
     | 
| 552 | 
         
            -
             
     | 
| 553 | 
         
            -
            def ycbcr2rgb(img):
         
     | 
| 554 | 
         
            -
                '''same as matlab ycbcr2rgb
         
     | 
| 555 | 
         
            -
                Input:
         
     | 
| 556 | 
         
            -
                    uint8, [0, 255]
         
     | 
| 557 | 
         
            -
                    float, [0, 1]
         
     | 
| 558 | 
         
            -
                '''
         
     | 
| 559 | 
         
            -
                in_img_type = img.dtype
         
     | 
| 560 | 
         
            -
                img.astype(np.float32)
         
     | 
| 561 | 
         
            -
                if in_img_type != np.uint8:
         
     | 
| 562 | 
         
            -
                    img *= 255.
         
     | 
| 563 | 
         
            -
                # convert
         
     | 
| 564 | 
         
            -
                rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
         
     | 
| 565 | 
         
            -
                                      [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
         
     | 
| 566 | 
         
            -
                if in_img_type == np.uint8:
         
     | 
| 567 | 
         
            -
                    rlt = rlt.round()
         
     | 
| 568 | 
         
            -
                else:
         
     | 
| 569 | 
         
            -
                    rlt /= 255.
         
     | 
| 570 | 
         
            -
                return rlt.astype(in_img_type)
         
     | 
| 571 | 
         
            -
             
     | 
| 572 | 
         
            -
             
     | 
| 573 | 
         
            -
            def bgr2ycbcr(img, only_y=True):
         
     | 
| 574 | 
         
            -
                '''bgr version of rgb2ycbcr
         
     | 
| 575 | 
         
            -
                only_y: only return Y channel
         
     | 
| 576 | 
         
            -
                Input:
         
     | 
| 577 | 
         
            -
                    uint8, [0, 255]
         
     | 
| 578 | 
         
            -
                    float, [0, 1]
         
     | 
| 579 | 
         
            -
                '''
         
     | 
| 580 | 
         
            -
                in_img_type = img.dtype
         
     | 
| 581 | 
         
            -
                img.astype(np.float32)
         
     | 
| 582 | 
         
            -
                if in_img_type != np.uint8:
         
     | 
| 583 | 
         
            -
                    img *= 255.
         
     | 
| 584 | 
         
            -
                # convert
         
     | 
| 585 | 
         
            -
                if only_y:
         
     | 
| 586 | 
         
            -
                    rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
         
     | 
| 587 | 
         
            -
                else:
         
     | 
| 588 | 
         
            -
                    rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
         
     | 
| 589 | 
         
            -
                                          [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
         
     | 
| 590 | 
         
            -
                if in_img_type == np.uint8:
         
     | 
| 591 | 
         
            -
                    rlt = rlt.round()
         
     | 
| 592 | 
         
            -
                else:
         
     | 
| 593 | 
         
            -
                    rlt /= 255.
         
     | 
| 594 | 
         
            -
                return rlt.astype(in_img_type)
         
     | 
| 595 | 
         
            -
             
     | 
| 596 | 
         
            -
             
     | 
| 597 | 
         
            -
            def channel_convert(in_c, tar_type, img_list):
         
     | 
| 598 | 
         
            -
                # conversion among BGR, gray and y
         
     | 
| 599 | 
         
            -
                if in_c == 3 and tar_type == 'gray':  # BGR to gray
         
     | 
| 600 | 
         
            -
                    gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
         
     | 
| 601 | 
         
            -
                    return [np.expand_dims(img, axis=2) for img in gray_list]
         
     | 
| 602 | 
         
            -
                elif in_c == 3 and tar_type == 'y':  # BGR to y
         
     | 
| 603 | 
         
            -
                    y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
         
     | 
| 604 | 
         
            -
                    return [np.expand_dims(img, axis=2) for img in y_list]
         
     | 
| 605 | 
         
            -
                elif in_c == 1 and tar_type == 'RGB':  # gray/y to BGR
         
     | 
| 606 | 
         
            -
                    return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
         
     | 
| 607 | 
         
            -
                else:
         
     | 
| 608 | 
         
            -
                    return img_list
         
     | 
| 609 | 
         
            -
             
     | 
| 610 | 
         
            -
             
     | 
| 611 | 
         
            -
            '''
         
     | 
| 612 | 
         
            -
            # --------------------------------------------
         
     | 
| 613 | 
         
            -
            # metric, PSNR and SSIM
         
     | 
| 614 | 
         
            -
            # --------------------------------------------
         
     | 
| 615 | 
         
            -
            '''
         
     | 
| 616 | 
         
            -
             
     | 
| 617 | 
         
            -
             
     | 
| 618 | 
         
            -
            # --------------------------------------------
         
     | 
| 619 | 
         
            -
            # PSNR
         
     | 
| 620 | 
         
            -
            # --------------------------------------------
         
     | 
| 621 | 
         
            -
            def calculate_psnr(img1, img2, border=0):
         
     | 
| 622 | 
         
            -
                # img1 and img2 have range [0, 255]
         
     | 
| 623 | 
         
            -
                #img1 = img1.squeeze()
         
     | 
| 624 | 
         
            -
                #img2 = img2.squeeze()
         
     | 
| 625 | 
         
            -
                if not img1.shape == img2.shape:
         
     | 
| 626 | 
         
            -
                    raise ValueError('Input images must have the same dimensions.')
         
     | 
| 627 | 
         
            -
                h, w = img1.shape[:2]
         
     | 
| 628 | 
         
            -
                img1 = img1[border:h-border, border:w-border]
         
     | 
| 629 | 
         
            -
                img2 = img2[border:h-border, border:w-border]
         
     | 
| 630 | 
         
            -
             
     | 
| 631 | 
         
            -
                img1 = img1.astype(np.float64)
         
     | 
| 632 | 
         
            -
                img2 = img2.astype(np.float64)
         
     | 
| 633 | 
         
            -
                mse = np.mean((img1 - img2)**2)
         
     | 
| 634 | 
         
            -
                if mse == 0:
         
     | 
| 635 | 
         
            -
                    return float('inf')
         
     | 
| 636 | 
         
            -
                return 20 * math.log10(255.0 / math.sqrt(mse))
         
     | 
| 637 | 
         
            -
             
     | 
| 638 | 
         
            -
             
     | 
| 639 | 
         
            -
            # --------------------------------------------
         
     | 
| 640 | 
         
            -
            # SSIM
         
     | 
| 641 | 
         
            -
            # --------------------------------------------
         
     | 
| 642 | 
         
            -
            def calculate_ssim(img1, img2, border=0):
         
     | 
| 643 | 
         
            -
                '''calculate SSIM
         
     | 
| 644 | 
         
            -
                the same outputs as MATLAB's
         
     | 
| 645 | 
         
            -
                img1, img2: [0, 255]
         
     | 
| 646 | 
         
            -
                '''
         
     | 
| 647 | 
         
            -
                #img1 = img1.squeeze()
         
     | 
| 648 | 
         
            -
                #img2 = img2.squeeze()
         
     | 
| 649 | 
         
            -
                if not img1.shape == img2.shape:
         
     | 
| 650 | 
         
            -
                    raise ValueError('Input images must have the same dimensions.')
         
     | 
| 651 | 
         
            -
                h, w = img1.shape[:2]
         
     | 
| 652 | 
         
            -
                img1 = img1[border:h-border, border:w-border]
         
     | 
| 653 | 
         
            -
                img2 = img2[border:h-border, border:w-border]
         
     | 
| 654 | 
         
            -
             
     | 
| 655 | 
         
            -
                if img1.ndim == 2:
         
     | 
| 656 | 
         
            -
                    return ssim(img1, img2)
         
     | 
| 657 | 
         
            -
                elif img1.ndim == 3:
         
     | 
| 658 | 
         
            -
                    if img1.shape[2] == 3:
         
     | 
| 659 | 
         
            -
                        ssims = []
         
     | 
| 660 | 
         
            -
                        for i in range(3):
         
     | 
| 661 | 
         
            -
                            ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
         
     | 
| 662 | 
         
            -
                        return np.array(ssims).mean()
         
     | 
| 663 | 
         
            -
                    elif img1.shape[2] == 1:
         
     | 
| 664 | 
         
            -
                        return ssim(np.squeeze(img1), np.squeeze(img2))
         
     | 
| 665 | 
         
            -
                else:
         
     | 
| 666 | 
         
            -
                    raise ValueError('Wrong input image dimensions.')
         
     | 
| 667 | 
         
            -
             
     | 
| 668 | 
         
            -
             
     | 
| 669 | 
         
            -
            def ssim(img1, img2):
         
     | 
| 670 | 
         
            -
                C1 = (0.01 * 255)**2
         
     | 
| 671 | 
         
            -
                C2 = (0.03 * 255)**2
         
     | 
| 672 | 
         
            -
             
     | 
| 673 | 
         
            -
                img1 = img1.astype(np.float64)
         
     | 
| 674 | 
         
            -
                img2 = img2.astype(np.float64)
         
     | 
| 675 | 
         
            -
                kernel = cv2.getGaussianKernel(11, 1.5)
         
     | 
| 676 | 
         
            -
                window = np.outer(kernel, kernel.transpose())
         
     | 
| 677 | 
         
            -
             
     | 
| 678 | 
         
            -
                mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
         
     | 
| 679 | 
         
            -
                mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
         
     | 
| 680 | 
         
            -
                mu1_sq = mu1**2
         
     | 
| 681 | 
         
            -
                mu2_sq = mu2**2
         
     | 
| 682 | 
         
            -
                mu1_mu2 = mu1 * mu2
         
     | 
| 683 | 
         
            -
                sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
         
     | 
| 684 | 
         
            -
                sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
         
     | 
| 685 | 
         
            -
                sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
         
     | 
| 686 | 
         
            -
             
     | 
| 687 | 
         
            -
                ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
         
     | 
| 688 | 
         
            -
                                                                        (sigma1_sq + sigma2_sq + C2))
         
     | 
| 689 | 
         
            -
                return ssim_map.mean()
         
     | 
| 690 | 
         
            -
             
     | 
| 691 | 
         
            -
             
     | 
| 692 | 
         
            -
            '''
         
     | 
| 693 | 
         
            -
            # --------------------------------------------
         
     | 
| 694 | 
         
            -
            # matlab's bicubic imresize (numpy and torch) [0, 1]
         
     | 
| 695 | 
         
            -
            # --------------------------------------------
         
     | 
| 696 | 
         
            -
            '''
         
     | 
| 697 | 
         
            -
             
     | 
| 698 | 
         
            -
             
     | 
| 699 | 
         
            -
            # matlab 'imresize' function, now only support 'bicubic'
         
     | 
| 700 | 
         
            -
            def cubic(x):
         
     | 
| 701 | 
         
            -
                absx = torch.abs(x)
         
     | 
| 702 | 
         
            -
                absx2 = absx**2
         
     | 
| 703 | 
         
            -
                absx3 = absx**3
         
     | 
| 704 | 
         
            -
                return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
         
     | 
| 705 | 
         
            -
                    (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
         
     | 
| 706 | 
         
            -
             
     | 
| 707 | 
         
            -
             
     | 
| 708 | 
         
            -
            def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
         
     | 
| 709 | 
         
            -
                if (scale < 1) and (antialiasing):
         
     | 
| 710 | 
         
            -
                    # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
         
     | 
| 711 | 
         
            -
                    kernel_width = kernel_width / scale
         
     | 
| 712 | 
         
            -
             
     | 
| 713 | 
         
            -
                # Output-space coordinates
         
     | 
| 714 | 
         
            -
                x = torch.linspace(1, out_length, out_length)
         
     | 
| 715 | 
         
            -
             
     | 
| 716 | 
         
            -
                # Input-space coordinates. Calculate the inverse mapping such that 0.5
         
     | 
| 717 | 
         
            -
                # in output space maps to 0.5 in input space, and 0.5+scale in output
         
     | 
| 718 | 
         
            -
                # space maps to 1.5 in input space.
         
     | 
| 719 | 
         
            -
                u = x / scale + 0.5 * (1 - 1 / scale)
         
     | 
| 720 | 
         
            -
             
     | 
| 721 | 
         
            -
                # What is the left-most pixel that can be involved in the computation?
         
     | 
| 722 | 
         
            -
                left = torch.floor(u - kernel_width / 2)
         
     | 
| 723 | 
         
            -
             
     | 
| 724 | 
         
            -
                # What is the maximum number of pixels that can be involved in the
         
     | 
| 725 | 
         
            -
                # computation?  Note: it's OK to use an extra pixel here; if the
         
     | 
| 726 | 
         
            -
                # corresponding weights are all zero, it will be eliminated at the end
         
     | 
| 727 | 
         
            -
                # of this function.
         
     | 
| 728 | 
         
            -
                P = math.ceil(kernel_width) + 2
         
     | 
| 729 | 
         
            -
             
     | 
| 730 | 
         
            -
                # The indices of the input pixels involved in computing the k-th output
         
     | 
| 731 | 
         
            -
                # pixel are in row k of the indices matrix.
         
     | 
| 732 | 
         
            -
                indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
         
     | 
| 733 | 
         
            -
                    1, P).expand(out_length, P)
         
     | 
| 734 | 
         
            -
             
     | 
| 735 | 
         
            -
                # The weights used to compute the k-th output pixel are in row k of the
         
     | 
| 736 | 
         
            -
                # weights matrix.
         
     | 
| 737 | 
         
            -
                distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
         
     | 
| 738 | 
         
            -
                # apply cubic kernel
         
     | 
| 739 | 
         
            -
                if (scale < 1) and (antialiasing):
         
     | 
| 740 | 
         
            -
                    weights = scale * cubic(distance_to_center * scale)
         
     | 
| 741 | 
         
            -
                else:
         
     | 
| 742 | 
         
            -
                    weights = cubic(distance_to_center)
         
     | 
| 743 | 
         
            -
                # Normalize the weights matrix so that each row sums to 1.
         
     | 
| 744 | 
         
            -
                weights_sum = torch.sum(weights, 1).view(out_length, 1)
         
     | 
| 745 | 
         
            -
                weights = weights / weights_sum.expand(out_length, P)
         
     | 
| 746 | 
         
            -
             
     | 
| 747 | 
         
            -
                # If a column in weights is all zero, get rid of it. only consider the first and last column.
         
     | 
| 748 | 
         
            -
                weights_zero_tmp = torch.sum((weights == 0), 0)
         
     | 
| 749 | 
         
            -
                if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
         
     | 
| 750 | 
         
            -
                    indices = indices.narrow(1, 1, P - 2)
         
     | 
| 751 | 
         
            -
                    weights = weights.narrow(1, 1, P - 2)
         
     | 
| 752 | 
         
            -
                if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
         
     | 
| 753 | 
         
            -
                    indices = indices.narrow(1, 0, P - 2)
         
     | 
| 754 | 
         
            -
                    weights = weights.narrow(1, 0, P - 2)
         
     | 
| 755 | 
         
            -
                weights = weights.contiguous()
         
     | 
| 756 | 
         
            -
                indices = indices.contiguous()
         
     | 
| 757 | 
         
            -
                sym_len_s = -indices.min() + 1
         
     | 
| 758 | 
         
            -
                sym_len_e = indices.max() - in_length
         
     | 
| 759 | 
         
            -
                indices = indices + sym_len_s - 1
         
     | 
| 760 | 
         
            -
                return weights, indices, int(sym_len_s), int(sym_len_e)
         
     | 
| 761 | 
         
            -
             
     | 
| 762 | 
         
            -
             
     | 
| 763 | 
         
            -
            # --------------------------------------------
         
     | 
| 764 | 
         
            -
            # imresize for tensor image [0, 1]
         
     | 
| 765 | 
         
            -
            # --------------------------------------------
         
     | 
| 766 | 
         
            -
            def imresize(img, scale, antialiasing=True):
         
     | 
| 767 | 
         
            -
                # Now the scale should be the same for H and W
         
     | 
| 768 | 
         
            -
                # input: img: pytorch tensor, CHW or HW [0,1]
         
     | 
| 769 | 
         
            -
                # output: CHW or HW [0,1] w/o round
         
     | 
| 770 | 
         
            -
                need_squeeze = True if img.dim() == 2 else False
         
     | 
| 771 | 
         
            -
                if need_squeeze:
         
     | 
| 772 | 
         
            -
                    img.unsqueeze_(0)
         
     | 
| 773 | 
         
            -
                in_C, in_H, in_W = img.size()
         
     | 
| 774 | 
         
            -
                out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
         
     | 
| 775 | 
         
            -
                kernel_width = 4
         
     | 
| 776 | 
         
            -
                kernel = 'cubic'
         
     | 
| 777 | 
         
            -
             
     | 
| 778 | 
         
            -
                # Return the desired dimension order for performing the resize.  The
         
     | 
| 779 | 
         
            -
                # strategy is to perform the resize first along the dimension with the
         
     | 
| 780 | 
         
            -
                # smallest scale factor.
         
     | 
| 781 | 
         
            -
                # Now we do not support this.
         
     | 
| 782 | 
         
            -
             
     | 
| 783 | 
         
            -
                # get weights and indices
         
     | 
| 784 | 
         
            -
                weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
         
     | 
| 785 | 
         
            -
                    in_H, out_H, scale, kernel, kernel_width, antialiasing)
         
     | 
| 786 | 
         
            -
                weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
         
     | 
| 787 | 
         
            -
                    in_W, out_W, scale, kernel, kernel_width, antialiasing)
         
     | 
| 788 | 
         
            -
                # process H dimension
         
     | 
| 789 | 
         
            -
                # symmetric copying
         
     | 
| 790 | 
         
            -
                img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
         
     | 
| 791 | 
         
            -
                img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
         
     | 
| 792 | 
         
            -
             
     | 
| 793 | 
         
            -
                sym_patch = img[:, :sym_len_Hs, :]
         
     | 
| 794 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
         
     | 
| 795 | 
         
            -
                sym_patch_inv = sym_patch.index_select(1, inv_idx)
         
     | 
| 796 | 
         
            -
                img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
         
     | 
| 797 | 
         
            -
             
     | 
| 798 | 
         
            -
                sym_patch = img[:, -sym_len_He:, :]
         
     | 
| 799 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
         
     | 
| 800 | 
         
            -
                sym_patch_inv = sym_patch.index_select(1, inv_idx)
         
     | 
| 801 | 
         
            -
                img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
         
     | 
| 802 | 
         
            -
             
     | 
| 803 | 
         
            -
                out_1 = torch.FloatTensor(in_C, out_H, in_W)
         
     | 
| 804 | 
         
            -
                kernel_width = weights_H.size(1)
         
     | 
| 805 | 
         
            -
                for i in range(out_H):
         
     | 
| 806 | 
         
            -
                    idx = int(indices_H[i][0])
         
     | 
| 807 | 
         
            -
                    for j in range(out_C):
         
     | 
| 808 | 
         
            -
                        out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
         
     | 
| 809 | 
         
            -
             
     | 
| 810 | 
         
            -
                # process W dimension
         
     | 
| 811 | 
         
            -
                # symmetric copying
         
     | 
| 812 | 
         
            -
                out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
         
     | 
| 813 | 
         
            -
                out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
         
     | 
| 814 | 
         
            -
             
     | 
| 815 | 
         
            -
                sym_patch = out_1[:, :, :sym_len_Ws]
         
     | 
| 816 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
         
     | 
| 817 | 
         
            -
                sym_patch_inv = sym_patch.index_select(2, inv_idx)
         
     | 
| 818 | 
         
            -
                out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
         
     | 
| 819 | 
         
            -
             
     | 
| 820 | 
         
            -
                sym_patch = out_1[:, :, -sym_len_We:]
         
     | 
| 821 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
         
     | 
| 822 | 
         
            -
                sym_patch_inv = sym_patch.index_select(2, inv_idx)
         
     | 
| 823 | 
         
            -
                out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
         
     | 
| 824 | 
         
            -
             
     | 
| 825 | 
         
            -
                out_2 = torch.FloatTensor(in_C, out_H, out_W)
         
     | 
| 826 | 
         
            -
                kernel_width = weights_W.size(1)
         
     | 
| 827 | 
         
            -
                for i in range(out_W):
         
     | 
| 828 | 
         
            -
                    idx = int(indices_W[i][0])
         
     | 
| 829 | 
         
            -
                    for j in range(out_C):
         
     | 
| 830 | 
         
            -
                        out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
         
     | 
| 831 | 
         
            -
                if need_squeeze:
         
     | 
| 832 | 
         
            -
                    out_2.squeeze_()
         
     | 
| 833 | 
         
            -
                return out_2
         
     | 
| 834 | 
         
            -
             
     | 
| 835 | 
         
            -
             
     | 
| 836 | 
         
            -
            # --------------------------------------------
         
     | 
| 837 | 
         
            -
            # imresize for numpy image [0, 1]
         
     | 
| 838 | 
         
            -
            # --------------------------------------------
         
     | 
| 839 | 
         
            -
            def imresize_np(img, scale, antialiasing=True):
         
     | 
| 840 | 
         
            -
                # Now the scale should be the same for H and W
         
     | 
| 841 | 
         
            -
                # input: img: Numpy, HWC or HW [0,1]
         
     | 
| 842 | 
         
            -
                # output: HWC or HW [0,1] w/o round
         
     | 
| 843 | 
         
            -
                img = torch.from_numpy(img)
         
     | 
| 844 | 
         
            -
                need_squeeze = True if img.dim() == 2 else False
         
     | 
| 845 | 
         
            -
                if need_squeeze:
         
     | 
| 846 | 
         
            -
                    img.unsqueeze_(2)
         
     | 
| 847 | 
         
            -
             
     | 
| 848 | 
         
            -
                in_H, in_W, in_C = img.size()
         
     | 
| 849 | 
         
            -
                out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
         
     | 
| 850 | 
         
            -
                kernel_width = 4
         
     | 
| 851 | 
         
            -
                kernel = 'cubic'
         
     | 
| 852 | 
         
            -
             
     | 
| 853 | 
         
            -
                # Return the desired dimension order for performing the resize.  The
         
     | 
| 854 | 
         
            -
                # strategy is to perform the resize first along the dimension with the
         
     | 
| 855 | 
         
            -
                # smallest scale factor.
         
