Spaces:
Runtime error
Runtime error
| import os | |
| from typing import TYPE_CHECKING, List, Optional | |
| import torch | |
| import yaml | |
| from toolkit import train_tools | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from PIL import Image | |
| from toolkit.models.base_model import BaseModel | |
| from toolkit.basic import flush | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
| from toolkit.accelerator import get_accelerator, unwrap_model | |
| from optimum.quanto import freeze, QTensor | |
| from toolkit.util.quantize import quantize, get_qtype, quantize_model | |
| import torch.nn.functional as F | |
| from diffusers import QwenImagePipeline, QwenImageTransformer2DModel, AutoencoderKLQwenImage | |
| from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor | |
| from tqdm import tqdm | |
| if TYPE_CHECKING: | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": 0.5, | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": 0.9, | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": 0.02, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False | |
| } | |
| class QwenImageModel(BaseModel): | |
| arch = "qwen_image" | |
| _qwen_image_keep_visual = False | |
| _qwen_pipeline = QwenImagePipeline | |
| def __init__( | |
| self, | |
| device, | |
| model_config: ModelConfig, | |
| dtype='bf16', | |
| custom_pipeline=None, | |
| noise_scheduler=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| device, | |
| model_config, | |
| dtype, | |
| custom_pipeline, | |
| noise_scheduler, | |
| **kwargs | |
| ) | |
| self.is_flow_matching = True | |
| self.is_transformer = True | |
| self.target_lora_modules = ['QwenImageTransformer2DModel'] | |
| # static method to get the noise scheduler | |
| def get_train_scheduler(): | |
| return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
| def get_bucket_divisibility(self): | |
| return 16 * 2 # 16 for the VAE, 2 for patch size | |
| def load_model(self): | |
| dtype = self.torch_dtype | |
| self.print_and_status_update("Loading Qwen Image model") | |
| model_path = self.model_config.name_or_path | |
| base_model_path = self.model_config.extras_name_or_path | |
| transformer_path = model_path | |
| transformer_subfolder = 'transformer' | |
| if os.path.exists(transformer_path): | |
| transformer_subfolder = None | |
| transformer_path = os.path.join(transformer_path, 'transformer') | |
| # check if the path is a full checkpoint. | |
| te_folder_path = os.path.join(model_path, 'text_encoder') | |
| # if we have the te, this folder is a full checkpoint, use it as the base | |
| if os.path.exists(te_folder_path): | |
| base_model_path = model_path | |
| self.print_and_status_update("Loading transformer") | |
| transformer = QwenImageTransformer2DModel.from_pretrained( | |
| transformer_path, | |
| subfolder=transformer_subfolder, | |
| torch_dtype=dtype | |
| ) | |
| if self.model_config.quantize: | |
| self.print_and_status_update("Quantizing Transformer") | |
| quantize_model(self, transformer) | |
| flush() | |
| if self.model_config.low_vram: | |
| self.print_and_status_update("Moving transformer to CPU") | |
| transformer.to('cpu') | |
| flush() | |
| self.print_and_status_update("Text Encoder") | |
| tokenizer = Qwen2Tokenizer.from_pretrained( | |
| base_model_path, subfolder="tokenizer", torch_dtype=dtype | |
| ) | |
| text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
| base_model_path, subfolder="text_encoder", torch_dtype=dtype | |
| ) | |
| # remove the visual model as it is not needed for image generation | |
| self.processor = None | |
| if not self._qwen_image_keep_visual: | |
| text_encoder.model.visual = None | |
| text_encoder.to(self.device_torch, dtype=dtype) | |
| flush() | |
| if self.model_config.quantize_te: | |
| self.print_and_status_update("Quantizing Text Encoder") | |
| quantize(text_encoder, weights=get_qtype( | |
| self.model_config.qtype_te)) | |
| freeze(text_encoder) | |
| flush() | |
| self.print_and_status_update("Loading VAE") | |
| vae = AutoencoderKLQwenImage.from_pretrained( | |
| base_model_path, subfolder="vae", torch_dtype=dtype) | |
| self.noise_scheduler = QwenImageModel.get_train_scheduler() | |
| self.print_and_status_update("Making pipe") | |
