Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, HTTPException | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from pydantic import BaseModel | |
| from deep_translator import GoogleTranslator | |
| from datasets import load_dataset | |
| from transformers import TapexTokenizer, BartForConditionalGeneration | |
| import pandas as pd, torch, os | |
| # === Config === | |
| HF_MODEL_ID = os.getenv("HF_MODEL_ID", "stvnnnnnn/tapex-wikisql-best") | |
| TABLE_SPLIT = os.getenv("TABLE_SPLIT", "validation") | |
| TABLE_INDEX = int(os.getenv("TABLE_INDEX", "10")) | |
| MAX_ROWS = int(os.getenv("MAX_ROWS", "12")) | |
| torch.set_num_threads(1) | |
| app = FastAPI(title="NL→SQL – TAPEX + WikiSQL (HF Space)") | |
| # CORS: permite que Vercel (o cualquier origen) consuma la API | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], allow_credentials=False, | |
| allow_methods=["*"], allow_headers=["*"], | |
| ) | |
| # Carga modelo/tokenizer con bajo pico de RAM (CPU) | |
| tok = TapexTokenizer.from_pretrained(HF_MODEL_ID) | |
| model = BartForConditionalGeneration.from_pretrained( | |
| HF_MODEL_ID, low_cpu_mem_usage=True | |
| ).to("cpu") | |
| class NLQuery(BaseModel): | |
| nl_query: str | |
| def get_example(split, index): | |
| # streaming para no cargar todo WikiSQL en RAM | |
| ds = load_dataset("Salesforce/wikisql", split=split, streaming=True) | |
| for i, ex in enumerate(ds): | |
| if i == index: | |
| return ex | |
| raise IndexError("Index fuera de rango") | |
| def load_table(split=TABLE_SPLIT, index=TABLE_INDEX, max_rows=MAX_ROWS): | |
| ex = get_example(split, index) | |
| header = [str(h) for h in ex["table"]["header"]] | |
| rows = ex["table"]["rows"][:max_rows] | |
| return pd.DataFrame(rows, columns=header) | |
| def health(): | |
| return {"ok": True, "model": HF_MODEL_ID, "split": TABLE_SPLIT, "index": TABLE_INDEX} | |
| def preview(): | |
| df = load_table() | |
| return {"columns": df.columns.tolist(), "rows": df.head(8).to_dict(orient="records")} | |
| def nl2sql(q: NLQuery): | |
| try: | |
| text = (q.nl_query or "").strip() | |
| if not text: | |
| raise ValueError("Consulta vacía.") | |
| is_ascii = all(ord(c) < 128 for c in text) | |
| query_en = text if is_ascii else GoogleTranslator(source="auto", target="en").translate(text) | |
| df = load_table() | |
| enc = tok(table=df, query=query_en, return_tensors="pt", truncation=True) | |
| out = model.generate(**enc, max_length=160, num_beams=1) | |
| sql = tok.batch_decode(out, skip_special_tokens=True)[0] | |
| return {"consulta_original": text, "consulta_traducida": query_en, "sql_generado": sql} | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) |