     | 
| 856 | 
         
            -
                # Now we do not support this.
         
     | 
| 857 | 
         
            -
             
     | 
| 858 | 
         
            -
                # get weights and indices
         
     | 
| 859 | 
         
            -
                weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
         
     | 
| 860 | 
         
            -
                    in_H, out_H, scale, kernel, kernel_width, antialiasing)
         
     | 
| 861 | 
         
            -
                weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
         
     | 
| 862 | 
         
            -
                    in_W, out_W, scale, kernel, kernel_width, antialiasing)
         
     | 
| 863 | 
         
            -
                # process H dimension
         
     | 
| 864 | 
         
            -
                # symmetric copying
         
     | 
| 865 | 
         
            -
                img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
         
     | 
| 866 | 
         
            -
                img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
         
     | 
| 867 | 
         
            -
             
     | 
| 868 | 
         
            -
                sym_patch = img[:sym_len_Hs, :, :]
         
     | 
| 869 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
         
     | 
| 870 | 
         
            -
                sym_patch_inv = sym_patch.index_select(0, inv_idx)
         
     | 
| 871 | 
         
            -
                img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
         
     | 
| 872 | 
         
            -
             
     | 
| 873 | 
         
            -
                sym_patch = img[-sym_len_He:, :, :]
         
     | 
| 874 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
         
     | 
| 875 | 
         
            -
                sym_patch_inv = sym_patch.index_select(0, inv_idx)
         
     | 
| 876 | 
         
            -
                img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
         
     | 
| 877 | 
         
            -
             
     | 
| 878 | 
         
            -
                out_1 = torch.FloatTensor(out_H, in_W, in_C)
         
     | 
| 879 | 
         
            -
                kernel_width = weights_H.size(1)
         
     | 
| 880 | 
         
            -
                for i in range(out_H):
         
     | 
| 881 | 
         
            -
                    idx = int(indices_H[i][0])
         
     | 
| 882 | 
         
            -
                    for j in range(out_C):
         
     | 
| 883 | 
         
            -
                        out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
         
     | 
| 884 | 
         
            -
             
     | 
| 885 | 
         
            -
                # process W dimension
         
     | 
| 886 | 
         
            -
                # symmetric copying
         
     | 
| 887 | 
         
            -
                out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
         
     | 
| 888 | 
         
            -
                out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
         
     | 
| 889 | 
         
            -
             
     | 
| 890 | 
         
            -
                sym_patch = out_1[:, :sym_len_Ws, :]
         
     | 
| 891 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
         
     | 
| 892 | 
         
            -
                sym_patch_inv = sym_patch.index_select(1, inv_idx)
         
     | 
| 893 | 
         
            -
                out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
         
     | 
| 894 | 
         
            -
             
     | 
| 895 | 
         
            -
                sym_patch = out_1[:, -sym_len_We:, :]
         
     | 
| 896 | 
         
            -
                inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
         
     | 
| 897 | 
         
            -
                sym_patch_inv = sym_patch.index_select(1, inv_idx)
         
     | 
| 898 | 
         
            -
                out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
         
     | 
| 899 | 
         
            -
             
     | 
| 900 | 
         
            -
                out_2 = torch.FloatTensor(out_H, out_W, in_C)
         
     | 
| 901 | 
         
            -
                kernel_width = weights_W.size(1)
         
     | 
| 902 | 
         
            -
                for i in range(out_W):
         
     | 
| 903 | 
         
            -
                    idx = int(indices_W[i][0])
         
     | 
| 904 | 
         
            -
                    for j in range(out_C):
         
     | 
| 905 | 
         
            -
                        out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
         
     | 
| 906 | 
         
            -
                if need_squeeze:
         
     | 
| 907 | 
         
            -
                    out_2.squeeze_()
         
     | 
| 908 | 
         
            -
             
     | 
| 909 | 
         
            -
                return out_2.numpy()
         
     | 
| 910 | 
         
            -
             
     | 
| 911 | 
         
            -
             
     | 
| 912 | 
         
            -
            if __name__ == '__main__':
         
     | 
| 913 | 
         
            -
                print('---')
         
     | 
| 914 | 
         
            -
            #    img = imread_uint('test.bmp', 3)
         
     | 
| 915 | 
         
            -
            #    img = uint2single(img)
         
     | 
| 916 | 
         
            -
            #    img_bicubic = imresize_np(img, 1/4)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/modules/midas/api.py
    DELETED
    
    | 
         @@ -1,170 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            # based on https://github.com/isl-org/MiDaS
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            import cv2
         
     | 
| 4 | 
         
            -
            import torch
         
     | 
| 5 | 
         
            -
            import torch.nn as nn
         
     | 
| 6 | 
         
            -
            from torchvision.transforms import Compose
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
         
     | 
| 9 | 
         
            -
            from ldm.modules.midas.midas.midas_net import MidasNet
         
     | 
| 10 | 
         
            -
            from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
         
     | 
| 11 | 
         
            -
            from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            ISL_PATHS = {
         
     | 
| 15 | 
         
            -
                "dpt_large": "/fsx/robin/midas_models/dpt_large-midas-2f21e586.pt",  # TODO: adapt
         
     | 
| 16 | 
         
            -
                "dpt_hybrid": "/fsx/robin/midas_models/dpt_hybrid-midas-501f0c75.pt",  # TODO: adapt
         
     | 
| 17 | 
         
            -
                "midas_v21": "",
         
     | 
| 18 | 
         
            -
                "midas_v21_small": "",
         
     | 
| 19 | 
         
            -
            }
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
             
     | 
| 22 | 
         
            -
            def disabled_train(self, mode=True):
         
     | 
| 23 | 
         
            -
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 24 | 
         
            -
                does not change anymore."""
         
     | 
| 25 | 
         
            -
                return self
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            def load_midas_transform(model_type):
         
     | 
| 29 | 
         
            -
                # https://github.com/isl-org/MiDaS/blob/master/run.py
         
     | 
| 30 | 
         
            -
                # load transform only
         
     | 
| 31 | 
         
            -
                if model_type == "dpt_large":  # DPT-Large
         
     | 
| 32 | 
         
            -
                    net_w, net_h = 384, 384
         
     | 
| 33 | 
         
            -
                    resize_mode = "minimal"
         
     | 
| 34 | 
         
            -
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
                elif model_type == "dpt_hybrid":  # DPT-Hybrid
         
     | 
| 37 | 
         
            -
                    net_w, net_h = 384, 384
         
     | 
| 38 | 
         
            -
                    resize_mode = "minimal"
         
     | 
| 39 | 
         
            -
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                elif model_type == "midas_v21":
         
     | 
| 42 | 
         
            -
                    net_w, net_h = 384, 384
         
     | 
| 43 | 
         
            -
                    resize_mode = "upper_bound"
         
     | 
| 44 | 
         
            -
                    normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
                elif model_type == "midas_v21_small":
         
     | 
| 47 | 
         
            -
                    net_w, net_h = 256, 256
         
     | 
| 48 | 
         
            -
                    resize_mode = "upper_bound"
         
     | 
| 49 | 
         
            -
                    normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                else:
         
     | 
| 52 | 
         
            -
                    assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
         
     | 
| 53 | 
         
            -
             
     | 
| 54 | 
         
            -
                transform = Compose(
         
     | 
| 55 | 
         
            -
                    [
         
     | 
| 56 | 
         
            -
                        Resize(
         
     | 
| 57 | 
         
            -
                            net_w,
         
     | 
| 58 | 
         
            -
                            net_h,
         
     | 
| 59 | 
         
            -
                            resize_target=None,
         
     | 
| 60 | 
         
            -
                            keep_aspect_ratio=True,
         
     | 
| 61 | 
         
            -
                            ensure_multiple_of=32,
         
     | 
| 62 | 
         
            -
                            resize_method=resize_mode,
         
     | 
| 63 | 
         
            -
                            image_interpolation_method=cv2.INTER_CUBIC,
         
     | 
| 64 | 
         
            -
                        ),
         
     | 
| 65 | 
         
            -
                        normalization,
         
     | 
| 66 | 
         
            -
                        PrepareForNet(),
         
     | 
| 67 | 
         
            -
                    ]
         
     | 
| 68 | 
         
            -
                )
         
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
                return transform
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            def load_model(model_type):
         
     | 
| 74 | 
         
            -
                # https://github.com/isl-org/MiDaS/blob/master/run.py
         
     | 
| 75 | 
         
            -
                # load network
         
     | 
| 76 | 
         
            -
                model_path = ISL_PATHS[model_type]
         
     | 
| 77 | 
         
            -
                if model_type == "dpt_large":  # DPT-Large
         
     | 
| 78 | 
         
            -
                    model = DPTDepthModel(
         
     | 
| 79 | 
         
            -
                        path=model_path,
         
     | 
| 80 | 
         
            -
                        backbone="vitl16_384",
         
     | 
| 81 | 
         
            -
                        non_negative=True,
         
     | 
| 82 | 
         
            -
                    )
         
     | 
| 83 | 
         
            -
                    net_w, net_h = 384, 384
         
     | 
| 84 | 
         
            -
                    resize_mode = "minimal"
         
     | 
| 85 | 
         
            -
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
                elif model_type == "dpt_hybrid":  # DPT-Hybrid
         
     | 
| 88 | 
         
            -
                    model = DPTDepthModel(
         
     | 
| 89 | 
         
            -
                        path=model_path,
         
     | 
| 90 | 
         
            -
                        backbone="vitb_rn50_384",
         
     | 
| 91 | 
         
            -
                        non_negative=True,
         
     | 
| 92 | 
         
            -
                    )
         
     | 
| 93 | 
         
            -
                    net_w, net_h = 384, 384
         
     | 
| 94 | 
         
            -
                    resize_mode = "minimal"
         
     | 
| 95 | 
         
            -
                    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
                elif model_type == "midas_v21":
         
     | 
| 98 | 
         
            -
                    model = MidasNet(model_path, non_negative=True)
         
     | 
| 99 | 
         
            -
                    net_w, net_h = 384, 384
         
     | 
| 100 | 
         
            -
                    resize_mode = "upper_bound"
         
     | 
| 101 | 
         
            -
                    normalization = NormalizeImage(
         
     | 
| 102 | 
         
            -
                        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
         
     | 
| 103 | 
         
            -
                    )
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                elif model_type == "midas_v21_small":
         
     | 
| 106 | 
         
            -
                    model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
         
     | 
| 107 | 
         
            -
                                           non_negative=True, blocks={'expand': True})
         
     | 
| 108 | 
         
            -
                    net_w, net_h = 256, 256
         
     | 
| 109 | 
         
            -
                    resize_mode = "upper_bound"
         
     | 
| 110 | 
         
            -
                    normalization = NormalizeImage(
         
     | 
| 111 | 
         
            -
                        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
         
     | 
| 112 | 
         
            -
                    )
         
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
                else:
         
     | 
| 115 | 
         
            -
                    print(f"model_type '{model_type}' not implemented, use: --model_type large")
         
     | 
| 116 | 
         
            -
                    assert False
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
                transform = Compose(
         
     | 
| 119 | 
         
            -
                    [
         
     | 
| 120 | 
         
            -
                        Resize(
         
     | 
| 121 | 
         
            -
                            net_w,
         
     | 
| 122 | 
         
            -
                            net_h,
         
     | 
| 123 | 
         
            -
                            resize_target=None,
         
     | 
| 124 | 
         
            -
                            keep_aspect_ratio=True,
         
     | 
| 125 | 
         
            -
                            ensure_multiple_of=32,
         
     | 
| 126 | 
         
            -
                            resize_method=resize_mode,
         
     | 
| 127 | 
         
            -
                            image_interpolation_method=cv2.INTER_CUBIC,
         
     | 
| 128 | 
         
            -
                        ),
         
     | 
| 129 | 
         
            -
                        normalization,
         
     | 
| 130 | 
         
            -
                        PrepareForNet(),
         
     | 
| 131 | 
         
            -
                    ]
         
     | 
| 132 | 
         
            -
                )
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                return model.eval(), transform
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
            class MiDaSInference(nn.Module):
         
     | 
| 138 | 
         
            -
                MODEL_TYPES_TORCH_HUB = [
         
     | 
| 139 | 
         
            -
                    "DPT_Large",
         
     | 
| 140 | 
         
            -
                    "DPT_Hybrid",
         
     | 
| 141 | 
         
            -
                    "MiDaS_small"
         
     | 
| 142 | 
         
            -
                ]
         
     | 
| 143 | 
         
            -
                MODEL_TYPES_ISL = [
         
     | 
| 144 | 
         
            -
                    "dpt_large",
         
     | 
| 145 | 
         
            -
                    "dpt_hybrid",
         
     | 
| 146 | 
         
            -
                    "midas_v21",
         
     | 
| 147 | 
         
            -
                    "midas_v21_small",
         
     | 
| 148 | 
         
            -
                ]
         
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
                def __init__(self, model_type):
         
     | 
| 151 | 
         
            -
                    super().__init__()
         
     | 
| 152 | 
         
            -
                    assert (model_type in self.MODEL_TYPES_ISL)
         
     | 
| 153 | 
         
            -
                    model, _ = load_model(model_type)
         
     | 
| 154 | 
         
            -
                    self.model = model
         
     | 
| 155 | 
         
            -
                    self.model.train = disabled_train
         
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
                def forward(self, x):
         
     | 
| 158 | 
         
            -
                    # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
         
     | 
| 159 | 
         
            -
                    # NOTE: we expect that the correct transform has been called during dataloading.
         
     | 
| 160 | 
         
            -
                    with torch.no_grad():
         
     | 
| 161 | 
         
            -
                        prediction = self.model(x)
         
     | 
| 162 | 
         
            -
                        prediction = torch.nn.functional.interpolate(
         
     | 
| 163 | 
         
            -
                            prediction.unsqueeze(1),
         
     | 
| 164 | 
         
            -
                            size=x.shape[2:],
         
     | 
| 165 | 
         
            -
                            mode="bicubic",
         
     | 
| 166 | 
         
            -
                            align_corners=False,
         
     | 
| 167 | 
         
            -
                        )
         
     | 
| 168 | 
         
            -
                    assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
         
     | 
| 169 | 
         
            -
                    return prediction
         
     | 
| 170 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/__init__.py
    DELETED
    
    | 
         
            File without changes
         
     | 
    	
        ldm/modules/midas/midas/base_model.py
    DELETED
    
    | 
         @@ -1,16 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            class BaseModel(torch.nn.Module):
         
     | 
| 5 | 
         
            -
                def load(self, path):
         
     | 
| 6 | 
         
            -
                    """Load model from file.
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
                    Args:
         
     | 
| 9 | 
         
            -
                        path (str): file path
         
     | 
| 10 | 
         
            -
                    """
         
     | 
| 11 | 
         
            -
                    parameters = torch.load(path, map_location=torch.device('cpu'))
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
                    if "optimizer" in parameters:
         
     | 
| 14 | 
         
            -
                        parameters = parameters["model"]
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
                    self.load_state_dict(parameters)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/blocks.py
    DELETED
    
    | 
         @@ -1,342 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn as nn
         
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            from .vit import (
         
     | 
| 5 | 
         
            -
                _make_pretrained_vitb_rn50_384,
         
     | 
| 6 | 
         
            -
                _make_pretrained_vitl16_384,
         
     | 
| 7 | 
         
            -
                _make_pretrained_vitb16_384,
         
     | 
| 8 | 
         
            -
                forward_vit,
         
     | 
| 9 | 
         
            -
            )
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
         
     | 
| 12 | 
         
            -
                if backbone == "vitl16_384":
         
     | 
| 13 | 
         
            -
                    pretrained = _make_pretrained_vitl16_384(
         
     | 
| 14 | 
         
            -
                        use_pretrained, hooks=hooks, use_readout=use_readout
         
     | 
| 15 | 
         
            -
                    )
         
     | 
| 16 | 
         
            -
                    scratch = _make_scratch(
         
     | 
| 17 | 
         
            -
                        [256, 512, 1024, 1024], features, groups=groups, expand=expand
         
     | 
| 18 | 
         
            -
                    )  # ViT-L/16 - 85.0% Top1 (backbone)
         
     | 
| 19 | 
         
            -
                elif backbone == "vitb_rn50_384":
         
     | 
| 20 | 
         
            -
                    pretrained = _make_pretrained_vitb_rn50_384(
         
     | 
| 21 | 
         
            -
                        use_pretrained,
         
     | 
| 22 | 
         
            -
                        hooks=hooks,
         
     | 
| 23 | 
         
            -
                        use_vit_only=use_vit_only,
         
     | 
| 24 | 
         
            -
                        use_readout=use_readout,
         
     | 
| 25 | 
         
            -
                    )
         
     | 
| 26 | 
         
            -
                    scratch = _make_scratch(
         
     | 
| 27 | 
         
            -
                        [256, 512, 768, 768], features, groups=groups, expand=expand
         
     | 
| 28 | 
         
            -
                    )  # ViT-H/16 - 85.0% Top1 (backbone)
         
     | 
| 29 | 
         
            -
                elif backbone == "vitb16_384":
         
     | 
| 30 | 
         
            -
                    pretrained = _make_pretrained_vitb16_384(
         
     | 
| 31 | 
         
            -
                        use_pretrained, hooks=hooks, use_readout=use_readout
         
     | 
| 32 | 
         
            -
                    )
         
     | 
| 33 | 
         
            -
                    scratch = _make_scratch(
         
     | 
| 34 | 
         
            -
                        [96, 192, 384, 768], features, groups=groups, expand=expand
         
     | 
| 35 | 
         
            -
                    )  # ViT-B/16 - 84.6% Top1 (backbone)
         
     | 
| 36 | 
         
            -
                elif backbone == "resnext101_wsl":
         
     | 
| 37 | 
         
            -
                    pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
         
     | 
| 38 | 
         
            -
                    scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand)     # efficientnet_lite3  
         
     | 
| 39 | 
         
            -
                elif backbone == "efficientnet_lite3":
         
     | 
| 40 | 
         
            -
                    pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
         
     | 
| 41 | 
         
            -
                    scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand)  # efficientnet_lite3     
         
     | 
| 42 | 
         
            -
                else:
         
     | 
| 43 | 
         
            -
                    print(f"Backbone '{backbone}' not implemented")
         
     | 
| 44 | 
         
            -
                    assert False
         
     | 
| 45 | 
         
            -
                    
         
     | 
| 46 | 
         
            -
                return pretrained, scratch
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
            def _make_scratch(in_shape, out_shape, groups=1, expand=False):
         
     | 
| 50 | 
         
            -
                scratch = nn.Module()
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                out_shape1 = out_shape
         
     | 
| 53 | 
         
            -
                out_shape2 = out_shape
         
     | 
| 54 | 
         
            -
                out_shape3 = out_shape
         
     | 
| 55 | 
         
            -
                out_shape4 = out_shape
         
     | 
| 56 | 
         
            -
                if expand==True:
         
     | 
| 57 | 
         
            -
                    out_shape1 = out_shape
         
     | 
| 58 | 
         
            -
                    out_shape2 = out_shape*2
         
     | 
| 59 | 
         
            -
                    out_shape3 = out_shape*4
         
     | 
| 60 | 
         
            -
                    out_shape4 = out_shape*8
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
                scratch.layer1_rn = nn.Conv2d(
         
     | 
| 63 | 
         
            -
                    in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 64 | 
         
            -
                )
         
     | 
| 65 | 
         
            -
                scratch.layer2_rn = nn.Conv2d(
         
     | 
| 66 | 
         
            -
                    in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 67 | 
         
            -
                )
         
     | 
| 68 | 
         
            -
                scratch.layer3_rn = nn.Conv2d(
         
     | 
| 69 | 
         
            -
                    in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 70 | 
         
            -
                )
         
     | 
| 71 | 
         
            -
                scratch.layer4_rn = nn.Conv2d(
         
     | 
| 72 | 
         
            -
                    in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
         
     | 
| 73 | 
         
            -
                )
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                return scratch
         
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
            def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
         
     | 
| 79 | 
         
            -
                efficientnet = torch.hub.load(
         
     | 
| 80 | 
         
            -
                    "rwightman/gen-efficientnet-pytorch",
         
     | 
| 81 | 
         
            -
                    "tf_efficientnet_lite3",
         
     | 
| 82 | 
         
            -
                    pretrained=use_pretrained,
         
     | 
| 83 | 
         
            -
                    exportable=exportable
         
     | 
| 84 | 
         
            -
                )
         
     | 
| 85 | 
         
            -
                return _make_efficientnet_backbone(efficientnet)
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
            def _make_efficientnet_backbone(effnet):
         
     | 
| 89 | 
         
            -
                pretrained = nn.Module()
         
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
                pretrained.layer1 = nn.Sequential(
         
     | 
| 92 | 
         
            -
                    effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
         
     | 
| 93 | 
         
            -
                )
         
     | 
| 94 | 
         
            -
                pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
         
     | 
| 95 | 
         
            -
                pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
         
     | 
| 96 | 
         
            -
                pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
         
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
                return pretrained
         
     | 
| 99 | 
         
            -
                
         
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
            def _make_resnet_backbone(resnet):
         
     | 
| 102 | 
         
            -
                pretrained = nn.Module()
         
     | 
| 103 | 
         
            -
                pretrained.layer1 = nn.Sequential(
         
     | 
| 104 | 
         
            -
                    resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
         
     | 
| 105 | 
         
            -
                )
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                pretrained.layer2 = resnet.layer2
         
     | 
| 108 | 
         
            -
                pretrained.layer3 = resnet.layer3
         
     | 
| 109 | 
         
            -
                pretrained.layer4 = resnet.layer4
         
     | 
| 110 | 
         
            -
             
     | 
| 111 | 
         
            -
                return pretrained
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
            def _make_pretrained_resnext101_wsl(use_pretrained):
         
     | 
| 115 | 
         
            -
                resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
         
     | 
| 116 | 
         
            -
                return _make_resnet_backbone(resnet)
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
            class Interpolate(nn.Module):
         
     | 
| 121 | 
         
            -
                """Interpolation module.
         
     | 
| 122 | 
         
            -
                """
         
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
                def __init__(self, scale_factor, mode, align_corners=False):
         
     | 
| 125 | 
         
            -
                    """Init.
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
                    Args:
         
     | 
| 128 | 
         
            -
                        scale_factor (float): scaling
         
     | 
| 129 | 
         
            -
                        mode (str): interpolation mode
         
     | 
| 130 | 
         
            -
                    """
         
     | 
| 131 | 
         
            -
                    super(Interpolate, self).__init__()
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                    self.interp = nn.functional.interpolate
         
     | 
| 134 | 
         
            -
                    self.scale_factor = scale_factor
         
     | 
| 135 | 
         
            -
                    self.mode = mode
         
     | 
| 136 | 
         
            -
                    self.align_corners = align_corners
         
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
                def forward(self, x):
         
     | 
| 139 | 
         
            -
                    """Forward pass.
         
     | 
| 140 | 
         
            -
             
     | 
| 141 | 
         
            -
                    Args:
         
     | 
| 142 | 
         
            -
                        x (tensor): input
         
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
                    Returns:
         
     | 
| 145 | 
         
            -
                        tensor: interpolated data
         
     | 
| 146 | 
         
            -
                    """
         
     | 
| 147 | 
         
            -
             
     | 
| 148 | 
         
            -
                    x = self.interp(
         
     | 
| 149 | 
         
            -
                        x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
         
     | 
| 150 | 
         
            -
                    )
         
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
                    return x
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
             
     | 
| 155 | 
         
            -
            class ResidualConvUnit(nn.Module):
         
     | 
| 156 | 
         
            -
                """Residual convolution module.
         
     | 
| 157 | 
         
            -
                """
         
     | 
| 158 | 
         
            -
             
     | 
| 159 | 
         
            -
                def __init__(self, features):
         
     | 
| 160 | 
         
            -
                    """Init.
         