| kwargs = {} | |
| if self._qwen_image_keep_visual: | |
| try: | |
| self.processor = Qwen2VLProcessor.from_pretrained( | |
| model_path, subfolder="processor" | |
| ) | |
| except OSError: | |
| self.processor = Qwen2VLProcessor.from_pretrained( | |
| base_model_path, subfolder="processor" | |
| ) | |
| kwargs['processor'] = self.processor | |
| pipe: QwenImagePipeline = self._qwen_pipeline( | |
| scheduler=self.noise_scheduler, | |
| text_encoder=None, | |
| tokenizer=tokenizer, | |
| vae=vae, | |
| transformer=None, | |
| **kwargs | |
| ) | |
| # for quantization, it works best to do these after making the pipe | |
| pipe.text_encoder = text_encoder | |
| pipe.transformer = transformer | |
| self.print_and_status_update("Preparing Model") | |
| text_encoder = [pipe.text_encoder] | |
| tokenizer = [pipe.tokenizer] | |
| # leave it on cpu for now | |
| if not self.low_vram: | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # just to make sure everything is on the right device and dtype | |
| text_encoder[0].to(self.device_torch) | |
| text_encoder[0].requires_grad_(False) | |
| text_encoder[0].eval() | |
| flush() | |
| # save it to the model class | |
| self.vae = vae | |
| self.text_encoder = text_encoder # list of text encoders | |
| self.tokenizer = tokenizer # list of tokenizers | |
| self.model = pipe.transformer | |
| self.pipeline = pipe | |
| self.print_and_status_update("Model Loaded") | |
| def get_generation_pipeline(self): | |
| scheduler = QwenImageModel.get_train_scheduler() | |
| pipeline: QwenImagePipeline = QwenImagePipeline( | |
| scheduler=scheduler, | |
| text_encoder=unwrap_model(self.text_encoder[0]), | |
| tokenizer=self.tokenizer[0], | |
| vae=unwrap_model(self.vae), | |
| transformer=unwrap_model(self.transformer) | |
| ) | |
| pipeline = pipeline.to(self.device_torch) | |
| return pipeline | |
| def generate_single_image( | |
| self, | |
| pipeline: QwenImagePipeline, | |
| gen_config: GenerateImageConfig, | |
| conditional_embeds: PromptEmbeds, | |
| unconditional_embeds: PromptEmbeds, | |
| generator: torch.Generator, | |
| extra: dict, | |
| ): | |
| self.model.to(self.device_torch, dtype=self.torch_dtype) | |
| control_img = None | |
| if gen_config.ctrl_img is not None: | |
| raise NotImplementedError( | |
| "Control image generation is not supported in Qwen Image model... yet" | |
| ) | |
| control_img = Image.open(gen_config.ctrl_img) | |
| control_img = control_img.convert("RGB") | |
| # resize to width and height | |
| if control_img.size != (gen_config.width, gen_config.height): | |
| control_img = control_img.resize( | |
| (gen_config.width, gen_config.height), Image.BILINEAR | |
| ) | |
| self.model.to(self.device_torch) | |
| # flush for low vram if we are doing that | |
| flush_between_steps = self.model_config.low_vram | |
| # Fix a bug in diffusers/torch | |
| def callback_on_step_end(pipe, i, t, callback_kwargs): | |
| if flush_between_steps: | |
| flush() | |
| latents = callback_kwargs["latents"] | |
| return {"latents": latents} | |
| sc = self.get_bucket_divisibility() | |
| gen_config.width = int(gen_config.width // sc * sc) | |
| gen_config.height = int(gen_config.height // sc * sc) | |
| img = pipeline( | |
| prompt_embeds=conditional_embeds.text_embeds, | |
| prompt_embeds_mask=conditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64), | |
| negative_prompt_embeds=unconditional_embeds.text_embeds, | |
| negative_prompt_embeds_mask=unconditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64), | |
| height=gen_config.height, | |
| width=gen_config.width, | |
| num_inference_steps=gen_config.num_inference_steps, | |
| true_cfg_scale=gen_config.guidance_scale, | |
| latents=gen_config.latents, | |
| generator=generator, | |
| callback_on_step_end=callback_on_step_end, | |
| **extra | |
| ).images[0] | |
| return img | |
| def get_noise_prediction( | |
| self, | |
| latent_model_input: torch.Tensor, | |
| timestep: torch.Tensor, # 0 to 1000 scale | |
| text_embeddings: PromptEmbeds, | |
| **kwargs | |
| ): | |
| self.model.to(self.device_torch) | |
| batch_size, num_channels_latents, height, width = latent_model_input.shape | |
| ps = self.transformer.config.patch_size | |