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
                    Args:
         
     | 
| 163 | 
         
            -
                        features (int): number of features
         
     | 
| 164 | 
         
            -
                    """
         
     | 
| 165 | 
         
            -
                    super().__init__()
         
     | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
                    self.conv1 = nn.Conv2d(
         
     | 
| 168 | 
         
            -
                        features, features, kernel_size=3, stride=1, padding=1, bias=True
         
     | 
| 169 | 
         
            -
                    )
         
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
                    self.conv2 = nn.Conv2d(
         
     | 
| 172 | 
         
            -
                        features, features, kernel_size=3, stride=1, padding=1, bias=True
         
     | 
| 173 | 
         
            -
                    )
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                def forward(self, x):
         
     | 
| 178 | 
         
            -
                    """Forward pass.
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                    Args:
         
     | 
| 181 | 
         
            -
                        x (tensor): input
         
     | 
| 182 | 
         
            -
             
     | 
| 183 | 
         
            -
                    Returns:
         
     | 
| 184 | 
         
            -
                        tensor: output
         
     | 
| 185 | 
         
            -
                    """
         
     | 
| 186 | 
         
            -
                    out = self.relu(x)
         
     | 
| 187 | 
         
            -
                    out = self.conv1(out)
         
     | 
| 188 | 
         
            -
                    out = self.relu(out)
         
     | 
| 189 | 
         
            -
                    out = self.conv2(out)
         
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
                    return out + x
         
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
            class FeatureFusionBlock(nn.Module):
         
     | 
| 195 | 
         
            -
                """Feature fusion block.
         
     | 
| 196 | 
         
            -
                """
         
     | 
| 197 | 
         
            -
             
     | 
| 198 | 
         
            -
                def __init__(self, features):
         
     | 
| 199 | 
         
            -
                    """Init.
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
                    Args:
         
     | 
| 202 | 
         
            -
                        features (int): number of features
         
     | 
| 203 | 
         
            -
                    """
         
     | 
| 204 | 
         
            -
                    super(FeatureFusionBlock, self).__init__()
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
                    self.resConfUnit1 = ResidualConvUnit(features)
         
     | 
| 207 | 
         
            -
                    self.resConfUnit2 = ResidualConvUnit(features)
         
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
                def forward(self, *xs):
         
     | 
| 210 | 
         
            -
                    """Forward pass.
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                    Returns:
         
     | 
| 213 | 
         
            -
                        tensor: output
         
     | 
| 214 | 
         
            -
                    """
         
     | 
| 215 | 
         
            -
                    output = xs[0]
         
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
                    if len(xs) == 2:
         
     | 
| 218 | 
         
            -
                        output += self.resConfUnit1(xs[1])
         
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
                    output = self.resConfUnit2(output)
         
     | 
| 221 | 
         
            -
             
     | 
| 222 | 
         
            -
                    output = nn.functional.interpolate(
         
     | 
| 223 | 
         
            -
                        output, scale_factor=2, mode="bilinear", align_corners=True
         
     | 
| 224 | 
         
            -
                    )
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
                    return output
         
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
            -
             
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
             
     | 
| 231 | 
         
            -
            class ResidualConvUnit_custom(nn.Module):
         
     | 
| 232 | 
         
            -
                """Residual convolution module.
         
     | 
| 233 | 
         
            -
                """
         
     | 
| 234 | 
         
            -
             
     | 
| 235 | 
         
            -
                def __init__(self, features, activation, bn):
         
     | 
| 236 | 
         
            -
                    """Init.
         
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
                    Args:
         
     | 
| 239 | 
         
            -
                        features (int): number of features
         
     | 
| 240 | 
         
            -
                    """
         
     | 
| 241 | 
         
            -
                    super().__init__()
         
     | 
| 242 | 
         
            -
             
     | 
| 243 | 
         
            -
                    self.bn = bn
         
     | 
| 244 | 
         
            -
             
     | 
| 245 | 
         
            -
                    self.groups=1
         
     | 
| 246 | 
         
            -
             
     | 
| 247 | 
         
            -
                    self.conv1 = nn.Conv2d(
         
     | 
| 248 | 
         
            -
                        features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
         
     | 
| 249 | 
         
            -
                    )
         
     | 
| 250 | 
         
            -
                    
         
     | 
| 251 | 
         
            -
                    self.conv2 = nn.Conv2d(
         
     | 
| 252 | 
         
            -
                        features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
         
     | 
| 253 | 
         
            -
                    )
         
     | 
| 254 | 
         
            -
             
     | 
| 255 | 
         
            -
                    if self.bn==True:
         
     | 
| 256 | 
         
            -
                        self.bn1 = nn.BatchNorm2d(features)
         
     | 
| 257 | 
         
            -
                        self.bn2 = nn.BatchNorm2d(features)
         
     | 
| 258 | 
         
            -
             
     | 
| 259 | 
         
            -
                    self.activation = activation
         
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
                    self.skip_add = nn.quantized.FloatFunctional()
         
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
                def forward(self, x):
         
     | 
| 264 | 
         
            -
                    """Forward pass.
         
     | 
| 265 | 
         
            -
             
     | 
| 266 | 
         
            -
                    Args:
         
     | 
| 267 | 
         
            -
                        x (tensor): input
         
     | 
| 268 | 
         
            -
             
     | 
| 269 | 
         
            -
                    Returns:
         
     | 
| 270 | 
         
            -
                        tensor: output
         
     | 
| 271 | 
         
            -
                    """
         
     | 
| 272 | 
         
            -
                    
         
     | 
| 273 | 
         
            -
                    out = self.activation(x)
         
     | 
| 274 | 
         
            -
                    out = self.conv1(out)
         
     | 
| 275 | 
         
            -
                    if self.bn==True:
         
     | 
| 276 | 
         
            -
                        out = self.bn1(out)
         
     | 
| 277 | 
         
            -
                   
         
     | 
| 278 | 
         
            -
                    out = self.activation(out)
         
     | 
| 279 | 
         
            -
                    out = self.conv2(out)
         
     | 
| 280 | 
         
            -
                    if self.bn==True:
         
     | 
| 281 | 
         
            -
                        out = self.bn2(out)
         
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
                    if self.groups > 1:
         
     | 
| 284 | 
         
            -
                        out = self.conv_merge(out)
         
     | 
| 285 | 
         
            -
             
     | 
| 286 | 
         
            -
                    return self.skip_add.add(out, x)
         
     | 
| 287 | 
         
            -
             
     | 
| 288 | 
         
            -
                    # return out + x
         
     | 
| 289 | 
         
            -
             
     | 
| 290 | 
         
            -
             
     | 
| 291 | 
         
            -
            class FeatureFusionBlock_custom(nn.Module):
         
     | 
| 292 | 
         
            -
                """Feature fusion block.
         
     | 
| 293 | 
         
            -
                """
         
     | 
| 294 | 
         
            -
             
     | 
| 295 | 
         
            -
                def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
         
     | 
| 296 | 
         
            -
                    """Init.
         
     | 
| 297 | 
         
            -
             
     | 
| 298 | 
         
            -
                    Args:
         
     | 
| 299 | 
         
            -
                        features (int): number of features
         
     | 
| 300 | 
         
            -
                    """
         
     | 
| 301 | 
         
            -
                    super(FeatureFusionBlock_custom, self).__init__()
         
     | 
| 302 | 
         
            -
             
     | 
| 303 | 
         
            -
                    self.deconv = deconv
         
     | 
| 304 | 
         
            -
                    self.align_corners = align_corners
         
     | 
| 305 | 
         
            -
             
     | 
| 306 | 
         
            -
                    self.groups=1
         
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
            -
                    self.expand = expand
         
     | 
| 309 | 
         
            -
                    out_features = features
         
     | 
| 310 | 
         
            -
                    if self.expand==True:
         
     | 
| 311 | 
         
            -
                        out_features = features//2
         
     | 
| 312 | 
         
            -
                    
         
     | 
| 313 | 
         
            -
                    self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
         
     | 
| 314 | 
         
            -
             
     | 
| 315 | 
         
            -
                    self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
         
     | 
| 316 | 
         
            -
                    self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
         
     | 
| 317 | 
         
            -
                    
         
     | 
| 318 | 
         
            -
                    self.skip_add = nn.quantized.FloatFunctional()
         
     | 
| 319 | 
         
            -
             
     | 
| 320 | 
         
            -
                def forward(self, *xs):
         
     | 
| 321 | 
         
            -
                    """Forward pass.
         
     | 
| 322 | 
         
            -
             
     | 
| 323 | 
         
            -
                    Returns:
         
     | 
| 324 | 
         
            -
                        tensor: output
         
     | 
| 325 | 
         
            -
                    """
         
     | 
| 326 | 
         
            -
                    output = xs[0]
         
     | 
| 327 | 
         
            -
             
     | 
| 328 | 
         
            -
                    if len(xs) == 2:
         
     | 
| 329 | 
         
            -
                        res = self.resConfUnit1(xs[1])
         
     | 
| 330 | 
         
            -
                        output = self.skip_add.add(output, res)
         
     | 
| 331 | 
         
            -
                        # output += res
         
     | 
| 332 | 
         
            -
             
     | 
| 333 | 
         
            -
                    output = self.resConfUnit2(output)
         
     | 
| 334 | 
         
            -
             
     | 
| 335 | 
         
            -
                    output = nn.functional.interpolate(
         
     | 
| 336 | 
         
            -
                        output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
         
     | 
| 337 | 
         
            -
                    )
         
     | 
| 338 | 
         
            -
             
     | 
| 339 | 
         
            -
                    output = self.out_conv(output)
         
     | 
| 340 | 
         
            -
             
     | 
| 341 | 
         
            -
                    return output
         
     | 
| 342 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/dpt_depth.py
    DELETED
    
    | 
         @@ -1,109 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn as nn
         
     | 
| 3 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            from .base_model import BaseModel
         
     | 
| 6 | 
         
            -
            from .blocks import (
         
     | 
| 7 | 
         
            -
                FeatureFusionBlock,
         
     | 
| 8 | 
         
            -
                FeatureFusionBlock_custom,
         
     | 
| 9 | 
         
            -
                Interpolate,
         
     | 
| 10 | 
         
            -
                _make_encoder,
         
     | 
| 11 | 
         
            -
                forward_vit,
         
     | 
| 12 | 
         
            -
            )
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
            def _make_fusion_block(features, use_bn):
         
     | 
| 16 | 
         
            -
                return FeatureFusionBlock_custom(
         
     | 
| 17 | 
         
            -
                    features,
         
     | 
| 18 | 
         
            -
                    nn.ReLU(False),
         
     | 
| 19 | 
         
            -
                    deconv=False,
         
     | 
| 20 | 
         
            -
                    bn=use_bn,
         
     | 
| 21 | 
         
            -
                    expand=False,
         
     | 
| 22 | 
         
            -
                    align_corners=True,
         
     | 
| 23 | 
         
            -
                )
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
            class DPT(BaseModel):
         
     | 
| 27 | 
         
            -
                def __init__(
         
     | 
| 28 | 
         
            -
                    self,
         
     | 
| 29 | 
         
            -
                    head,
         
     | 
| 30 | 
         
            -
                    features=256,
         
     | 
| 31 | 
         
            -
                    backbone="vitb_rn50_384",
         
     | 
| 32 | 
         
            -
                    readout="project",
         
     | 
| 33 | 
         
            -
                    channels_last=False,
         
     | 
| 34 | 
         
            -
                    use_bn=False,
         
     | 
| 35 | 
         
            -
                ):
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                    super(DPT, self).__init__()
         
     | 
| 38 | 
         
            -
             
     | 
| 39 | 
         
            -
                    self.channels_last = channels_last
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                    hooks = {
         
     | 
| 42 | 
         
            -
                        "vitb_rn50_384": [0, 1, 8, 11],
         
     | 
| 43 | 
         
            -
                        "vitb16_384": [2, 5, 8, 11],
         
     | 
| 44 | 
         
            -
                        "vitl16_384": [5, 11, 17, 23],
         
     | 
| 45 | 
         
            -
                    }
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
                    # Instantiate backbone and reassemble blocks
         
     | 
| 48 | 
         
            -
                    self.pretrained, self.scratch = _make_encoder(
         
     | 
| 49 | 
         
            -
                        backbone,
         
     | 
| 50 | 
         
            -
                        features,
         
     | 
| 51 | 
         
            -
                        False, # Set to true of you want to train from scratch, uses ImageNet weights
         
     | 
| 52 | 
         
            -
                        groups=1,
         
     | 
| 53 | 
         
            -
                        expand=False,
         
     | 
| 54 | 
         
            -
                        exportable=False,
         
     | 
| 55 | 
         
            -
                        hooks=hooks[backbone],
         
     | 
| 56 | 
         
            -
                        use_readout=readout,
         
     | 
| 57 | 
         
            -
                    )
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                    self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
         
     | 
| 60 | 
         
            -
                    self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
         
     | 
| 61 | 
         
            -
                    self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
         
     | 
| 62 | 
         
            -
                    self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                    self.scratch.output_conv = head
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
                def forward(self, x):
         
     | 
| 68 | 
         
            -
                    if self.channels_last == True:
         
     | 
| 69 | 
         
            -
                        x.contiguous(memory_format=torch.channels_last)
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
                    layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         
     | 
| 74 | 
         
            -
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         
     | 
| 75 | 
         
            -
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         
     | 
| 76 | 
         
            -
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
                    path_4 = self.scratch.refinenet4(layer_4_rn)
         
     | 
| 79 | 
         
            -
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
         
     | 
| 80 | 
         
            -
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
         
     | 
| 81 | 
         
            -
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                    out = self.scratch.output_conv(path_1)
         
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
                    return out
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
            class DPTDepthModel(DPT):
         
     | 
| 89 | 
         
            -
                def __init__(self, path=None, non_negative=True, **kwargs):
         
     | 
| 90 | 
         
            -
                    features = kwargs["features"] if "features" in kwargs else 256
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                    head = nn.Sequential(
         
     | 
| 93 | 
         
            -
                        nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
         
     | 
| 94 | 
         
            -
                        Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
         
     | 
| 95 | 
         
            -
                        nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
         
     | 
| 96 | 
         
            -
                        nn.ReLU(True),
         
     | 
| 97 | 
         
            -
                        nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
         
     | 
| 98 | 
         
            -
                        nn.ReLU(True) if non_negative else nn.Identity(),
         
     | 
| 99 | 
         
            -
                        nn.Identity(),
         
     | 
| 100 | 
         
            -
                    )
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                    super().__init__(head, **kwargs)
         
     | 
| 103 | 
         
            -
             
     | 
| 104 | 
         
            -
                    if path is not None:
         
     | 
| 105 | 
         
            -
                       self.load(path)
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                def forward(self, x):
         
     | 
| 108 | 
         
            -
                    return super().forward(x).squeeze(dim=1)
         
     | 
| 109 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/midas_net.py
    DELETED
    
    | 
         @@ -1,76 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
         
     | 
| 2 | 
         
            -
            This file contains code that is adapted from
         
     | 
| 3 | 
         
            -
            https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
         
     | 
| 4 | 
         
            -
            """
         
     | 
| 5 | 
         
            -
            import torch
         
     | 
| 6 | 
         
            -
            import torch.nn as nn
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            from .base_model import BaseModel
         
     | 
| 9 | 
         
            -
            from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            class MidasNet(BaseModel):
         
     | 
| 13 | 
         
            -
                """Network for monocular depth estimation.
         
     | 
| 14 | 
         
            -
                """
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
                def __init__(self, path=None, features=256, non_negative=True):
         
     | 
| 17 | 
         
            -
                    """Init.
         
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
                    Args:
         
     | 
| 20 | 
         
            -
                        path (str, optional): Path to saved model. Defaults to None.
         
     | 
| 21 | 
         
            -
                        features (int, optional): Number of features. Defaults to 256.
         
     | 
| 22 | 
         
            -
                        backbone (str, optional): Backbone network for encoder. Defaults to resnet50
         
     | 
| 23 | 
         
            -
                    """
         
     | 
| 24 | 
         
            -
                    print("Loading weights: ", path)
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
                    super(MidasNet, self).__init__()
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
                    use_pretrained = False if path is None else True
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                    self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
                    self.scratch.refinenet4 = FeatureFusionBlock(features)
         
     | 
| 33 | 
         
            -
                    self.scratch.refinenet3 = FeatureFusionBlock(features)
         
     | 
| 34 | 
         
            -
                    self.scratch.refinenet2 = FeatureFusionBlock(features)
         
     | 
| 35 | 
         
            -
                    self.scratch.refinenet1 = FeatureFusionBlock(features)
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                    self.scratch.output_conv = nn.Sequential(
         
     | 
| 38 | 
         
            -
                        nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
         
     | 
| 39 | 
         
            -
                        Interpolate(scale_factor=2, mode="bilinear"),
         
     | 
| 40 | 
         
            -
                        nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
         
     | 
| 41 | 
         
            -
                        nn.ReLU(True),
         
     | 
| 42 | 
         
            -
                        nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
         
     | 
| 43 | 
         
            -
                        nn.ReLU(True) if non_negative else nn.Identity(),
         
     | 
| 44 | 
         
            -
                    )
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
                    if path:
         
     | 
| 47 | 
         
            -
                        self.load(path)
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                def forward(self, x):
         
     | 
| 50 | 
         
            -
                    """Forward pass.
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                    Args:
         
     | 
| 53 | 
         
            -
                        x (tensor): input data (image)
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                    Returns:
         
     | 
| 56 | 
         
            -
                        tensor: depth
         
     | 
| 57 | 
         
            -
                    """
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                    layer_1 = self.pretrained.layer1(x)
         
     | 
| 60 | 
         
            -
                    layer_2 = self.pretrained.layer2(layer_1)
         
     | 
| 61 | 
         
            -
                    layer_3 = self.pretrained.layer3(layer_2)
         
     | 
| 62 | 
         
            -
                    layer_4 = self.pretrained.layer4(layer_3)
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         
     | 
| 65 | 
         
            -
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         
     | 
| 66 | 
         
            -
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         
     | 
| 67 | 
         
            -
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
                    path_4 = self.scratch.refinenet4(layer_4_rn)
         
     | 
| 70 | 
         
            -
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
         
     | 
| 71 | 
         
            -
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
         
     | 
| 72 | 
         
            -
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
                    out = self.scratch.output_conv(path_1)
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                    return torch.squeeze(out, dim=1)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/midas_net_custom.py
    DELETED
    
    | 
         @@ -1,128 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
         
     | 
| 2 | 
         
            -
            This file contains code that is adapted from
         
     | 
| 3 | 
         
            -
            https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
         
     | 
| 4 | 
         
            -
            """
         
     | 
| 5 | 
         
            -
            import torch
         
     | 
| 6 | 
         
            -
            import torch.nn as nn
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            from .base_model import BaseModel
         
     | 
| 9 | 
         
            -
            from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            class MidasNet_small(BaseModel):
         
     | 
| 13 | 
         
            -
                """Network for monocular depth estimation.
         
     | 
| 14 | 
         
            -
                """
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
                def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
         
     | 
| 17 | 
         
            -
                    blocks={'expand': True}):
         
     | 
| 18 | 
         
            -
                    """Init.
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
                    Args:
         
     | 
| 21 | 
         
            -
                        path (str, optional): Path to saved model. Defaults to None.
         
     | 
| 22 | 
         
            -
                        features (int, optional): Number of features. Defaults to 256.
         
     | 
| 23 | 
         
            -
                        backbone (str, optional): Backbone network for encoder. Defaults to resnet50
         
     | 
| 24 | 
         
            -
                    """
         
     | 
| 25 | 
         
            -
                    print("Loading weights: ", path)
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
                    super(MidasNet_small, self).__init__()
         
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
                    use_pretrained = False if path else True
         
     | 
| 30 | 
         
            -
                            
         
     | 
| 31 | 
         
            -
                    self.channels_last = channels_last
         
     | 
| 32 | 
         
            -
                    self.blocks = blocks
         
     | 
| 33 | 
         
            -
                    self.backbone = backbone
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
                    self.groups = 1
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
                    features1=features
         
     | 
| 38 | 
         
            -
                    features2=features
         
     | 
| 39 | 
         
            -
                    features3=features
         
     | 
| 40 | 
         
            -
                    features4=features
         
     | 
| 41 | 
         
            -
                    self.expand = False
         
     | 
| 42 | 
         
            -
                    if "expand" in self.blocks and self.blocks['expand'] == True:
         
     | 
| 43 | 
         
            -
                        self.expand = True
         
     | 
| 44 | 
         
            -
                        features1=features
         
     | 
| 45 | 
         
            -
                        features2=features*2
         
     | 
| 46 | 
         
            -
                        features3=features*4
         
     | 
| 47 | 
         
            -
                        features4=features*8
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                    self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
         
     | 
| 50 | 
         
            -
              
         
     | 
| 51 | 
         
            -
                    self.scratch.activation = nn.ReLU(False)    
         
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
                    self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
         
     | 
| 54 | 
         
            -
                    self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
         
     | 
| 55 | 
         
            -
                    self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
         
     | 
| 56 | 
         
            -
                    self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
                    
         
     | 
| 59 | 
         
            -
                    self.scratch.output_conv = nn.Sequential(
         
     | 
| 60 | 
         
            -
                        nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
         
     | 
| 61 | 
         
            -
                        Interpolate(scale_factor=2, mode="bilinear"),
         
     | 
| 62 | 
         
            -
                        nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
         
     | 
| 63 | 
         
            -
                        self.scratch.activation,
         
     | 
| 64 | 
         
            -
                        nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
         
     | 
| 65 | 
         
            -
                        nn.ReLU(True) if non_negative else nn.Identity(),
         
     | 
| 66 | 
         
            -
                        nn.Identity(),
         
     | 
| 67 | 
         
            -
                    )
         
     | 
| 68 | 
         
            -
                    
         
     | 
| 69 | 
         
            -
                    if path:
         
     | 
| 70 | 
         
            -
                        self.load(path)
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                def forward(self, x):
         
     | 
| 74 | 
         
            -
                    """Forward pass.
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                    Args:
         
     | 
| 77 | 
         
            -
                        x (tensor): input data (image)
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                    Returns:
         
     | 
| 80 | 
         
            -
                        tensor: depth
         
     | 
| 81 | 
         
            -
                    """
         
     | 
| 82 | 
         
            -
                    if self.channels_last==True:
         
     | 
| 83 | 
         
            -
                        print("self.channels_last = ", self.channels_last)
         
     | 
| 84 | 
         
            -
                        x.contiguous(memory_format=torch.channels_last)
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
                    layer_1 = self.pretrained.layer1(x)
         
     | 
| 88 | 
         
            -
                    layer_2 = self.pretrained.layer2(layer_1)
         
     | 
| 89 | 
         
            -
                    layer_3 = self.pretrained.layer3(layer_2)
         
     | 
| 90 | 
         
            -
                    layer_4 = self.pretrained.layer4(layer_3)
         
     | 
| 91 | 
         
            -
                    
         
     | 
| 92 | 
         
            -
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         
     | 
| 93 | 
         
            -
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         
     | 
| 94 | 
         
            -
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         
     | 
| 95 | 
         
            -
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
                    path_4 = self.scratch.refinenet4(layer_4_rn)
         
     | 
| 99 | 
         
            -
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
         
     | 
| 100 | 
         
            -
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
         
     | 
| 101 | 
         
            -
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         
     | 
| 102 | 
         
            -
                    
         
     | 
| 103 | 
         
            -
                    out = self.scratch.output_conv(path_1)
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                    return torch.squeeze(out, dim=1)
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
            def fuse_model(m):
         
     | 
| 110 | 
         
            -
                prev_previous_type = nn.Identity()
         
     | 
| 111 | 
         
            -
                prev_previous_name = ''
         
     | 
| 112 | 
         
            -
                previous_type = nn.Identity()
         
     | 
| 113 | 
         
            -
                previous_name = ''
         
     | 
| 114 | 
         
            -
                for name, module in m.named_modules():
         
     | 
| 115 | 
         
            -
                    if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
         
     | 
| 116 | 
         
            -
                        # print("FUSED ", prev_previous_name, previous_name, name)
         
     | 
| 117 | 
         
            -
                        torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
         
     | 
| 118 | 
         
            -
                    elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
         
     | 
| 119 | 
         
            -
                        # print("FUSED ", prev_previous_name, previous_name)
         
     | 
| 120 | 
         
            -
                        torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
         
     | 
| 121 | 
         
            -
                    # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
         
     | 
| 122 | 
         
            -
                    #    print("FUSED ", previous_name, name)
         
     | 
| 123 | 
         
            -
                    #    torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                    prev_previous_type = previous_type
         
     | 
| 126 | 
         
            -
                    prev_previous_name = previous_name
         
     | 
| 127 | 
         
            -
                    previous_type = type(module)
         
     | 
| 128 | 
         
            -
                    previous_name = name
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/transforms.py
    DELETED
    
    | 
         @@ -1,234 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import numpy as np
         
     | 
| 2 | 
         
            -
            import cv2
         
     | 
| 3 | 
         
            -
            import math
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
            def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
         
     | 
| 7 | 
         
            -
                """Rezise the sample to ensure the given size. Keeps aspect ratio.
         
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
                Args:
         
     | 
| 10 | 
         
            -
                    sample (dict): sample
         
     | 
| 11 | 
         
            -
                    size (tuple): image size
         
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
                Returns:
         
     | 
| 14 | 
         
            -
                    tuple: new size
         
     | 
| 15 | 
         
            -
                """
         
     | 
| 16 | 
         
            -
                shape = list(sample["disparity"].shape)
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
                if shape[0] >= size[0] and shape[1] >= size[1]:
         
     | 
| 19 | 
         
            -
                    return sample
         
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                scale = [0, 0]
         
     | 
| 22 | 
         
            -
                scale[0] = size[0] / shape[0]
         
     | 
| 23 | 
         
            -
                scale[1] = size[1] / shape[1]
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
                scale = max(scale)
         
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
                shape[0] = math.ceil(scale * shape[0])
         
     | 
| 28 | 
         
            -
                shape[1] = math.ceil(scale * shape[1])
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
                # resize
         
     | 
| 31 | 
         
            -
                sample["image"] = cv2.resize(
         
     | 
| 32 | 
         
            -
                    sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
         
     | 
| 33 | 
         
            -
                )
         
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
                sample["disparity"] = cv2.resize(
         
     | 
| 36 | 
         
            -
                    sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
         
     | 
| 37 | 
         
            -
                )
         
     | 
| 38 | 
         
            -
                sample["mask"] = cv2.resize(
         
     | 
| 39 | 
         
            -
                    sample["mask"].astype(np.float32),
         
     | 
| 40 | 
         
            -
                    tuple(shape[::-1]),
         
     | 
| 41 | 
         
            -
                    interpolation=cv2.INTER_NEAREST,
         
     | 
| 42 | 
         
            -
                )
         
     | 
| 43 | 
         
            -
                sample["mask"] = sample["mask"].astype(bool)
         
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
                return tuple(shape)
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
            class Resize(object):
         
     | 
| 49 | 
         
            -
                """Resize sample to given size (width, height).
         
     | 
| 50 | 
         
            -
                """
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                def __init__(
         
     | 
| 53 | 
         
            -
                    self,
         
     | 
| 54 | 
         
            -
                    width,
         
     | 
| 55 | 
         
            -
                    height,
         
     | 
| 56 | 
         
            -
                    resize_target=True,
         
     | 
| 57 | 
         
            -
                    keep_aspect_ratio=False,
         
     | 
| 58 | 
         
            -
                    ensure_multiple_of=1,
         
     | 
| 59 | 
         
            -
                    resize_method="lower_bound",
         
     | 
| 60 | 
         
            -
                    image_interpolation_method=cv2.INTER_AREA,
         
     | 
| 61 | 
         
            -
                ):
         
     | 
| 62 | 
         
            -
                    """Init.
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                    Args:
         
     | 
| 65 | 
         
            -
                        width (int): desired output width
         
     | 
| 66 | 
         
            -
                        height (int): desired output height
         
     | 
| 67 | 
         
            -
                        resize_target (bool, optional):
         
     | 
| 68 | 
         
            -
                            True: Resize the full sample (image, mask, target).
         
     | 
| 69 | 
         
            -
                            False: Resize image only.
         
     | 
| 70 | 
         
            -
                            Defaults to True.
         
     | 
| 71 | 
         
            -
                        keep_aspect_ratio (bool, optional):
         
     | 
| 72 | 
         
            -
                            True: Keep the aspect ratio of the input sample.
         
     | 
| 73 | 
         
            -
                            Output sample might not have the given width and height, and
         
     | 
| 74 | 
         
            -
                            resize behaviour depends on the parameter 'resize_method'.
         
     | 
| 75 | 
         
            -
                            Defaults to False.
         
     | 
| 76 | 
         
            -
                        ensure_multiple_of (int, optional):
         
     | 
| 77 | 
         
            -
                            Output width and height is constrained to be multiple of this parameter.
         
     | 
| 78 | 
         
            -
                            Defaults to 1.
         
     | 
| 79 | 
         
            -
                        resize_method (str, optional):
         
     | 
| 80 | 
         
            -
                            "lower_bound": Output will be at least as large as the given size.
         
     | 
| 81 | 
         
            -
                            "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
         
     | 
| 82 | 
         
            -
                            "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
         
     | 
| 83 | 
         
            -
                            Defaults to "lower_bound".
         
     | 
| 84 | 
         
            -
                    """
         
     | 
| 85 | 
         
            -
                    self.__width = width
         
     | 
| 86 | 
         
            -
                    self.__height = height
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                    self.__resize_target = resize_target
         
     | 
| 89 | 
         
            -
                    self.__keep_aspect_ratio = keep_aspect_ratio
         
     | 
| 90 | 
         
            -
                    self.__multiple_of = ensure_multiple_of
         
     | 
| 91 | 
         
            -
                    self.__resize_method = resize_method
         
     | 
| 92 | 
         
            -
                    self.__image_interpolation_method = image_interpolation_method
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
                def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
         
     | 
| 95 | 
         
            -
                    y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
                    if max_val is not None and y > max_val:
         
     | 
| 98 | 
         
            -
                        y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
         
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
                    if y < min_val:
         
     | 
| 101 | 
         
            -
                        y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
                    return y
         
     | 
| 104 | 
         
            -
             
     | 
| 105 | 
         
            -
                def get_size(self, width, height):
         
     | 
| 106 | 
         
            -
                    # determine new height and width
         
     | 
| 107 | 
         
            -
                    scale_height = self.__height / height
         
     | 
| 108 | 
         
            -
                    scale_width = self.__width / width
         
     | 
| 109 | 
         
            -
             
     | 
| 110 | 
         
            -
                    if self.__keep_aspect_ratio:
         
     | 
| 111 | 
         
            -
                        if self.__resize_method == "lower_bound":
         
     | 
| 112 | 
         
            -
                            # scale such that output size is lower bound
         
     | 
| 113 | 
         
            -
                            if scale_width > scale_height:
         
     | 
| 114 | 
         
            -
                                # fit width
         
     | 
| 115 | 
         
            -
                                scale_height = scale_width
         
     | 
| 116 | 
         
            -
                            else:
         
     | 
| 117 | 
         
            -
                                # fit height
         
     | 
| 118 | 
         
            -
                                scale_width = scale_height
         
     | 
| 119 | 
         
            -
                        elif self.__resize_method == "upper_bound":
         
     | 
| 120 | 
         
            -
                            # scale such that output size is upper bound
         
     | 
| 121 | 
         
            -
                            if scale_width < scale_height:
         
     | 
| 122 | 
         
            -
                                # fit width
         
     | 
| 123 | 
         
            -
                                scale_height = scale_width
         
     | 
| 124 | 
         
            -
                            else:
         
     | 
| 125 | 
         
            -
                                # fit height
         
     | 
| 126 | 
         
            -
                                scale_width = scale_height
         
     | 
| 127 | 
         
            -
                        elif self.__resize_method == "minimal":
         
     | 
| 128 | 
         
            -
                            # scale as least as possbile
         
     | 
| 129 | 
         
            -
                            if abs(1 - scale_width) < abs(1 - scale_height):
         
     | 
| 130 | 
         
            -
                                # fit width
         
     | 
| 131 | 
         
            -
                                scale_height = scale_width
         
     | 
| 132 | 
         
            -
                            else:
         
     | 
| 133 | 
         
            -
                                # fit height
         
     | 
| 134 | 
         
            -
                                scale_width = scale_height
         
     | 
| 135 | 
         
            -
                        else:
         
     | 
| 136 | 
         
            -
                            raise ValueError(
         
     | 
| 137 | 
         
            -
                                f"resize_method {self.__resize_method} not implemented"
         
     | 
| 138 | 
         
            -
                            )
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                    if self.__resize_method == "lower_bound":
         
     | 
| 141 | 
         
            -
                        new_height = self.constrain_to_multiple_of(
         
     | 
| 142 | 
         
            -
                            scale_height * height, min_val=self.__height
         
     | 
| 143 | 
         
            -
                        )
         
     | 
| 144 | 
         
            -
                        new_width = self.constrain_to_multiple_of(
         
     | 
| 145 | 
         
            -
                            scale_width * width, min_val=self.__width
         
     | 
| 146 | 
         
            -
                        )
         
     | 
| 147 | 
         
            -
                    elif self.__resize_method == "upper_bound":
         
     | 
| 148 | 
         
            -
                        new_height = self.constrain_to_multiple_of(
         
     | 
| 149 | 
         
            -
                            scale_height * height, max_val=self.__height
         
     | 
| 150 | 
         
            -
                        )
         
     | 
| 151 | 
         
            -
                        new_width = self.constrain_to_multiple_of(
         
     | 
| 152 | 
         
            -
                            scale_width * width, max_val=self.__width
         
     | 
| 153 | 
         
            -
                        )
         
     | 
| 154 | 
         
            -
                    elif self.__resize_method == "minimal":
         
     | 
| 155 | 
         
            -
                        new_height = self.constrain_to_multiple_of(scale_height * height)
         
     | 
| 156 | 
         
            -
                        new_width = self.constrain_to_multiple_of(scale_width * width)
         
     | 
| 157 | 
         
            -
                    else:
         
     | 
| 158 | 
         
            -
                        raise ValueError(f"resize_method {self.__resize_method} not implemented")
         
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                    return (new_width, new_height)
         
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
                def __call__(self, sample):
         
     | 
| 163 | 
         
            -
                    width, height = self.get_size(
         
     | 
| 164 | 
         
            -
                        sample["image"].shape[1], sample["image"].shape[0]
         
     | 
| 165 | 
         
            -
                    )
         
     | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
                    # resize sample
         
     | 
| 168 | 
         
            -
                    sample["image"] = cv2.resize(
         
     | 
| 169 | 
         
            -
                        sample["image"],
         
     | 
| 170 | 
         
            -
                        (width, height),
         
     | 
| 171 | 
         
            -
                        interpolation=self.__image_interpolation_method,
         
     | 
| 172 | 
         
            -
                    )
         
     | 
| 173 | 
         
            -
             
     | 
| 174 | 
         
            -
                    if self.__resize_target:
         
     | 
| 175 | 
         
            -
                        if "disparity" in sample:
         
     | 
| 176 | 
         
            -
                            sample["disparity"] = cv2.resize(
         
     | 
| 177 | 
         
            -
                                sample["disparity"],
         
     | 
| 178 | 
         
            -
                                (width, height),
         
     | 
| 179 | 
         
            -
                                interpolation=cv2.INTER_NEAREST,
         
     | 
| 180 | 
         
            -
                            )
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
                        if "depth" in sample:
         
     | 
| 183 | 
         
            -
                            sample["depth"] = cv2.resize(
         
     | 
| 184 | 
         
            -
                                sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
         
     | 
| 185 | 
         
            -
                            )
         
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
                        sample["mask"] = cv2.resize(
         
     | 
| 188 | 
         
            -
                            sample["mask"].astype(np.float32),
         
     | 
| 189 | 
         
            -
                            (width, height),
         
     | 
| 190 | 
         
            -
                            interpolation=cv2.INTER_NEAREST,
         
     | 
| 191 | 
         
            -
                        )
         
     | 
| 192 | 
         
            -
                        sample["mask"] = sample["mask"].astype(bool)
         
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
                    return sample
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
             
     | 
| 197 | 
         
            -
            class NormalizeImage(object):
         
     | 
| 198 | 
         
            -
                """Normlize image by given mean and std.
         
     | 
| 199 | 
         
            -
                """
         
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
                def __init__(self, mean, std):
         
     | 
| 202 | 
         
            -
                    self.__mean = mean
         
     | 
| 203 | 
         
            -
                    self.__std = std
         
     | 
| 204 | 
         
            -
             
     | 
| 205 | 
         
            -
                def __call__(self, sample):
         
     | 
| 206 | 
         
            -
                    sample["image"] = (sample["image"] - self.__mean) / self.__std
         
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
                    return sample
         
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
            class PrepareForNet(object):
         
     | 
| 212 | 
         
            -
                """Prepare sample for usage as network input.
         
     | 
| 213 | 
         
            -
                """
         
     | 
| 214 | 
         
            -
             
     | 
| 215 | 
         
            -
                def __init__(self):
         
     | 
| 216 | 
         
            -
                    pass
         
     | 
| 217 | 
         
            -
             
     | 
| 218 | 
         
            -
                def __call__(self, sample):
         
     | 
| 219 | 
         
            -
                    image = np.transpose(sample["image"], (2, 0, 1))
         
     | 
| 220 | 
         
            -
                    sample["image"] = np.ascontiguousarray(image).astype(np.float32)
         
     | 
| 221 | 
         
            -
             
     | 
| 222 | 
         
            -
                    if "mask" in sample:
         
     | 
| 223 | 
         
            -
                        sample["mask"] = sample["mask"].astype(np.float32)
         
     | 
| 224 | 
         
            -
                        sample["mask"] = np.ascontiguousarray(sample["mask"])
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
                    if "disparity" in sample:
         
     | 
| 227 | 
         
            -
                        disparity = sample["disparity"].astype(np.float32)
         
     | 
| 228 | 
         
            -
                        sample["disparity"] = np.ascontiguousarray(disparity)
         
     | 
| 229 | 
         
            -
             
     | 
| 230 | 
         
            -
                    if "depth" in sample:
         
     | 
| 231 | 
         
            -
                        depth = sample["depth"].astype(np.float32)
         
     | 
| 232 | 
         
            -
                        sample["depth"] = np.ascontiguousarray(depth)
         
     | 
| 233 | 
         
            -
             
     | 
| 234 | 
         
            -
                    return sample
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/midas/vit.py
    DELETED
    
    | 
         @@ -1,491 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import torch
         
     | 
| 2 | 
         
            -
            import torch.nn as nn
         
     | 
| 3 | 
         
            -
            import timm
         
     | 
| 4 | 
         
            -
            import types
         
     | 
| 5 | 
         
            -
            import math
         
     | 
| 6 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            class Slice(nn.Module):
         
     | 
| 10 | 
         
            -
                def __init__(self, start_index=1):
         
     | 
| 11 | 
         
            -
                    super(Slice, self).__init__()
         
     | 
| 12 | 
         
            -
                    self.start_index = start_index
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
                def forward(self, x):
         
     | 
| 15 | 
         
            -
                    return x[:, self.start_index :]
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
            class AddReadout(nn.Module):
         
     | 
| 19 | 
         
            -
                def __init__(self, start_index=1):
         
     | 
| 20 | 
         
            -
                    super(AddReadout, self).__init__()
         
     | 
| 21 | 
         
            -
                    self.start_index = start_index
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
                def forward(self, x):
         
     | 
| 24 | 
         
            -
                    if self.start_index == 2:
         
     | 
| 25 | 
         
            -
                        readout = (x[:, 0] + x[:, 1]) / 2
         
     | 
| 26 | 
         
            -
                    else:
         
     | 
| 27 | 
         
            -
                        readout = x[:, 0]
         
     | 
| 28 | 
         
            -
                    return x[:, self.start_index :] + readout.unsqueeze(1)
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            class ProjectReadout(nn.Module):
         
     | 
| 32 | 
         
            -
                def __init__(self, in_features, start_index=1):
         
     | 
| 33 | 
         
            -
                    super(ProjectReadout, self).__init__()
         
     | 
| 34 | 
         
            -
                    self.start_index = start_index
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
                    self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
                def forward(self, x):
         
     | 
| 39 | 
         
            -
                    readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
         
     | 
| 40 | 
         
            -
                    features = torch.cat((x[:, self.start_index :], readout), -1)
         