| # pack image tokens | |
| latent_model_input = latent_model_input.view(batch_size, num_channels_latents, height // ps, ps, width // ps, ps) | |
| latent_model_input = latent_model_input.permute(0, 2, 4, 1, 3, 5) | |
| latent_model_input = latent_model_input.reshape(batch_size, (height // ps) * (width // ps), num_channels_latents * (ps * ps)) | |
| # img_shapes passed to the model | |
| img_h2, img_w2 = height // ps, width // ps | |
| img_shapes = [[(1, img_h2, img_w2)]] * batch_size | |
| enc_hs = text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype) | |
| prompt_embeds_mask = text_embeddings.attention_mask.to(self.device_torch, dtype=torch.int64) | |
| txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype), | |
| timestep=timestep / 1000, | |
| guidance=None, | |
| encoder_hidden_states=enc_hs, | |
| encoder_hidden_states_mask=prompt_embeds_mask, | |
| img_shapes=img_shapes, | |
| txt_seq_lens=txt_seq_lens, | |
| return_dict=False, | |
| **kwargs, | |
| )[0] | |
| # unpack | |
| noise_pred = noise_pred.view(batch_size, height // ps, width // ps, num_channels_latents, ps, ps) | |
| noise_pred = noise_pred.permute(0, 3, 1, 4, 2, 5) | |
| noise_pred = noise_pred.reshape(batch_size, num_channels_latents, height, width) | |
| return noise_pred | |
| def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
| if self.pipeline.text_encoder.device != self.device_torch: | |
| self.pipeline.text_encoder.to(self.device_torch) | |
| prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt( | |
| prompt, | |
| device=self.device_torch, | |
| num_images_per_prompt=1, | |
| ) | |
| pe = PromptEmbeds( | |
| prompt_embeds | |
| ) | |
| pe.attention_mask = prompt_embeds_mask | |
| return pe | |
| def get_model_has_grad(self): | |
| return False | |
| def get_te_has_grad(self): | |
| return False | |
| def save_model(self, output_path, meta, save_dtype): | |
| # only save the unet | |
| transformer: QwenImageTransformer2DModel = unwrap_model(self.model) | |
| transformer.save_pretrained( | |
| save_directory=os.path.join(output_path, 'transformer'), | |
| safe_serialization=True, | |
| ) | |
| meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
| with open(meta_path, 'w') as f: | |
| yaml.dump(meta, f) | |
| def get_loss_target(self, *args, **kwargs): | |
| noise = kwargs.get('noise') | |
| batch = kwargs.get('batch') | |
| return (noise - batch.latents).detach() | |
| def get_base_model_version(self): | |
| return "qwen_image" | |
| def get_transformer_block_names(self) -> Optional[List[str]]: | |
| return ['transformer_blocks'] | |
| def convert_lora_weights_before_save(self, state_dict): | |
| new_sd = {} | |
| for key, value in state_dict.items(): | |
| new_key = key.replace("transformer.", "diffusion_model.") | |
| new_sd[new_key] = value | |
| return new_sd | |
| def convert_lora_weights_before_load(self, state_dict): | |
| new_sd = {} | |
| for key, value in state_dict.items(): | |
| new_key = key.replace("diffusion_model.", "transformer.") | |
| new_sd[new_key] = value | |
| return new_sd | |
| def encode_images( | |
| self, | |
| image_list: List[torch.Tensor], | |
| device=None, | |
| dtype=None | |
| ): | |
| if device is None: | |
| device = self.vae_device_torch | |
| if dtype is None: | |
| dtype = self.vae_torch_dtype | |
| # Move to vae to device if on cpu | |
| if self.vae.device == 'cpu': | |
| self.vae.to(device) | |
| self.vae.eval() | |
| self.vae.requires_grad_(False) | |
| # move to device and dtype | |
| image_list = [image.to(device, dtype=dtype) for image in image_list] | |
| images = torch.stack(image_list).to(device, dtype=dtype) | |
| # it uses wan vae, so add dim for frame count | |
| images = images.unsqueeze(2) | |
| latents = self.vae.encode(images).latent_dist.sample() | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean) | |
| .view(1, self.vae.config.z_dim, 1, 1, 1) | |
| .to(latents.device, latents.dtype) | |
| ) | |
| latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
| latents.device, latents.dtype | |
| ) | |
| latents = (latents - latents_mean) * latents_std | |
| latents = latents.to(device, dtype=dtype) | |
| latents = latents.squeeze(2) # remove the frame count dimension | |
| return latents |