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
                    return self.project(features)
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
            class Transpose(nn.Module):
         
     | 
| 46 | 
         
            -
                def __init__(self, dim0, dim1):
         
     | 
| 47 | 
         
            -
                    super(Transpose, self).__init__()
         
     | 
| 48 | 
         
            -
                    self.dim0 = dim0
         
     | 
| 49 | 
         
            -
                    self.dim1 = dim1
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                def forward(self, x):
         
     | 
| 52 | 
         
            -
                    x = x.transpose(self.dim0, self.dim1)
         
     | 
| 53 | 
         
            -
                    return x
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            def forward_vit(pretrained, x):
         
     | 
| 57 | 
         
            -
                b, c, h, w = x.shape
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                glob = pretrained.model.forward_flex(x)
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
                layer_1 = pretrained.activations["1"]
         
     | 
| 62 | 
         
            -
                layer_2 = pretrained.activations["2"]
         
     | 
| 63 | 
         
            -
                layer_3 = pretrained.activations["3"]
         
     | 
| 64 | 
         
            -
                layer_4 = pretrained.activations["4"]
         
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
                layer_1 = pretrained.act_postprocess1[0:2](layer_1)
         
     | 
| 67 | 
         
            -
                layer_2 = pretrained.act_postprocess2[0:2](layer_2)
         
     | 
| 68 | 
         
            -
                layer_3 = pretrained.act_postprocess3[0:2](layer_3)
         
     | 
| 69 | 
         
            -
                layer_4 = pretrained.act_postprocess4[0:2](layer_4)
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
                unflatten = nn.Sequential(
         
     | 
| 72 | 
         
            -
                    nn.Unflatten(
         
     | 
| 73 | 
         
            -
                        2,
         
     | 
| 74 | 
         
            -
                        torch.Size(
         
     | 
| 75 | 
         
            -
                            [
         
     | 
| 76 | 
         
            -
                                h // pretrained.model.patch_size[1],
         
     | 
| 77 | 
         
            -
                                w // pretrained.model.patch_size[0],
         
     | 
| 78 | 
         
            -
                            ]
         
     | 
| 79 | 
         
            -
                        ),
         
     | 
| 80 | 
         
            -
                    )
         
     | 
| 81 | 
         
            -
                )
         
     | 
| 82 | 
         
            -
             
     | 
| 83 | 
         
            -
                if layer_1.ndim == 3:
         
     | 
| 84 | 
         
            -
                    layer_1 = unflatten(layer_1)
         
     | 
| 85 | 
         
            -
                if layer_2.ndim == 3:
         
     | 
| 86 | 
         
            -
                    layer_2 = unflatten(layer_2)
         
     | 
| 87 | 
         
            -
                if layer_3.ndim == 3:
         
     | 
| 88 | 
         
            -
                    layer_3 = unflatten(layer_3)
         
     | 
| 89 | 
         
            -
                if layer_4.ndim == 3:
         
     | 
| 90 | 
         
            -
                    layer_4 = unflatten(layer_4)
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
         
     | 
| 93 | 
         
            -
                layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
         
     | 
| 94 | 
         
            -
                layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
         
     | 
| 95 | 
         
            -
                layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
         
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
                return layer_1, layer_2, layer_3, layer_4
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
            def _resize_pos_embed(self, posemb, gs_h, gs_w):
         
     | 
| 101 | 
         
            -
                posemb_tok, posemb_grid = (
         
     | 
| 102 | 
         
            -
                    posemb[:, : self.start_index],
         
     | 
| 103 | 
         
            -
                    posemb[0, self.start_index :],
         
     | 
| 104 | 
         
            -
                )
         
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
                gs_old = int(math.sqrt(len(posemb_grid)))
         
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
                posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
         
     | 
| 109 | 
         
            -
                posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
         
     | 
| 110 | 
         
            -
                posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
         
     | 
| 111 | 
         
            -
             
     | 
| 112 | 
         
            -
                posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
         
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
                return posemb
         
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
            def forward_flex(self, x):
         
     | 
| 118 | 
         
            -
                b, c, h, w = x.shape
         
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
                pos_embed = self._resize_pos_embed(
         
     | 
| 121 | 
         
            -
                    self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
         
     | 
| 122 | 
         
            -
                )
         
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
                B = x.shape[0]
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                if hasattr(self.patch_embed, "backbone"):
         
     | 
| 127 | 
         
            -
                    x = self.patch_embed.backbone(x)
         
     | 
| 128 | 
         
            -
                    if isinstance(x, (list, tuple)):
         
     | 
| 129 | 
         
            -
                        x = x[-1]  # last feature if backbone outputs list/tuple of features
         
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
                x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                if getattr(self, "dist_token", None) is not None:
         
     | 
| 134 | 
         
            -
                    cls_tokens = self.cls_token.expand(
         
     | 
| 135 | 
         
            -
                        B, -1, -1
         
     | 
| 136 | 
         
            -
                    )  # stole cls_tokens impl from Phil Wang, thanks
         
     | 
| 137 | 
         
            -
                    dist_token = self.dist_token.expand(B, -1, -1)
         
     | 
| 138 | 
         
            -
                    x = torch.cat((cls_tokens, dist_token, x), dim=1)
         
     | 
| 139 | 
         
            -
                else:
         
     | 
| 140 | 
         
            -
                    cls_tokens = self.cls_token.expand(
         
     | 
| 141 | 
         
            -
                        B, -1, -1
         
     | 
| 142 | 
         
            -
                    )  # stole cls_tokens impl from Phil Wang, thanks
         
     | 
| 143 | 
         
            -
                    x = torch.cat((cls_tokens, x), dim=1)
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
                x = x + pos_embed
         
     | 
| 146 | 
         
            -
                x = self.pos_drop(x)
         
     | 
| 147 | 
         
            -
             
     | 
| 148 | 
         
            -
                for blk in self.blocks:
         
     | 
| 149 | 
         
            -
                    x = blk(x)
         
     | 
| 150 | 
         
            -
             
     | 
| 151 | 
         
            -
                x = self.norm(x)
         
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
                return x
         
     | 
| 154 | 
         
            -
             
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
            activations = {}
         
     | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
             
     | 
| 159 | 
         
            -
            def get_activation(name):
         
     | 
| 160 | 
         
            -
                def hook(model, input, output):
         
     | 
| 161 | 
         
            -
                    activations[name] = output
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                return hook
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
            def get_readout_oper(vit_features, features, use_readout, start_index=1):
         
     | 
| 167 | 
         
            -
                if use_readout == "ignore":
         
     | 
| 168 | 
         
            -
                    readout_oper = [Slice(start_index)] * len(features)
         
     | 
| 169 | 
         
            -
                elif use_readout == "add":
         
     | 
| 170 | 
         
            -
                    readout_oper = [AddReadout(start_index)] * len(features)
         
     | 
| 171 | 
         
            -
                elif use_readout == "project":
         
     | 
| 172 | 
         
            -
                    readout_oper = [
         
     | 
| 173 | 
         
            -
                        ProjectReadout(vit_features, start_index) for out_feat in features
         
     | 
| 174 | 
         
            -
                    ]
         
     | 
| 175 | 
         
            -
                else:
         
     | 
| 176 | 
         
            -
                    assert (
         
     | 
| 177 | 
         
            -
                        False
         
     | 
| 178 | 
         
            -
                    ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
         
     | 
| 179 | 
         
            -
             
     | 
| 180 | 
         
            -
                return readout_oper
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
             
     | 
| 183 | 
         
            -
            def _make_vit_b16_backbone(
         
     | 
| 184 | 
         
            -
                model,
         
     | 
| 185 | 
         
            -
                features=[96, 192, 384, 768],
         
     | 
| 186 | 
         
            -
                size=[384, 384],
         
     | 
| 187 | 
         
            -
                hooks=[2, 5, 8, 11],
         
     | 
| 188 | 
         
            -
                vit_features=768,
         
     | 
| 189 | 
         
            -
                use_readout="ignore",
         
     | 
| 190 | 
         
            -
                start_index=1,
         
     | 
| 191 | 
         
            -
            ):
         
     | 
| 192 | 
         
            -
                pretrained = nn.Module()
         
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
                pretrained.model = model
         
     | 
| 195 | 
         
            -
                pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
         
     | 
| 196 | 
         
            -
                pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
         
     | 
| 197 | 
         
            -
                pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
         
     | 
| 198 | 
         
            -
                pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
                pretrained.activations = activations
         
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
                readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
         
     | 
| 203 | 
         
            -
             
     | 
| 204 | 
         
            -
                # 32, 48, 136, 384
         
     | 
| 205 | 
         
            -
                pretrained.act_postprocess1 = nn.Sequential(
         
     | 
| 206 | 
         
            -
                    readout_oper[0],
         
     | 
| 207 | 
         
            -
                    Transpose(1, 2),
         
     | 
| 208 | 
         
            -
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 209 | 
         
            -
                    nn.Conv2d(
         
     | 
| 210 | 
         
            -
                        in_channels=vit_features,
         
     | 
| 211 | 
         
            -
                        out_channels=features[0],
         
     | 
| 212 | 
         
            -
                        kernel_size=1,
         
     | 
| 213 | 
         
            -
                        stride=1,
         
     | 
| 214 | 
         
            -
                        padding=0,
         
     | 
| 215 | 
         
            -
                    ),
         
     | 
| 216 | 
         
            -
                    nn.ConvTranspose2d(
         
     | 
| 217 | 
         
            -
                        in_channels=features[0],
         
     | 
| 218 | 
         
            -
                        out_channels=features[0],
         
     | 
| 219 | 
         
            -
                        kernel_size=4,
         
     | 
| 220 | 
         
            -
                        stride=4,
         
     | 
| 221 | 
         
            -
                        padding=0,
         
     | 
| 222 | 
         
            -
                        bias=True,
         
     | 
| 223 | 
         
            -
                        dilation=1,
         
     | 
| 224 | 
         
            -
                        groups=1,
         
     | 
| 225 | 
         
            -
                    ),
         
     | 
| 226 | 
         
            -
                )
         
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
            -
                pretrained.act_postprocess2 = nn.Sequential(
         
     | 
| 229 | 
         
            -
                    readout_oper[1],
         
     | 
| 230 | 
         
            -
                    Transpose(1, 2),
         
     | 
| 231 | 
         
            -
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 232 | 
         
            -
                    nn.Conv2d(
         
     | 
| 233 | 
         
            -
                        in_channels=vit_features,
         
     | 
| 234 | 
         
            -
                        out_channels=features[1],
         
     | 
| 235 | 
         
            -
                        kernel_size=1,
         
     | 
| 236 | 
         
            -
                        stride=1,
         
     | 
| 237 | 
         
            -
                        padding=0,
         
     | 
| 238 | 
         
            -
                    ),
         
     | 
| 239 | 
         
            -
                    nn.ConvTranspose2d(
         
     | 
| 240 | 
         
            -
                        in_channels=features[1],
         
     | 
| 241 | 
         
            -
                        out_channels=features[1],
         
     | 
| 242 | 
         
            -
                        kernel_size=2,
         
     | 
| 243 | 
         
            -
                        stride=2,
         
     | 
| 244 | 
         
            -
                        padding=0,
         
     | 
| 245 | 
         
            -
                        bias=True,
         
     | 
| 246 | 
         
            -
                        dilation=1,
         
     | 
| 247 | 
         
            -
                        groups=1,
         
     | 
| 248 | 
         
            -
                    ),
         
     | 
| 249 | 
         
            -
                )
         
     | 
| 250 | 
         
            -
             
     | 
| 251 | 
         
            -
                pretrained.act_postprocess3 = nn.Sequential(
         
     | 
| 252 | 
         
            -
                    readout_oper[2],
         
     | 
| 253 | 
         
            -
                    Transpose(1, 2),
         
     | 
| 254 | 
         
            -
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 255 | 
         
            -
                    nn.Conv2d(
         
     | 
| 256 | 
         
            -
                        in_channels=vit_features,
         
     | 
| 257 | 
         
            -
                        out_channels=features[2],
         
     | 
| 258 | 
         
            -
                        kernel_size=1,
         
     | 
| 259 | 
         
            -
                        stride=1,
         
     | 
| 260 | 
         
            -
                        padding=0,
         
     | 
| 261 | 
         
            -
                    ),
         
     | 
| 262 | 
         
            -
                )
         
     | 
| 263 | 
         
            -
             
     | 
| 264 | 
         
            -
                pretrained.act_postprocess4 = nn.Sequential(
         
     | 
| 265 | 
         
            -
                    readout_oper[3],
         
     | 
| 266 | 
         
            -
                    Transpose(1, 2),
         
     | 
| 267 | 
         
            -
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 268 | 
         
            -
                    nn.Conv2d(
         
     | 
| 269 | 
         
            -
                        in_channels=vit_features,
         
     | 
| 270 | 
         
            -
                        out_channels=features[3],
         
     | 
| 271 | 
         
            -
                        kernel_size=1,
         
     | 
| 272 | 
         
            -
                        stride=1,
         
     | 
| 273 | 
         
            -
                        padding=0,
         
     | 
| 274 | 
         
            -
                    ),
         
     | 
| 275 | 
         
            -
                    nn.Conv2d(
         
     | 
| 276 | 
         
            -
                        in_channels=features[3],
         
     | 
| 277 | 
         
            -
                        out_channels=features[3],
         
     | 
| 278 | 
         
            -
                        kernel_size=3,
         
     | 
| 279 | 
         
            -
                        stride=2,
         
     | 
| 280 | 
         
            -
                        padding=1,
         
     | 
| 281 | 
         
            -
                    ),
         
     | 
| 282 | 
         
            -
                )
         
     | 
| 283 | 
         
            -
             
     | 
| 284 | 
         
            -
                pretrained.model.start_index = start_index
         
     | 
| 285 | 
         
            -
                pretrained.model.patch_size = [16, 16]
         
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
                # We inject this function into the VisionTransformer instances so that
         
     | 
| 288 | 
         
            -
                # we can use it with interpolated position embeddings without modifying the library source.
         
     | 
| 289 | 
         
            -
                pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
         
     | 
| 290 | 
         
            -
                pretrained.model._resize_pos_embed = types.MethodType(
         
     | 
| 291 | 
         
            -
                    _resize_pos_embed, pretrained.model
         
     | 
| 292 | 
         
            -
                )
         
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
                return pretrained
         
     | 
| 295 | 
         
            -
             
     | 
| 296 | 
         
            -
             
     | 
| 297 | 
         
            -
            def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 298 | 
         
            -
                model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
         
     | 
| 299 | 
         
            -
             
     | 
| 300 | 
         
            -
                hooks = [5, 11, 17, 23] if hooks == None else hooks
         
     | 
| 301 | 
         
            -
                return _make_vit_b16_backbone(
         
     | 
| 302 | 
         
            -
                    model,
         
     | 
| 303 | 
         
            -
                    features=[256, 512, 1024, 1024],
         
     | 
| 304 | 
         
            -
                    hooks=hooks,
         
     | 
| 305 | 
         
            -
                    vit_features=1024,
         
     | 
| 306 | 
         
            -
                    use_readout=use_readout,
         
     | 
| 307 | 
         
            -
                )
         
     | 
| 308 | 
         
            -
             
     | 
| 309 | 
         
            -
             
     | 
| 310 | 
         
            -
            def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 311 | 
         
            -
                model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
         
     | 
| 312 | 
         
            -
             
     | 
| 313 | 
         
            -
                hooks = [2, 5, 8, 11] if hooks == None else hooks
         
     | 
| 314 | 
         
            -
                return _make_vit_b16_backbone(
         
     | 
| 315 | 
         
            -
                    model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
         
     | 
| 316 | 
         
            -
                )
         
     | 
| 317 | 
         
            -
             
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
            def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 320 | 
         
            -
                model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
         
     | 
| 321 | 
         
            -
             
     | 
| 322 | 
         
            -
                hooks = [2, 5, 8, 11] if hooks == None else hooks
         
     | 
| 323 | 
         
            -
                return _make_vit_b16_backbone(
         
     | 
| 324 | 
         
            -
                    model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
         
     | 
| 325 | 
         
            -
                )
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
             
     | 
| 328 | 
         
            -
            def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
         
     | 
| 329 | 
         
            -
                model = timm.create_model(
         
     | 
| 330 | 
         
            -
                    "vit_deit_base_distilled_patch16_384", pretrained=pretrained
         
     | 
| 331 | 
         
            -
                )
         
     | 
| 332 | 
         
            -
             
     | 
| 333 | 
         
            -
                hooks = [2, 5, 8, 11] if hooks == None else hooks
         
     | 
| 334 | 
         
            -
                return _make_vit_b16_backbone(
         
     | 
| 335 | 
         
            -
                    model,
         
     | 
| 336 | 
         
            -
                    features=[96, 192, 384, 768],
         
     | 
| 337 | 
         
            -
                    hooks=hooks,
         
     | 
| 338 | 
         
            -
                    use_readout=use_readout,
         
     | 
| 339 | 
         
            -
                    start_index=2,
         
     | 
| 340 | 
         
            -
                )
         
     | 
| 341 | 
         
            -
             
     | 
| 342 | 
         
            -
             
     | 
| 343 | 
         
            -
            def _make_vit_b_rn50_backbone(
         
     | 
| 344 | 
         
            -
                model,
         
     | 
| 345 | 
         
            -
                features=[256, 512, 768, 768],
         
     | 
| 346 | 
         
            -
                size=[384, 384],
         
     | 
| 347 | 
         
            -
                hooks=[0, 1, 8, 11],
         
     | 
| 348 | 
         
            -
                vit_features=768,
         
     | 
| 349 | 
         
            -
                use_vit_only=False,
         
     | 
| 350 | 
         
            -
                use_readout="ignore",
         
     | 
| 351 | 
         
            -
                start_index=1,
         
     | 
| 352 | 
         
            -
            ):
         
     | 
| 353 | 
         
            -
                pretrained = nn.Module()
         
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
                pretrained.model = model
         
     | 
| 356 | 
         
            -
             
     | 
| 357 | 
         
            -
                if use_vit_only == True:
         
     | 
| 358 | 
         
            -
                    pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
         
     | 
| 359 | 
         
            -
                    pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
         
     | 
| 360 | 
         
            -
                else:
         
     | 
| 361 | 
         
            -
                    pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
         
     | 
| 362 | 
         
            -
                        get_activation("1")
         
     | 
| 363 | 
         
            -
                    )
         
     | 
| 364 | 
         
            -
                    pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
         
     | 
| 365 | 
         
            -
                        get_activation("2")
         
     | 
| 366 | 
         
            -
                    )
         
     | 
| 367 | 
         
            -
             
     | 
| 368 | 
         
            -
                pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
         
     | 
| 369 | 
         
            -
                pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
         
     | 
| 370 | 
         
            -
             
     | 
| 371 | 
         
            -
                pretrained.activations = activations
         
     | 
| 372 | 
         
            -
             
     | 
| 373 | 
         
            -
                readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
         
     | 
| 374 | 
         
            -
             
     | 
| 375 | 
         
            -
                if use_vit_only == True:
         
     | 
| 376 | 
         
            -
                    pretrained.act_postprocess1 = nn.Sequential(
         
     | 
| 377 | 
         
            -
                        readout_oper[0],
         
     | 
| 378 | 
         
            -
                        Transpose(1, 2),
         
     | 
| 379 | 
         
            -
                        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 380 | 
         
            -
                        nn.Conv2d(
         
     | 
| 381 | 
         
            -
                            in_channels=vit_features,
         
     | 
| 382 | 
         
            -
                            out_channels=features[0],
         
     | 
| 383 | 
         
            -
                            kernel_size=1,
         
     | 
| 384 | 
         
            -
                            stride=1,
         
     | 
| 385 | 
         
            -
                            padding=0,
         
     | 
| 386 | 
         
            -
                        ),
         
     | 
| 387 | 
         
            -
                        nn.ConvTranspose2d(
         
     | 
| 388 | 
         
            -
                            in_channels=features[0],
         
     | 
| 389 | 
         
            -
                            out_channels=features[0],
         
     | 
| 390 | 
         
            -
                            kernel_size=4,
         
     | 
| 391 | 
         
            -
                            stride=4,
         
     | 
| 392 | 
         
            -
                            padding=0,
         
     | 
| 393 | 
         
            -
                            bias=True,
         
     | 
| 394 | 
         
            -
                            dilation=1,
         
     | 
| 395 | 
         
            -
                            groups=1,
         
     | 
| 396 | 
         
            -
                        ),
         
     | 
| 397 | 
         
            -
                    )
         
     | 
| 398 | 
         
            -
             
     | 
| 399 | 
         
            -
                    pretrained.act_postprocess2 = nn.Sequential(
         
     | 
| 400 | 
         
            -
                        readout_oper[1],
         
     | 
| 401 | 
         
            -
                        Transpose(1, 2),
         
     | 
| 402 | 
         
            -
                        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 403 | 
         
            -
                        nn.Conv2d(
         
     | 
| 404 | 
         
            -
                            in_channels=vit_features,
         
     | 
| 405 | 
         
            -
                            out_channels=features[1],
         
     | 
| 406 | 
         
            -
                            kernel_size=1,
         
     | 
| 407 | 
         
            -
                            stride=1,
         
     | 
| 408 | 
         
            -
                            padding=0,
         
     | 
| 409 | 
         
            -
                        ),
         
     | 
| 410 | 
         
            -
                        nn.ConvTranspose2d(
         
     | 
| 411 | 
         
            -
                            in_channels=features[1],
         
     | 
| 412 | 
         
            -
                            out_channels=features[1],
         
     | 
| 413 | 
         
            -
                            kernel_size=2,
         
     | 
| 414 | 
         
            -
                            stride=2,
         
     | 
| 415 | 
         
            -
                            padding=0,
         
     | 
| 416 | 
         
            -
                            bias=True,
         
     | 
| 417 | 
         
            -
                            dilation=1,
         
     | 
| 418 | 
         
            -
                            groups=1,
         
     | 
| 419 | 
         
            -
                        ),
         
     | 
| 420 | 
         
            -
                    )
         
     | 
| 421 | 
         
            -
                else:
         
     | 
| 422 | 
         
            -
                    pretrained.act_postprocess1 = nn.Sequential(
         
     | 
| 423 | 
         
            -
                        nn.Identity(), nn.Identity(), nn.Identity()
         
     | 
| 424 | 
         
            -
                    )
         
     | 
| 425 | 
         
            -
                    pretrained.act_postprocess2 = nn.Sequential(
         
     | 
| 426 | 
         
            -
                        nn.Identity(), nn.Identity(), nn.Identity()
         
     | 
| 427 | 
         
            -
                    )
         
     | 
| 428 | 
         
            -
             
     | 
| 429 | 
         
            -
                pretrained.act_postprocess3 = nn.Sequential(
         
     | 
| 430 | 
         
            -
                    readout_oper[2],
         
     | 
| 431 | 
         
            -
                    Transpose(1, 2),
         
     | 
| 432 | 
         
            -
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 433 | 
         
            -
                    nn.Conv2d(
         
     | 
| 434 | 
         
            -
                        in_channels=vit_features,
         
     | 
| 435 | 
         
            -
                        out_channels=features[2],
         
     | 
| 436 | 
         
            -
                        kernel_size=1,
         
     | 
| 437 | 
         
            -
                        stride=1,
         
     | 
| 438 | 
         
            -
                        padding=0,
         
     | 
| 439 | 
         
            -
                    ),
         
     | 
| 440 | 
         
            -
                )
         
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
                pretrained.act_postprocess4 = nn.Sequential(
         
     | 
| 443 | 
         
            -
                    readout_oper[3],
         
     | 
| 444 | 
         
            -
                    Transpose(1, 2),
         
     | 
| 445 | 
         
            -
                    nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
         
     | 
| 446 | 
         
            -
                    nn.Conv2d(
         
     | 
| 447 | 
         
            -
                        in_channels=vit_features,
         
     | 
| 448 | 
         
            -
                        out_channels=features[3],
         
     | 
| 449 | 
         
            -
                        kernel_size=1,
         
     | 
| 450 | 
         
            -
                        stride=1,
         
     | 
| 451 | 
         
            -
                        padding=0,
         
     | 
| 452 | 
         
            -
                    ),
         
     | 
| 453 | 
         
            -
                    nn.Conv2d(
         
     | 
| 454 | 
         
            -
                        in_channels=features[3],
         
     | 
| 455 | 
         
            -
                        out_channels=features[3],
         
     | 
| 456 | 
         
            -
                        kernel_size=3,
         
     | 
| 457 | 
         
            -
                        stride=2,
         
     | 
| 458 | 
         
            -
                        padding=1,
         
     | 
| 459 | 
         
            -
                    ),
         
     | 
| 460 | 
         
            -
                )
         
     | 
| 461 | 
         
            -
             
     | 
| 462 | 
         
            -
                pretrained.model.start_index = start_index
         
     | 
| 463 | 
         
            -
                pretrained.model.patch_size = [16, 16]
         
     | 
| 464 | 
         
            -
             
     | 
| 465 | 
         
            -
                # We inject this function into the VisionTransformer instances so that
         
     | 
| 466 | 
         
            -
                # we can use it with interpolated position embeddings without modifying the library source.
         
     | 
| 467 | 
         
            -
                pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
         
     | 
| 468 | 
         
            -
             
     | 
| 469 | 
         
            -
                # We inject this function into the VisionTransformer instances so that
         
     | 
| 470 | 
         
            -
                # we can use it with interpolated position embeddings without modifying the library source.
         
     | 
| 471 | 
         
            -
                pretrained.model._resize_pos_embed = types.MethodType(
         
     | 
| 472 | 
         
            -
                    _resize_pos_embed, pretrained.model
         
     | 
| 473 | 
         
            -
                )
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
            -
                return pretrained
         
     | 
| 476 | 
         
            -
             
     | 
| 477 | 
         
            -
             
     | 
| 478 | 
         
            -
            def _make_pretrained_vitb_rn50_384(
         
     | 
| 479 | 
         
            -
                pretrained, use_readout="ignore", hooks=None, use_vit_only=False
         
     | 
| 480 | 
         
            -
            ):
         
     | 
| 481 | 
         
            -
                model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
         
     | 
| 482 | 
         
            -
             
     | 
| 483 | 
         
            -
                hooks = [0, 1, 8, 11] if hooks == None else hooks
         
     | 
| 484 | 
         
            -
                return _make_vit_b_rn50_backbone(
         
     | 
| 485 | 
         
            -
                    model,
         
     | 
| 486 | 
         
            -
                    features=[256, 512, 768, 768],
         
     | 
| 487 | 
         
            -
                    size=[384, 384],
         
     | 
| 488 | 
         
            -
                    hooks=hooks,
         
     | 
| 489 | 
         
            -
                    use_vit_only=use_vit_only,
         
     | 
| 490 | 
         
            -
                    use_readout=use_readout,
         
     | 
| 491 | 
         
            -
                )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/modules/midas/utils.py
    DELETED
    
    | 
         @@ -1,189 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """Utils for monoDepth."""
         
     | 
| 2 | 
         
            -
            import sys
         
     | 
| 3 | 
         
            -
            import re
         
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            import cv2
         
     | 
| 6 | 
         
            -
            import torch
         
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
            def read_pfm(path):
         
     | 
| 10 | 
         
            -
                """Read pfm file.
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
                Args:
         
     | 
| 13 | 
         
            -
                    path (str): path to file
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
                Returns:
         
     | 
| 16 | 
         
            -
                    tuple: (data, scale)
         
     | 
| 17 | 
         
            -
                """
         
     | 
| 18 | 
         
            -
                with open(path, "rb") as file:
         
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
                    color = None
         
     | 
| 21 | 
         
            -
                    width = None
         
     | 
| 22 | 
         
            -
                    height = None
         
     | 
| 23 | 
         
            -
                    scale = None
         
     | 
| 24 | 
         
            -
                    endian = None
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
                    header = file.readline().rstrip()
         
     | 
| 27 | 
         
            -
                    if header.decode("ascii") == "PF":
         
     | 
| 28 | 
         
            -
                        color = True
         
     | 
| 29 | 
         
            -
                    elif header.decode("ascii") == "Pf":
         
     | 
| 30 | 
         
            -
                        color = False
         
     | 
| 31 | 
         
            -
                    else:
         
     | 
| 32 | 
         
            -
                        raise Exception("Not a PFM file: " + path)
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
                    dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
         
     | 
| 35 | 
         
            -
                    if dim_match:
         
     | 
| 36 | 
         
            -
                        width, height = list(map(int, dim_match.groups()))
         
     | 
| 37 | 
         
            -
                    else:
         
     | 
| 38 | 
         
            -
                        raise Exception("Malformed PFM header.")
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
                    scale = float(file.readline().decode("ascii").rstrip())
         
     | 
| 41 | 
         
            -
                    if scale < 0:
         
     | 
| 42 | 
         
            -
                        # little-endian
         
     | 
| 43 | 
         
            -
                        endian = "<"
         
     | 
| 44 | 
         
            -
                        scale = -scale
         
     | 
| 45 | 
         
            -
                    else:
         
     | 
| 46 | 
         
            -
                        # big-endian
         
     | 
| 47 | 
         
            -
                        endian = ">"
         
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
                    data = np.fromfile(file, endian + "f")
         
     | 
| 50 | 
         
            -
                    shape = (height, width, 3) if color else (height, width)
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                    data = np.reshape(data, shape)
         
     | 
| 53 | 
         
            -
                    data = np.flipud(data)
         
     | 
| 54 | 
         
            -
             
     | 
| 55 | 
         
            -
                    return data, scale
         
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
            def write_pfm(path, image, scale=1):
         
     | 
| 59 | 
         
            -
                """Write pfm file.
         
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
                Args:
         
     | 
| 62 | 
         
            -
                    path (str): pathto file
         
     | 
| 63 | 
         
            -
                    image (array): data
         
     | 
| 64 | 
         
            -
                    scale (int, optional): Scale. Defaults to 1.
         
     | 
| 65 | 
         
            -
                """
         
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
                with open(path, "wb") as file:
         
     | 
| 68 | 
         
            -
                    color = None
         
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
                    if image.dtype.name != "float32":
         
     | 
| 71 | 
         
            -
                        raise Exception("Image dtype must be float32.")
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                    image = np.flipud(image)
         
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
                    if len(image.shape) == 3 and image.shape[2] == 3:  # color image
         
     | 
| 76 | 
         
            -
                        color = True
         
     | 
| 77 | 
         
            -
                    elif (
         
     | 
| 78 | 
         
            -
                        len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
         
     | 
| 79 | 
         
            -
                    ):  # greyscale
         
     | 
| 80 | 
         
            -
                        color = False
         
     | 
| 81 | 
         
            -
                    else:
         
     | 
| 82 | 
         
            -
                        raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
                    file.write("PF\n" if color else "Pf\n".encode())
         
     | 
| 85 | 
         
            -
                    file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
                    endian = image.dtype.byteorder
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
                    if endian == "<" or endian == "=" and sys.byteorder == "little":
         
     | 
| 90 | 
         
            -
                        scale = -scale
         
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
                    file.write("%f\n".encode() % scale)
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
                    image.tofile(file)
         
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
            def read_image(path):
         
     | 
| 98 | 
         
            -
                """Read image and output RGB image (0-1).
         
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
                Args:
         
     | 
| 101 | 
         
            -
                    path (str): path to file
         
     | 
| 102 | 
         
            -
             
     | 
| 103 | 
         
            -
                Returns:
         
     | 
| 104 | 
         
            -
                    array: RGB image (0-1)
         
     | 
| 105 | 
         
            -
                """
         
     | 
| 106 | 
         
            -
                img = cv2.imread(path)
         
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
                if img.ndim == 2:
         
     | 
| 109 | 
         
            -
                    img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
         
     | 
| 110 | 
         
            -
             
     | 
| 111 | 
         
            -
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
                return img
         
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
            def resize_image(img):
         
     | 
| 117 | 
         
            -
                """Resize image and make it fit for network.
         
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
                Args:
         
     | 
| 120 | 
         
            -
                    img (array): image
         
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
                Returns:
         
     | 
| 123 | 
         
            -
                    tensor: data ready for network
         
     | 
| 124 | 
         
            -
                """
         
     | 
| 125 | 
         
            -
                height_orig = img.shape[0]
         
     | 
| 126 | 
         
            -
                width_orig = img.shape[1]
         
     | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
                if width_orig > height_orig:
         
     | 
| 129 | 
         
            -
                    scale = width_orig / 384
         
     | 
| 130 | 
         
            -
                else:
         
     | 
| 131 | 
         
            -
                    scale = height_orig / 384
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
         
     | 
| 134 | 
         
            -
                width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
         
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
                img_resized = (
         
     | 
| 139 | 
         
            -
                    torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
         
     | 
| 140 | 
         
            -
                )
         
     | 
| 141 | 
         
            -
                img_resized = img_resized.unsqueeze(0)
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                return img_resized
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
            def resize_depth(depth, width, height):
         
     | 
| 147 | 
         
            -
                """Resize depth map and bring to CPU (numpy).
         
     | 
| 148 | 
         
            -
             
     | 
| 149 | 
         
            -
                Args:
         
     | 
| 150 | 
         
            -
                    depth (tensor): depth
         
     | 
| 151 | 
         
            -
                    width (int): image width
         
     | 
| 152 | 
         
            -
                    height (int): image height
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
                Returns:
         
     | 
| 155 | 
         
            -
                    array: processed depth
         
     | 
| 156 | 
         
            -
                """
         
     | 
| 157 | 
         
            -
                depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
         
     | 
| 158 | 
         
            -
             
     | 
| 159 | 
         
            -
                depth_resized = cv2.resize(
         
     | 
| 160 | 
         
            -
                    depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
         
     | 
| 161 | 
         
            -
                )
         
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
                return depth_resized
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
            def write_depth(path, depth, bits=1):
         
     | 
| 166 | 
         
            -
                """Write depth map to pfm and png file.
         
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                Args:
         
     | 
| 169 | 
         
            -
                    path (str): filepath without extension
         
     | 
| 170 | 
         
            -
                    depth (array): depth
         
     | 
| 171 | 
         
            -
                """
         
     | 
| 172 | 
         
            -
                write_pfm(path + ".pfm", depth.astype(np.float32))
         
     | 
| 173 | 
         
            -
             
     | 
| 174 | 
         
            -
                depth_min = depth.min()
         
     | 
| 175 | 
         
            -
                depth_max = depth.max()
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                max_val = (2**(8*bits))-1
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
                if depth_max - depth_min > np.finfo("float").eps:
         
     | 
| 180 | 
         
            -
                    out = max_val * (depth - depth_min) / (depth_max - depth_min)
         
     | 
| 181 | 
         
            -
                else:
         
     | 
| 182 | 
         
            -
                    out = np.zeros(depth.shape, dtype=depth.type)
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
                if bits == 1:
         
     | 
| 185 | 
         
            -
                    cv2.imwrite(path + ".png", out.astype("uint8"))
         
     | 
| 186 | 
         
            -
                elif bits == 2:
         
     | 
| 187 | 
         
            -
                    cv2.imwrite(path + ".png", out.astype("uint16"))
         
     | 
| 188 | 
         
            -
             
     | 
| 189 | 
         
            -
                return
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        ldm/util.py
    DELETED
    
    | 
         @@ -1,197 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import importlib
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            import torch
         
     | 
| 4 | 
         
            -
            from torch import optim
         
     | 
| 5 | 
         
            -
            import numpy as np
         
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
            from inspect import isfunction
         
     | 
| 8 | 
         
            -
            from PIL import Image, ImageDraw, ImageFont
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            def log_txt_as_img(wh, xc, size=10):
         
     | 
| 12 | 
         
            -
                # wh a tuple of (width, height)
         
     | 
| 13 | 
         
            -
                # xc a list of captions to plot
         
     | 
| 14 | 
         
            -
                b = len(xc)
         
     | 
| 15 | 
         
            -
                txts = list()
         
     | 
| 16 | 
         
            -
                for bi in range(b):
         
     | 
| 17 | 
         
            -
                    txt = Image.new("RGB", wh, color="white")
         
     | 
| 18 | 
         
            -
                    draw = ImageDraw.Draw(txt)
         
     | 
| 19 | 
         
            -
                    font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
         
     | 
| 20 | 
         
            -
                    nc = int(40 * (wh[0] / 256))
         
     | 
| 21 | 
         
            -
                    lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
                    try:
         
     | 
| 24 | 
         
            -
                        draw.text((0, 0), lines, fill="black", font=font)
         
     | 
| 25 | 
         
            -
                    except UnicodeEncodeError:
         
     | 
| 26 | 
         
            -
                        print("Cant encode string for logging. Skipping.")
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
                    txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
         
     | 
| 29 | 
         
            -
                    txts.append(txt)
         
     | 
| 30 | 
         
            -
                txts = np.stack(txts)
         
     | 
| 31 | 
         
            -
                txts = torch.tensor(txts)
         
     | 
| 32 | 
         
            -
                return txts
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
             
     | 
| 35 | 
         
            -
            def ismap(x):
         
     | 
| 36 | 
         
            -
                if not isinstance(x, torch.Tensor):
         
     | 
| 37 | 
         
            -
                    return False
         
     | 
| 38 | 
         
            -
                return (len(x.shape) == 4) and (x.shape[1] > 3)
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
            def isimage(x):
         
     | 
| 42 | 
         
            -
                if not isinstance(x,torch.Tensor):
         
     | 
| 43 | 
         
            -
                    return False
         
     | 
| 44 | 
         
            -
                return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
         
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
            def exists(x):
         
     | 
| 48 | 
         
            -
                return x is not None
         
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
            def default(val, d):
         
     | 
| 52 | 
         
            -
                if exists(val):
         
     | 
| 53 | 
         
            -
                    return val
         
     | 
| 54 | 
         
            -
                return d() if isfunction(d) else d
         
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
             
     | 
| 57 | 
         
            -
            def mean_flat(tensor):
         
     | 
| 58 | 
         
            -
                """
         
     | 
| 59 | 
         
            -
                https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
         
     | 
| 60 | 
         
            -
                Take the mean over all non-batch dimensions.
         
     | 
| 61 | 
         
            -
                """
         
     | 
| 62 | 
         
            -
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
            def count_params(model, verbose=False):
         
     | 
| 66 | 
         
            -
                total_params = sum(p.numel() for p in model.parameters())
         
     | 
| 67 | 
         
            -
                if verbose:
         
     | 
| 68 | 
         
            -
                    print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
         
     | 
| 69 | 
         
            -
                return total_params
         
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
            def instantiate_from_config(config):
         
     | 
| 73 | 
         
            -
                if not "target" in config:
         
     | 
| 74 | 
         
            -
                    if config == '__is_first_stage__':
         
     | 
| 75 | 
         
            -
                        return None
         
     | 
| 76 | 
         
            -
                    elif config == "__is_unconditional__":
         
     | 
| 77 | 
         
            -
                        return None
         
     | 
| 78 | 
         
            -
                    raise KeyError("Expected key `target` to instantiate.")
         
     | 
| 79 | 
         
            -
                return get_obj_from_str(config["target"])(**config.get("params", dict()))
         
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
            def get_obj_from_str(string, reload=False):
         
     | 
| 83 | 
         
            -
                module, cls = string.rsplit(".", 1)
         
     | 
| 84 | 
         
            -
                if reload:
         
     | 
| 85 | 
         
            -
                    module_imp = importlib.import_module(module)
         
     | 
| 86 | 
         
            -
                    importlib.reload(module_imp)
         
     | 
| 87 | 
         
            -
                return getattr(importlib.import_module(module, package=None), cls)
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
            class AdamWwithEMAandWings(optim.Optimizer):
         
     | 
| 91 | 
         
            -
                # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
         
     | 
| 92 | 
         
            -
                def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8,  # TODO: check hyperparameters before using
         
     | 
| 93 | 
         
            -
                             weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999,   # ema decay to match previous code
         
     | 
| 94 | 
         
            -
                             ema_power=1., param_names=()):
         
     | 
| 95 | 
         
            -
                    """AdamW that saves EMA versions of the parameters."""
         
     | 
| 96 | 
         
            -
                    if not 0.0 <= lr:
         
     | 
| 97 | 
         
            -
                        raise ValueError("Invalid learning rate: {}".format(lr))
         
     | 
| 98 | 
         
            -
                    if not 0.0 <= eps:
         
     | 
| 99 | 
         
            -
                        raise ValueError("Invalid epsilon value: {}".format(eps))
         
     | 
| 100 | 
         
            -
                    if not 0.0 <= betas[0] < 1.0:
         
     | 
| 101 | 
         
            -
                        raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
         
     | 
| 102 | 
         
            -
                    if not 0.0 <= betas[1] < 1.0:
         
     | 
| 103 | 
         
            -
                        raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
         
     | 
| 104 | 
         
            -
                    if not 0.0 <= weight_decay:
         
     | 
| 105 | 
         
            -
                        raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
         
     | 
| 106 | 
         
            -
                    if not 0.0 <= ema_decay <= 1.0:
         
     | 
| 107 | 
         
            -
                        raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
         
     | 
| 108 | 
         
            -
                    defaults = dict(lr=lr, betas=betas, eps=eps,
         
     | 
| 109 | 
         
            -
                                    weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
         
     | 
| 110 | 
         
            -
                                    ema_power=ema_power, param_names=param_names)
         
     | 
| 111 | 
         
            -
                    super().__init__(params, defaults)
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
                def __setstate__(self, state):
         
     | 
| 114 | 
         
            -
                    super().__setstate__(state)
         
     | 
| 115 | 
         
            -
                    for group in self.param_groups:
         
     | 
| 116 | 
         
            -
                        group.setdefault('amsgrad', False)
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
                @torch.no_grad()
         
     | 
| 119 | 
         
            -
                def step(self, closure=None):
         
     | 
| 120 | 
         
            -
                    """Performs a single optimization step.
         
     | 
| 121 | 
         
            -
                    Args:
         
     | 
| 122 | 
         
            -
                        closure (callable, optional): A closure that reevaluates the model
         
     | 
| 123 | 
         
            -
                            and returns the loss.
         
     | 
| 124 | 
         
            -
                    """
         
     | 
| 125 | 
         
            -
                    loss = None
         
     | 
| 126 | 
         
            -
                    if closure is not None:
         
     | 
| 127 | 
         
            -
                        with torch.enable_grad():
         
     | 
| 128 | 
         
            -
                            loss = closure()
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
                    for group in self.param_groups:
         
     | 
| 131 | 
         
            -
                        params_with_grad = []
         
     | 
| 132 | 
         
            -
                        grads = []
         
     | 
| 133 | 
         
            -
                        exp_avgs = []
         
     | 
| 134 | 
         
            -
                        exp_avg_sqs = []
         
     | 
| 135 | 
         
            -
                        ema_params_with_grad = []
         
     | 
| 136 | 
         
            -
                        state_sums = []
         
     | 
| 137 | 
         
            -
                        max_exp_avg_sqs = []
         
     | 
| 138 | 
         
            -
                        state_steps = []
         
     | 
| 139 | 
         
            -
                        amsgrad = group['amsgrad']
         
     | 
| 140 | 
         
            -
                        beta1, beta2 = group['betas']
         
     | 
| 141 | 
         
            -
                        ema_decay = group['ema_decay']
         
     | 
| 142 | 
         
            -
                        ema_power = group['ema_power']
         
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
                        for p in group['params']:
         
     | 
| 145 | 
         
            -
                            if p.grad is None:
         
     | 
| 146 | 
         
            -
                                continue
         
     | 
| 147 | 
         
            -
                            params_with_grad.append(p)
         
     | 
| 148 | 
         
            -
                            if p.grad.is_sparse:
         
     | 
| 149 | 
         
            -
                                raise RuntimeError('AdamW does not support sparse gradients')
         
     | 
| 150 | 
         
            -
                            grads.append(p.grad)
         
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
                            state = self.state[p]
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
                            # State initialization
         
     | 
| 155 | 
         
            -
                            if len(state) == 0:
         
     | 
| 156 | 
         
            -
                                state['step'] = 0
         
     | 
| 157 | 
         
            -
                                # Exponential moving average of gradient values
         
     | 
| 158 | 
         
            -
                                state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
         
     | 
| 159 | 
         
            -
                                # Exponential moving average of squared gradient values
         
     | 
| 160 | 
         
            -
                                state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
         
     | 
| 161 | 
         
            -
                                if amsgrad:
         
     | 
| 162 | 
         
            -
                                    # Maintains max of all exp. moving avg. of sq. grad. values
         
     | 
| 163 | 
         
            -
                                    state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
         
     | 
| 164 | 
         
            -
                                # Exponential moving average of parameter values
         
     | 
| 165 | 
         
            -
                                state['param_exp_avg'] = p.detach().float().clone()
         
     | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
                            exp_avgs.append(state['exp_avg'])
         
     | 
| 168 | 
         
            -
                            exp_avg_sqs.append(state['exp_avg_sq'])
         
     | 
| 169 | 
         
            -
                            ema_params_with_grad.append(state['param_exp_avg'])
         
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
                            if amsgrad:
         
     | 
| 172 | 
         
            -
                                max_exp_avg_sqs.append(state['max_exp_avg_sq'])
         
     | 
| 173 | 
         
            -
             
     | 
| 174 | 
         
            -
                            # update the steps for each param group update
         
     | 
| 175 | 
         
            -
                            state['step'] += 1
         
     | 
| 176 | 
         
            -
                            # record the step after step update
         
     | 
| 177 | 
         
            -
                            state_steps.append(state['step'])
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
                        optim._functional.adamw(params_with_grad,
         
     | 
| 180 | 
         
            -
                                grads,
         
     | 
| 181 | 
         
            -
                                exp_avgs,
         
     | 
| 182 | 
         
            -
                                exp_avg_sqs,
         
     | 
| 183 | 
         
            -
                                max_exp_avg_sqs,
         
     | 
| 184 | 
         
            -
                                state_steps,
         
     | 
| 185 | 
         
            -
                                amsgrad=amsgrad,
         
     | 
| 186 | 
         
            -
                                beta1=beta1,
         
     | 
| 187 | 
         
            -
                                beta2=beta2,
         
     | 
| 188 | 
         
            -
                                lr=group['lr'],
         
     | 
| 189 | 
         
            -
                                weight_decay=group['weight_decay'],
         
     | 
| 190 | 
         
            -
                                eps=group['eps'],
         
     | 
| 191 | 
         
            -
                                maximize=False)
         
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
                        cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
         
     | 
| 194 | 
         
            -
                        for param, ema_param in zip(params_with_grad, ema_params_with_grad):
         
     | 
| 195 | 
         
            -
                            ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
         
     | 
| 196 | 
         
            -
             
     | 
| 197 | 
         
            -
                    return loss
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        requirements.txt
    CHANGED
    
    | 
         @@ -1,19 +1,10 @@ 
     | 
|
| 1 | 
         
             
            --extra-index-url https://download.pytorch.org/whl/cu113
         
     | 
| 2 | 
         
             
            torch==1.13.0
         
     | 
| 3 | 
         
             
            torchvision
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
             
     | 
| 6 | 
         
            -
             
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
            imageio-ffmpeg==0.4.2
         
     | 
| 9 | 
         
            -
            pytorch-lightning==1.4.2
         
     | 
| 10 | 
         
            -
            torchmetrics==0.6
         
     | 
| 11 | 
         
            -
            omegaconf==2.1.1
         
     | 
| 12 | 
         
            -
            test-tube>=0.7.5
         
     | 
| 13 | 
         
            -
            einops==0.3.0
         
     | 
| 14 | 
         
            -
            transformers==4.19.2
         
     | 
| 15 | 
         
            -
            webdataset==0.2.5
         
     | 
| 16 | 
         
            -
            open_clip_torch==2.7.0
         
     | 
| 17 | 
         
             
            python-dotenv
         
     | 
| 18 | 
         
             
            invisible-watermark
         
     | 
| 19 | 
         
             
            https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
         
     | 
| 
         | 
|
| 1 | 
         
             
            --extra-index-url https://download.pytorch.org/whl/cu113
         
     | 
| 2 | 
         
             
            torch==1.13.0
         
     | 
| 3 | 
         
             
            torchvision
         
     | 
| 4 | 
         
            +
            git+https://github.com/huggingface/diffusers.git@30f6f44
         
     | 
| 5 | 
         
            +
            transformers
         
     | 
| 6 | 
         
            +
            accelerate
         
     | 
| 7 | 
         
            +
            ftfy
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 8 | 
         
             
            python-dotenv
         
     | 
| 9 | 
         
             
            invisible-watermark
         
     | 
| 10 | 
         
             
            https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
         
     | 
    	
        scripts/img2img.py
    DELETED
    
    | 
         @@ -1,279 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            """make variations of input image"""
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
            import argparse, os
         
     | 
| 4 | 
         
            -
            import PIL
         
     | 
| 5 | 
         
            -
            import torch
         
     | 
| 6 | 
         
            -
            import numpy as np
         
     | 
| 7 | 
         
            -
            from omegaconf import OmegaConf
         
     | 
| 8 | 
         
            -
            from PIL import Image
         
     | 
| 9 | 
         
            -
            from tqdm import tqdm, trange
         
     | 
| 10 | 
         
            -
            from itertools import islice
         
     | 
| 11 | 
         
            -
            from einops import rearrange, repeat
         
     | 
| 12 | 
         
            -
            from torchvision.utils import make_grid
         
     | 
| 13 | 
         
            -
            from torch import autocast
         
     | 
| 14 | 
         
            -
            from contextlib import nullcontext
         
     | 
| 15 | 
         
            -
            from pytorch_lightning import seed_everything
         
     | 
| 16 | 
         
            -
            from imwatermark import WatermarkEncoder
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            from scripts.txt2img import put_watermark
         
     | 
| 20 | 
         
            -
            from ldm.util import instantiate_from_config
         
     | 
| 21 | 
         
            -
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 22 | 
         
            -
             
     | 
| 23 | 
         
            -
             
     | 
| 24 | 
         
            -
            def chunk(it, size):
         
     | 
| 25 | 
         
            -
                it = iter(it)
         
     | 
| 26 | 
         
            -
                return iter(lambda: tuple(islice(it, size)), ())
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
             
     | 
| 29 | 
         
            -
            def load_model_from_config(config, ckpt, verbose=False):
         
     | 
| 30 | 
         
            -
                print(f"Loading model from {ckpt}")
         
     | 
| 31 | 
         
            -
                pl_sd = torch.load(ckpt, map_location="cpu")
         
     | 
| 32 | 
         
            -
                if "global_step" in pl_sd:
         
     | 
| 33 | 
         
            -
                    print(f"Global Step: {pl_sd['global_step']}")
         
     | 
| 34 | 
         
            -
                sd = pl_sd["state_dict"]
         
     | 
| 35 | 
         
            -
                model = instantiate_from_config(config.model)
         
     | 
| 36 | 
         
            -
                m, u = model.load_state_dict(sd, strict=False)
         
     | 
| 37 | 
         
            -
                if len(m) > 0 and verbose:
         
     | 
| 38 | 
         
            -
                    print("missing keys:")
         
     | 
| 39 | 
         
            -
                    print(m)
         
     | 
| 40 | 
         
            -
                if len(u) > 0 and verbose:
         
     | 
| 41 | 
         
            -
                    print("unexpected keys:")
         
     | 
| 42 | 
         
            -
                    print(u)
         
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
                model.cuda()
         
     | 
| 45 | 
         
            -
                model.eval()
         
     | 
| 46 | 
         
            -
                return model
         
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
            def load_img(path):
         
     | 
| 50 | 
         
            -
                image = Image.open(path).convert("RGB")
         
     | 
| 51 | 
         
            -
                w, h = image.size
         
     | 
| 52 | 
         
            -
                print(f"loaded input image of size ({w}, {h}) from {path}")
         
     | 
| 53 | 
         
            -
                w, h = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
         
     | 
| 54 | 
         
            -
                image = image.resize((w, h), resample=PIL.Image.LANCZOS)
         
     | 
| 55 | 
         
            -
                image = np.array(image).astype(np.float32) / 255.0
         
     | 
| 56 | 
         
            -
                image = image[None].transpose(0, 3, 1, 2)
         
     | 
| 57 | 
         
            -
                image = torch.from_numpy(image)
         
     | 
| 58 | 
         
            -
                return 2. * image - 1.
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
             
     | 
| 61 | 
         
            -
            def main():
         
     | 
| 62 | 
         
            -
                parser = argparse.ArgumentParser()
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                parser.add_argument(
         
     | 
| 65 | 
         
            -
                    "--prompt",
         
     | 
| 66 | 
         
            -
                    type=str,
         
     | 
| 67 | 
         
            -
                    nargs="?",
         
     | 
| 68 | 
         
            -
                    default="a painting of a virus monster playing guitar",
         
     | 
| 69 | 
         
            -
                    help="the prompt to render"
         
     | 
| 70 | 
         
            -
                )
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
                parser.add_argument(
         
     | 
| 73 | 
         
            -
                    "--init-img",
         
     | 
| 74 | 
         
            -
                    type=str,
         
     | 
| 75 | 
         
            -
                    nargs="?",
         
     | 
| 76 | 
         
            -
                    help="path to the input image"
         
     | 
| 77 | 
         
            -
                )
         
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
                parser.add_argument(
         
     | 
| 80 | 
         
            -
                    "--outdir",
         
     | 
| 81 | 
         
            -
                    type=str,
         
     | 
| 82 | 
         
            -
                    nargs="?",
         
     | 
| 83 | 
         
            -
                    help="dir to write results to",
         
     | 
| 84 | 
         
            -
                    default="outputs/img2img-samples"
         
     | 
| 85 | 
         
            -
                )
         
     | 
| 86 | 
         
            -
             
     | 
| 87 | 
         
            -
                parser.add_argument(
         
     | 
| 88 | 
         
            -
                    "--ddim_steps",
         
     | 
| 89 | 
         
            -
                    type=int,
         
     | 
| 90 | 
         
            -
                    default=50,
         
     | 
| 91 | 
         
            -
                    help="number of ddim sampling steps",
         
     | 
| 92 | 
         
            -
                )
         
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
                parser.add_argument(
         
     | 
| 95 | 
         
            -
                    "--fixed_code",
         
     | 
| 96 | 
         
            -
                    action='store_true',
         
     | 
| 97 | 
         
            -
                    help="if enabled, uses the same starting code across all samples ",
         
     | 
| 98 | 
         
            -
                )
         
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
                parser.add_argument(
         
     | 
| 101 | 
         
            -
                    "--ddim_eta",
         
     | 
| 102 | 
         
            -
                    type=float,
         
     | 
| 103 | 
         
            -
                    default=0.0,
         
     | 
| 104 | 
         
            -
                    help="ddim eta (eta=0.0 corresponds to deterministic sampling",
         
     | 
| 105 | 
         
            -
                )
         
     | 
| 106 | 
         
            -
                parser.add_argument(
         
     | 
| 107 | 
         
            -
                    "--n_iter",
         
     | 
| 108 | 
         
            -
                    type=int,
         
     | 
| 109 | 
         
            -
                    default=1,
         
     | 
| 110 | 
         
            -
                    help="sample this often",
         
     | 
| 111 | 
         
            -
                )
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
                parser.add_argument(
         
     | 
| 114 | 
         
            -
                    "--C",
         
     | 
| 115 | 
         
            -
                    type=int,
         
     | 
| 116 | 
         
            -
                    default=4,
         
     | 
| 117 | 
         
            -
                    help="latent channels",
         
     | 
| 118 | 
         
            -
                )
         
     | 
| 119 | 
         
            -
                parser.add_argument(
         
     | 
| 120 | 
         
            -
                    "--f",
         
     | 
| 121 | 
         
            -
                    type=int,
         
     | 
| 122 | 
         
            -
                    default=8,
         
     | 
| 123 | 
         
            -
                    help="downsampling factor, most often 8 or 16",
         
     | 
| 124 | 
         
            -
                )
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                parser.add_argument(
         
     | 
| 127 | 
         
            -
                    "--n_samples",
         
     | 
| 128 | 
         
            -
                    type=int,
         
     | 
| 129 | 
         
            -
                    default=2,
         
     | 
| 130 | 
         
            -
                    help="how many samples to produce for each given prompt. A.k.a batch size",
         
     | 
| 131 | 
         
            -
                )
         
     | 
| 132 | 
         
            -
             
     | 
| 133 | 
         
            -
                parser.add_argument(
         
     | 
| 134 | 
         
            -
                    "--n_rows",
         
     | 
| 135 | 
         
            -
                    type=int,
         
     | 
| 136 | 
         
            -
                    default=0,
         
     | 
| 137 | 
         
            -
                    help="rows in the grid (default: n_samples)",
         
     | 
| 138 | 
         
            -
                )
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                parser.add_argument(
         
     | 
| 141 | 
         
            -
                    "--scale",
         
     | 
| 142 | 
         
            -
                    type=float,
         
     | 
| 143 | 
         
            -
                    default=9.0,
         
     | 
| 144 | 
         
            -
                    help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
         
     | 
| 145 | 
         
            -
                )
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
                parser.add_argument(
         
     | 
| 148 | 
         
            -
                    "--strength",
         
     | 
| 149 | 
         
            -
                    type=float,
         
     | 
| 150 | 
         
            -
                    default=0.8,
         
     | 
| 151 | 
         
            -
                    help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
         
     | 
| 152 | 
         
            -
                )
         
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
                parser.add_argument(
         
     | 
| 155 | 
         
            -
                    "--from-file",
         
     | 
| 156 | 
         
            -
                    type=str,
         
     | 
| 157 | 
         
            -
                    help="if specified, load prompts from this file",
         
     | 
| 158 | 
         
            -
                )
         
     | 
| 159 | 
         
            -
                parser.add_argument(
         
     | 
| 160 | 
         
            -
                    "--config",
         
     | 
| 161 | 
         
            -
                    type=str,
         
     | 
| 162 | 
         
            -
                    default="configs/stable-diffusion/v2-inference.yaml",
         
     | 
| 163 | 
         
            -
                    help="path to config which constructs model",
         
     | 
| 164 | 
         
            -
                )
         
     | 
| 165 | 
         
            -
                parser.add_argument(
         
     | 
| 166 | 
         
            -
                    "--ckpt",
         
     | 
| 167 | 
         
            -
                    type=str,
         
     | 
| 168 | 
         
            -
                    help="path to checkpoint of model",
         
     | 
| 169 | 
         
            -
                )
         
     | 
| 170 | 
         
            -
                parser.add_argument(
         
     | 
| 171 | 
         
            -
                    "--seed",
         
     | 
| 172 | 
         
            -
                    type=int,
         
     | 
| 173 | 
         
            -
                    default=42,
         
     | 
| 174 | 
         
            -
                    help="the seed (for reproducible sampling)",
         
     | 
| 175 | 
         
            -
                )
         
     | 
| 176 | 
         
            -
                parser.add_argument(
         
     | 
| 177 | 
         
            -
                    "--precision",
         
     | 
| 178 | 
         
            -
                    type=str,
         
     | 
| 179 | 
         
            -
                    help="evaluate at this precision",
         
     | 
| 180 | 
         
            -
                    choices=["full", "autocast"],
         
     | 
| 181 | 
         
            -
                    default="autocast"
         
     | 
| 182 | 
         
            -
                )
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
                opt = parser.parse_args()
         
     | 
| 185 | 
         
            -
                seed_everything(opt.seed)
         
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
                config = OmegaConf.load(f"{opt.config}")
         
     | 
| 188 | 
         
            -
                model = load_model_from_config(config, f"{opt.ckpt}")
         
     | 
| 189 | 
         
            -
             
     | 
| 190 | 
         
            -
                device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 191 | 
         
            -
                model = model.to(device)
         
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
                sampler = DDIMSampler(model)
         
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
                os.makedirs(opt.outdir, exist_ok=True)
         
     | 
| 196 | 
         
            -
                outpath = opt.outdir
         
     | 
| 197 | 
         
            -
             
     | 
| 198 | 
         
            -
                print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
         
     | 
| 199 | 
         
            -
                wm = "SDV2"
         
     | 
| 200 | 
         
            -
                wm_encoder = WatermarkEncoder()
         
     | 
| 201 | 
         
            -
                wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
         
     | 
| 202 | 
         
            -
             
     | 
| 203 | 
         
            -
                batch_size = opt.n_samples
         
     | 
| 204 | 
         
            -
                n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
         
     | 
| 205 | 
         
            -
                if not opt.from_file:
         
     | 
| 206 | 
         
            -
                    prompt = opt.prompt
         
     | 
| 207 | 
         
            -
                    assert prompt is not None
         
     | 
| 208 | 
         
            -
                    data = [batch_size * [prompt]]
         
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
                else:
         
     | 
| 211 | 
         
            -
                    print(f"reading prompts from {opt.from_file}")
         
     | 
| 212 | 
         
            -
                    with open(opt.from_file, "r") as f:
         
     | 
| 213 | 
         
            -
                        data = f.read().splitlines()
         
     | 
| 214 | 
         
            -
                        data = list(chunk(data, batch_size))
         
     | 
| 215 | 
         
            -
             
     | 
| 216 | 
         
            -
                sample_path = os.path.join(outpath, "samples")
         
     | 
| 217 | 
         
            -
                os.makedirs(sample_path, exist_ok=True)
         
     | 
| 218 | 
         
            -
                base_count = len(os.listdir(sample_path))
         
     | 
| 219 | 
         
            -
                grid_count = len(os.listdir(outpath)) - 1
         
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
                assert os.path.isfile(opt.init_img)
         
     | 
| 222 | 
         
            -
                init_image = load_img(opt.init_img).to(device)
         
     | 
| 223 | 
         
            -
                init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
         
     | 
| 224 | 
         
            -
                init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))  # move to latent space
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
                sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
         
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
            -
                assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
         
     | 
| 229 | 
         
            -
                t_enc = int(opt.strength * opt.ddim_steps)
         
     | 
| 230 | 
         
            -
                print(f"target t_enc is {t_enc} steps")
         
     | 
| 231 | 
         
            -
             
     | 
| 232 | 
         
            -
                precision_scope = autocast if opt.precision == "autocast" else nullcontext
         
     | 
| 233 | 
         
            -
                with torch.no_grad():
         
     | 
| 234 | 
         
            -
                    with precision_scope("cuda"):
         
     | 
| 235 | 
         
            -
                        with model.ema_scope():
         
     | 
| 236 | 
         
            -
                            all_samples = list()
         
     | 
| 237 | 
         
            -
                            for n in trange(opt.n_iter, desc="Sampling"):
         
     | 
| 238 | 
         
            -
                                for prompts in tqdm(data, desc="data"):
         
     | 
| 239 | 
         
            -
                                    uc = None
         
     | 
| 240 | 
         
            -
                                    if opt.scale != 1.0:
         
     | 
| 241 | 
         
            -
                                        uc = model.get_learned_conditioning(batch_size * [""])
         
     | 
| 242 | 
         
            -
                                    if isinstance(prompts, tuple):
         
     | 
| 243 | 
         
            -
                                        prompts = list(prompts)
         
     | 
| 244 | 
         
            -
                                    c = model.get_learned_conditioning(prompts)
         
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
                                    # encode (scaled latent)
         
     | 
| 247 | 
         
            -
                                    z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device))
         
     | 
| 248 | 
         
            -
                                    # decode it
         
     | 
| 249 | 
         
            -
                                    samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
         
     | 
| 250 | 
         
            -
                                                             unconditional_conditioning=uc, )
         
     | 
| 251 | 
         
            -
             
     | 
| 252 | 
         
            -
                                    x_samples = model.decode_first_stage(samples)
         
     | 
| 253 | 
         
            -
                                    x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
         
     | 
| 254 | 
         
            -
             
     | 
| 255 | 
         
            -
                                    for x_sample in x_samples:
         
     | 
| 256 | 
         
            -
                                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
         
     | 
| 257 | 
         
            -
                                        img = Image.fromarray(x_sample.astype(np.uint8))
         
     | 
| 258 | 
         
            -
                                        img = put_watermark(img, wm_encoder)
         
     | 
| 259 | 
         
            -
                                        img.save(os.path.join(sample_path, f"{base_count:05}.png"))
         
     | 
| 260 | 
         
            -
                                        base_count += 1
         
     | 
| 261 | 
         
            -
                                    all_samples.append(x_samples)
         
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
                            # additionally, save as grid
         
     | 
| 264 | 
         
            -
                            grid = torch.stack(all_samples, 0)
         
     | 
| 265 | 
         
            -
                            grid = rearrange(grid, 'n b c h w -> (n b) c h w')
         
     | 
| 266 | 
         
            -
                            grid = make_grid(grid, nrow=n_rows)
         
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
                            # to image
         
     | 
| 269 | 
         
            -
                            grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
         
     | 
| 270 | 
         
            -
                            grid = Image.fromarray(grid.astype(np.uint8))
         
     | 
| 271 | 
         
            -
                            grid = put_watermark(grid, wm_encoder)
         
     | 
| 272 | 
         
            -
                            grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
         
     | 
| 273 | 
         
            -
                            grid_count += 1
         
     | 
| 274 | 
         
            -
             
     | 
| 275 | 
         
            -
                print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
         
     | 
| 276 | 
         
            -
             
     | 
| 277 | 
         
            -
             
     | 
| 278 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 279 | 
         
            -
                main()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        scripts/streamlit/depth2img.py
    DELETED
    
    | 
         @@ -1,158 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import sys
         
     | 
| 2 | 
         
            -
            import torch
         
     | 
| 3 | 
         
            -
            import numpy as np
         
     | 
| 4 | 
         
            -
            import streamlit as st
         
     | 
| 5 | 
         
            -
            from PIL import Image
         
     | 
| 6 | 
         
            -
            from omegaconf import OmegaConf
         
     | 
| 7 | 
         
            -
            from einops import repeat, rearrange
         
     | 
| 8 | 
         
            -
            from pytorch_lightning import seed_everything
         
     | 
| 9 | 
         
            -
            from imwatermark import WatermarkEncoder
         
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
            from scripts.txt2img import put_watermark
         
     | 
| 12 | 
         
            -
            from ldm.util import instantiate_from_config
         
     | 
| 13 | 
         
            -
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 14 | 
         
            -
            from ldm.data.util import AddMiDaS
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            torch.set_grad_enabled(False)
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            @st.cache(allow_output_mutation=True)
         
     | 
| 20 | 
         
            -
            def initialize_model(config, ckpt):
         
     | 
| 21 | 
         
            -
                config = OmegaConf.load(config)
         
     | 
| 22 | 
         
            -
                model = instantiate_from_config(config.model)
         
     | 
| 23 | 
         
            -
                model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
         
     | 
| 24 | 
         
            -
             
     | 
| 25 | 
         
            -
                device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 26 | 
         
            -
                model = model.to(device)
         
     | 
| 27 | 
         
            -
                sampler = DDIMSampler(model)
         
     | 
| 28 | 
         
            -
                return sampler
         
     | 
| 29 | 
         
            -
             
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
            def make_batch_sd(
         
     | 
| 32 | 
         
            -
                    image,
         
     | 
| 33 | 
         
            -
                    txt,
         
     | 
| 34 | 
         
            -
                    device,
         
     | 
| 35 | 
         
            -
                    num_samples=1,
         
     | 
| 36 | 
         
            -
                    model_type="dpt_hybrid"
         
     | 
| 37 | 
         
            -
            ):
         
     | 
| 38 | 
         
            -
                image = np.array(image.convert("RGB"))
         
     | 
| 39 | 
         
            -
                image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
         
     | 
| 40 | 
         
            -
                # sample['jpg'] is tensor hwc in [-1, 1] at this point
         
     | 
| 41 | 
         
            -
                midas_trafo = AddMiDaS(model_type=model_type)
         
     | 
| 42 | 
         
            -
                batch = {
         
     | 
| 43 | 
         
            -
                    "jpg": image,
         
     | 
| 44 | 
         
            -
                    "txt": num_samples * [txt],
         
     | 
| 45 | 
         
            -
                }
         
     | 
| 46 | 
         
            -
                batch = midas_trafo(batch)
         
     | 
| 47 | 
         
            -
                batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w')
         
     | 
| 48 | 
         
            -
                batch["jpg"] = repeat(batch["jpg"].to(device=device), "1 ... -> n ...", n=num_samples)
         
     | 
| 49 | 
         
            -
                batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to(device=device), "1 ... -> n ...", n=num_samples)
         
     | 
| 50 | 
         
            -
                return batch
         
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
            def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None,
         
     | 
| 54 | 
         
            -
                      do_full_sample=False):
         
     | 
| 55 | 
         
            -
                device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 56 | 
         
            -
                model = sampler.model
         
     | 
| 57 | 
         
            -
                seed_everything(seed)
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
         
     | 
| 60 | 
         
            -
                wm = "SDV2"
         
     | 
| 61 | 
         
            -
                wm_encoder = WatermarkEncoder()
         
     | 
| 62 | 
         
            -
                wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
            -
                with torch.no_grad(),\
         
     | 
| 65 | 
         
            -
                        torch.autocast("cuda"):
         
     | 
| 66 | 
         
            -
                    batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
         
     | 
| 67 | 
         
            -
                    z = model.get_first_stage_encoding(model.encode_first_stage(batch[model.first_stage_key]))  # move to latent space
         
     | 
| 68 | 
         
            -
                    c = model.cond_stage_model.encode(batch["txt"])
         
     | 
| 69 | 
         
            -
                    c_cat = list()
         
     | 
| 70 | 
         
            -
                    for ck in model.concat_keys:
         
     | 
| 71 | 
         
            -
                        cc = batch[ck]
         
     | 
| 72 | 
         
            -
                        cc = model.depth_model(cc)
         
     | 
| 73 | 
         
            -
                        depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
         
     | 
| 74 | 
         
            -
                                                                                                       keepdim=True)
         
     | 
| 75 | 
         
            -
                        display_depth = (cc - depth_min) / (depth_max - depth_min)
         
     | 
| 76 | 
         
            -
                        st.image(Image.fromarray((display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8)))
         
     | 
| 77 | 
         
            -
                        cc = torch.nn.functional.interpolate(
         
     | 
| 78 | 
         
            -
                            cc,
         
     | 
| 79 | 
         
            -
                            size=z.shape[2:],
         
     | 
| 80 | 
         
            -
                            mode="bicubic",
         
     | 
| 81 | 
         
            -
                            align_corners=False,
         
     | 
| 82 | 
         
            -
                        )
         
     | 
| 83 | 
         
            -
                        depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
         
     | 
| 84 | 
         
            -
                                                                                                       keepdim=True)
         
     | 
| 85 | 
         
            -
                        cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1.
         
     | 
| 86 | 
         
            -
                        c_cat.append(cc)
         
     | 
| 87 | 
         
            -
                    c_cat = torch.cat(c_cat, dim=1)
         
     | 
| 88 | 
         
            -
                    # cond
         
     | 
| 89 | 
         
            -
                    cond = {"c_concat": [c_cat], "c_crossattn": [c]}
         
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
                    # uncond cond
         
     | 
| 92 | 
         
            -
                    uc_cross = model.get_unconditional_conditioning(num_samples, "")
         
     | 
| 93 | 
         
            -
                    uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
         
     | 
| 94 | 
         
            -
                    if not do_full_sample:
         
     | 
| 95 | 
         
            -
                        # encode (scaled latent)
         
     | 
| 96 | 
         
            -
                        z_enc = sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))
         
     | 
| 97 | 
         
            -
                    else:
         
     | 
| 98 | 
         
            -
                        z_enc = torch.randn_like(z)
         
     | 
| 99 | 
         
            -
                    # decode it
         
     | 
| 100 | 
         
            -
                    samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale,
         
     | 
| 101 | 
         
            -
                                             unconditional_conditioning=uc_full, callback=callback)
         
     | 
| 102 | 
         
            -
                    x_samples_ddim = model.decode_first_stage(samples)
         
     | 
| 103 | 
         
            -
                    result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
         
     | 
| 104 | 
         
            -
                    result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
         
     | 
| 105 | 
         
            -
                return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
            def run():
         
     | 
| 109 | 
         
            -
                st.title("Stable Diffusion Depth2Img")
         
     | 
| 110 | 
         
            -
                # run via streamlit run scripts/demo/depth2img.py <path-tp-config> <path-to-ckpt>
         
     | 
| 111 | 
         
            -
                sampler = initialize_model(sys.argv[1], sys.argv[2])
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
                image = st.file_uploader("Image", ["jpg", "png"])
         
     | 
| 114 | 
         
            -
                if image:
         
     | 
| 115 | 
         
            -
                    image = Image.open(image)
         
     | 
| 116 | 
         
            -
                    w, h = image.size
         
     | 
| 117 | 
         
            -
                    st.text(f"loaded input image of size ({w}, {h})")
         
     | 
| 118 | 
         
            -
                    width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
         
     | 
| 119 | 
         
            -
                    image = image.resize((width, height))
         
     | 
| 120 | 
         
            -
                    st.text(f"resized input image to size ({width}, {height} (w, h))")
         
     | 
| 121 | 
         
            -
                    st.image(image)
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
                    prompt = st.text_input("Prompt")
         
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
                    seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
         
     | 
| 126 | 
         
            -
                    num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
         
     | 
| 127 | 
         
            -
                    scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
         
     | 
| 128 | 
         
            -
                    steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)
         
     | 
| 129 | 
         
            -
                    strength = st.slider("Strength", min_value=0., max_value=1., value=0.9)
         
     | 
| 130 | 
         
            -
                    eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                    t_progress = st.progress(0)
         
     | 
| 133 | 
         
            -
                    def t_callback(t):
         
     | 
| 134 | 
         
            -
                        t_progress.progress(min((t + 1) / t_enc, 1.))
         
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
                    assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
         
     | 
| 137 | 
         
            -
                    do_full_sample = strength == 1.
         
     | 
| 138 | 
         
            -
                    t_enc = min(int(strength * steps), steps-1)
         
     | 
| 139 | 
         
            -
                    sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
         
     | 
| 140 | 
         
            -
                    if st.button("Sample"):
         
     | 
| 141 | 
         
            -
                        result = paint(
         
     | 
| 142 | 
         
            -
                            sampler=sampler,
         
     | 
| 143 | 
         
            -
                            image=image,
         
     | 
| 144 | 
         
            -
                            prompt=prompt,
         
     | 
| 145 | 
         
            -
                            t_enc=t_enc,
         
     | 
| 146 | 
         
            -
                            seed=seed,
         
     | 
| 147 | 
         
            -
                            scale=scale,
         
     | 
| 148 | 
         
            -
                            num_samples=num_samples,
         
     | 
| 149 | 
         
            -
                            callback=t_callback,
         
     | 
| 150 | 
         
            -
                            do_full_sample=do_full_sample
         
     | 
| 151 | 
         
            -
                        )
         
     | 
| 152 | 
         
            -
                        st.write("Result")
         
     | 
| 153 | 
         
            -
                        for image in result:
         
     | 
| 154 | 
         
            -
                            st.image(image, output_format='PNG')
         
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
             
     | 
| 157 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 158 | 
         
            -
                run()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        scripts/streamlit/inpainting.py
    DELETED
    
    | 
         @@ -1,194 +0,0 @@ 
     | 
|
| 1 | 
         
            -
            import sys
         
     | 
| 2 | 
         
            -
            import cv2
         
     | 
| 3 | 
         
            -
            import torch
         
     | 
| 4 | 
         
            -
            import numpy as np
         
     | 
| 5 | 
         
            -
            import streamlit as st
         
     | 
| 6 | 
         
            -
            from PIL import Image
         
     | 
| 7 | 
         
            -
            from omegaconf import OmegaConf
         
     | 
| 8 | 
         
            -
            from einops import repeat
         
     | 
| 9 | 
         
            -
            from streamlit_drawable_canvas import st_canvas
         
     | 
| 10 | 
         
            -
            from imwatermark import WatermarkEncoder
         
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
            from ldm.models.diffusion.ddim import DDIMSampler
         
     | 
| 13 | 
         
            -
            from ldm.util import instantiate_from_config
         
     | 
| 14 | 
         
            -
             
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            torch.set_grad_enabled(False)
         
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            def put_watermark(img, wm_encoder=None):
         
     | 
| 20 | 
         
            -
                if wm_encoder is not None:
         
     | 
| 21 | 
         
            -
                    img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
         
     | 
| 22 | 
         
            -
                    img = wm_encoder.encode(img, 'dwtDct')
         
     | 
| 23 | 
         
            -
                    img = Image.fromarray(img[:, :, ::-1])
         
     | 
| 24 | 
         
            -
                return img
         
     | 
| 25 | 
         
            -
             
     | 
| 26 | 
         
            -
             
     | 
| 27 | 
         
            -
            @st.cache(allow_output_mutation=True)
         
     | 
| 28 | 
         
            -
            def initialize_model(config, ckpt):
         
     | 
| 29 | 
         
            -
                config = OmegaConf.load(config)
         
     | 
| 30 | 
         
            -
                model = instantiate_from_config(config.model)
         
     | 
| 31 | 
         
            -
             
     | 
| 32 | 
         
            -
                model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
            -
                device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 35 | 
         
            -
                model = model.to(device)
         
     | 
| 36 | 
         
            -
                sampler = DDIMSampler(model)
         
     | 
| 37 | 
         
            -
             
     | 
| 38 | 
         
            -
                return sampler
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
            def make_batch_sd(
         
     | 
| 42 | 
         
            -
                    image,
         
     | 
| 43 | 
         
            -
                    mask,
         
     | 
| 44 | 
         
            -
                    txt,
         
     | 
| 45 | 
         
            -
                    device,
         
     | 
| 46 | 
         
            -
                    num_samples=1):
         
     | 
| 47 | 
         
            -
                image = np.array(image.convert("RGB"))
         
     | 
| 48 | 
         
            -
                image = image[None].transpose(0, 3, 1, 2)
         
     | 
| 49 | 
         
            -
                image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
                mask = np.array(mask.convert("L"))
         
     | 
| 52 | 
         
            -
                mask = mask.astype(np.float32) / 255.0
         
     | 
| 53 | 
         
            -
                mask = mask[None, None]
         
     | 
| 54 | 
         
            -
                mask[mask < 0.5] = 0
         
     | 
| 55 | 
         
            -
                mask[mask >= 0.5] = 1
         
     | 
| 56 | 
         
            -
                mask = torch.from_numpy(mask)
         
     | 
| 57 | 
         
            -
             
     | 
| 58 | 
         
            -
                masked_image = image * (mask < 0.5)
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
                batch = {
         
     | 
| 61 | 
         
            -
                    "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
         
     | 
| 62 | 
         
            -
                    "txt": num_samples * [txt],
         
     | 
| 63 | 
         
            -
                    "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
         
     | 
| 64 | 
         
            -
                    "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
         
     | 
| 65 | 
         
            -
                }
         
     | 
| 66 | 
         
            -
                return batch
         
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
            def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
         
     | 
| 70 | 
         
            -
                device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
         
     | 
| 71 | 
         
            -
                model = sampler.model
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
         
     | 
| 74 | 
         
            -
                wm = "SDV2"
         
     | 
| 75 | 
         
            -
                wm_encoder = WatermarkEncoder()
         
     | 
| 76 | 
         
            -
                wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
                prng = np.random.RandomState(seed)
         
     | 
| 79 | 
         
            -
                start_code = prng.randn(num_samples, 4, h // 8, w // 8)
         
     | 
| 80 | 
         
            -
                start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
                with torch.no_grad(), \
         
     | 
| 83 | 
         
            -
                        torch.autocast("cuda"):
         
     | 
| 84 | 
         
            -
                        batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples)
         
     | 
| 85 | 
         
            -
             
     | 
| 86 | 
         
            -
                        c = model.cond_stage_model.encode(batch["txt"])
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
                        c_cat = list()
         
     | 
| 89 | 
         
            -
                        for ck in model.concat_keys:
         
     | 
| 90 | 
         
            -
                            cc = batch[ck].float()
         
     | 
| 91 | 
         
            -
                            if ck != model.masked_image_key:
         
     | 
| 92 | 
         
            -
                                bchw = [num_samples, 4, h // 8, w // 8]
         
     | 
| 93 | 
         
            -
                                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
         
     | 
| 94 | 
         
            -
                            else:
         
     | 
| 95 | 
         
            -
                                cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
         
     | 
| 96 | 
         
            -
                            c_cat.append(cc)
         
     | 
| 97 | 
         
            -
                        c_cat = torch.cat(c_cat, dim=1)
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
                        # cond
         
     | 
| 100 | 
         
            -
                        cond = {"c_concat": [c_cat], "c_crossattn": [c]}
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                        # uncond cond
         
     | 
| 103 | 
         
            -
                        uc_cross = model.get_unconditional_conditioning(num_samples, "")
         
     | 
| 104 | 
         
            -
                        uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
         
     | 
| 105 | 
         
            -
             
     | 
| 106 | 
         
            -
                        shape = [model.channels, h // 8, w // 8]
         
     | 
| 107 | 
         
            -
                        samples_cfg, intermediates = sampler.sample(
         
     | 
| 108 | 
         
            -
                            ddim_steps,
         
     | 
| 109 | 
         
            -
                            num_samples,
         
     | 
| 110 | 
         
            -
                            shape,
         
     | 
| 111 | 
         
            -
                            cond,
         
     | 
| 112 | 
         
            -
                            verbose=False,
         
     | 
| 113 | 
         
            -
                            eta=1.0,
         
     | 
| 114 | 
         
            -
                            unconditional_guidance_scale=scale,
         
     | 
| 115 | 
         
            -
                            unconditional_conditioning=uc_full,
         
     | 
| 116 | 
         
            -
                            x_T=start_code,
         
     | 
| 117 | 
         
            -
                        )
         
     | 
| 118 | 
         
            -
                        x_samples_ddim = model.decode_first_stage(samples_cfg)
         
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
                        result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
         
     | 
| 121 | 
         
            -
                                             min=0.0, max=1.0)
         
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
                        result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
         
     | 
| 124 | 
         
            -
                return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
            def run():
         
     | 
| 128 | 
         
            -
                st.title("Stable Diffusion Inpainting")
         
     | 
| 129 | 
         
            -
             
     | 
| 130 | 
         
            -
                sampler = initialize_model(sys.argv[1], sys.argv[2])
         
     | 
| 131 | 
         
            -
             
     | 
| 132 | 
         
            -
                image = st.file_uploader("Image", ["jpg", "png"])
         
     | 
| 133 | 
         
            -
                if image:
         
     | 
| 134 | 
         
            -
                    image = Image.open(image)
         
     | 
| 135 | 
         
            -
                    w, h = image.size
         
     | 
| 136 | 
         
            -
                    print(f"loaded input image of size ({w}, {h})")
         
     | 
| 137 | 
         
            -
                    width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 32
         
     | 
| 138 | 
         
            -
                    image = image.resize((width, height))
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                    prompt = st.text_input("Prompt")
         
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
                    seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
         
     | 
| 143 | 
         
            -
                    num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
         
     | 
| 144 | 
         
            -
                    scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=10., step=0.1)
         
     | 
| 145 | 
         
            -
                    ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
                    fill_color = "rgba(255, 255, 255, 0.0)"
         
     | 
| 148 | 
         
            -
                    stroke_width = st.number_input("Brush Size",
         
     | 
| 149 | 
         
            -
                                                   value=64,
         
     | 
| 150 | 
         
            -
                                                   min_value=1,
         
     | 
| 151 | 
         
            -
                                                   max_value=100)
         
     | 
| 152 | 
         
            -
                    stroke_color = "rgba(255, 255, 255, 1.0)"
         
     | 
| 153 | 
         
            -
                    bg_color = "rgba(0, 0, 0, 1.0)"
         
     | 
| 154 | 
         
            -
                    drawing_mode = "freedraw"
         
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
                    st.write("Canvas")
         
     | 
| 157 | 
         
            -
                    st.caption(
         
     | 
| 158 | 
         
            -
                        "Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).")
         
     | 
| 159 | 
         
            -
                    canvas_result = st_canvas(
         
     | 
| 160 | 
         
            -
                        fill_color=fill_color,
         
     | 
| 161 | 
         
            -
                        stroke_width=stroke_width,
         
     | 
| 162 | 
         
            -
                        stroke_color=stroke_color,
         
     | 
| 163 | 
         
            -
                        background_color=bg_color,
         
     | 
| 164 | 
         
            -
                        background_image=image,
         
     | 
| 165 | 
         
            -
                        update_streamlit=False,
         
     | 
| 166 | 
         
            -
                        height=height,
         
     | 
| 167 | 
         
            -
                        width=width,
         
     | 
| 168 | 
         
            -
                        drawing_mode=drawing_mode,
         
     | 
| 169 | 
         
            -
                        key="canvas",
         
     | 
| 170 | 
         
            -
                    )
         
     | 
| 171 | 
         
            -
                    if canvas_result:
         
     | 
| 172 | 
         
            -
                        mask = canvas_result.image_data
         
     | 
| 173 | 
         
            -
                        mask = mask[:, :, -1] > 0
         
     | 
| 174 | 
         
            -
                        if mask.sum() > 0:
         
     | 
| 175 | 
         
            -
                            mask = Image.fromarray(mask)
         
     | 
| 176 | 
         
            -
             
     | 
| 177 | 
         
            -
                            result = inpaint(
         
     | 
| 178 | 
         
            -
                                sampler=sampler,
         
     | 
| 179 | 
         
            -
                                image=image,
         
     | 
| 180 | 
         
            -
                                mask=mask,
         
     | 
| 181 | 
         
            -
                                prompt=prompt,
         
     | 
| 182 | 
         
            -
                                seed=seed,
         
     | 
| 183 | 
         
            -
                                scale=scale,
         
     | 
| 184 | 
         
            -
                                ddim_steps=ddim_steps,
         
     | 
| 185 | 
         
            -
                                num_samples=num_samples,
         
     | 
| 186 | 
         
            -
                                h=height, w=width
         
     | 
| 187 | 
         
            -
                            )
         
     | 
| 188 | 
         
            -
                            st.write("Inpainted")
         
     | 
| 189 | 
         
            -
                            for image in result:
         
     | 
| 190 | 
         
            -
                                st.image(image, output_format='PNG')
         
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
            if __name__ == "__main__":
         
     | 
| 194 | 
         
            -
                run()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |