jbilcke-hf's picture
Convert AI-Toolkit to a HF Space
8822914
import os
from typing import TYPE_CHECKING, List, Optional
import torch
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.quantize import quantize, get_qtype, quantize_model
import torch.nn.functional as F
from diffusers import QwenImagePipeline, QwenImageTransformer2DModel, AutoencoderKLQwenImage
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
from tqdm import tqdm
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": 0.5,
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": 0.9,
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": 0.02,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False
}
class QwenImageModel(BaseModel):
arch = "qwen_image"
_qwen_image_keep_visual = False
_qwen_pipeline = QwenImagePipeline
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device,
model_config,
dtype,
custom_pipeline,
noise_scheduler,
**kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['QwenImageTransformer2DModel']
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
return 16 * 2 # 16 for the VAE, 2 for patch size
def load_model(self):
dtype = self.torch_dtype
self.print_and_status_update("Loading Qwen Image model")
model_path = self.model_config.name_or_path
base_model_path = self.model_config.extras_name_or_path
transformer_path = model_path
transformer_subfolder = 'transformer'
if os.path.exists(transformer_path):
transformer_subfolder = None
transformer_path = os.path.join(transformer_path, 'transformer')
# check if the path is a full checkpoint.
te_folder_path = os.path.join(model_path, 'text_encoder')
# if we have the te, this folder is a full checkpoint, use it as the base
if os.path.exists(te_folder_path):
base_model_path = model_path
self.print_and_status_update("Loading transformer")
transformer = QwenImageTransformer2DModel.from_pretrained(
transformer_path,
subfolder=transformer_subfolder,
torch_dtype=dtype
)
if self.model_config.quantize:
self.print_and_status_update("Quantizing Transformer")
quantize_model(self, transformer)
flush()
if self.model_config.low_vram:
self.print_and_status_update("Moving transformer to CPU")
transformer.to('cpu')
flush()
self.print_and_status_update("Text Encoder")
tokenizer = Qwen2Tokenizer.from_pretrained(
base_model_path, subfolder="tokenizer", torch_dtype=dtype
)
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
base_model_path, subfolder="text_encoder", torch_dtype=dtype
)
# remove the visual model as it is not needed for image generation
self.processor = None
if not self._qwen_image_keep_visual:
text_encoder.model.visual = None
text_encoder.to(self.device_torch, dtype=dtype)
flush()
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing Text Encoder")
quantize(text_encoder, weights=get_qtype(
self.model_config.qtype_te))
freeze(text_encoder)
flush()
self.print_and_status_update("Loading VAE")
vae = AutoencoderKLQwenImage.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=dtype)
self.noise_scheduler = QwenImageModel.get_train_scheduler()
self.print_and_status_update("Making pipe")
kwargs = {}
if self._qwen_image_keep_visual:
try:
self.processor = Qwen2VLProcessor.from_pretrained(
model_path, subfolder="processor"
)
except OSError:
self.processor = Qwen2VLProcessor.from_pretrained(
base_model_path, subfolder="processor"
)
kwargs['processor'] = self.processor
pipe: QwenImagePipeline = self._qwen_pipeline(
scheduler=self.noise_scheduler,
text_encoder=None,
tokenizer=tokenizer,
vae=vae,
transformer=None,
**kwargs
)
# for quantization, it works best to do these after making the pipe
pipe.text_encoder = text_encoder
pipe.transformer = transformer
self.print_and_status_update("Preparing Model")
text_encoder = [pipe.text_encoder]
tokenizer = [pipe.tokenizer]
# leave it on cpu for now
if not self.low_vram:
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# just to make sure everything is on the right device and dtype
text_encoder[0].to(self.device_torch)
text_encoder[0].requires_grad_(False)
text_encoder[0].eval()
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder # list of text encoders
self.tokenizer = tokenizer # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = QwenImageModel.get_train_scheduler()
pipeline: QwenImagePipeline = QwenImagePipeline(
scheduler=scheduler,
text_encoder=unwrap_model(self.text_encoder[0]),
tokenizer=self.tokenizer[0],
vae=unwrap_model(self.vae),
transformer=unwrap_model(self.transformer)
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: QwenImagePipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
self.model.to(self.device_torch, dtype=self.torch_dtype)
control_img = None
if gen_config.ctrl_img is not None:
raise NotImplementedError(
"Control image generation is not supported in Qwen Image model... yet"
)
control_img = Image.open(gen_config.ctrl_img)
control_img = control_img.convert("RGB")
# resize to width and height
if control_img.size != (gen_config.width, gen_config.height):
control_img = control_img.resize(
(gen_config.width, gen_config.height), Image.BILINEAR
)
self.model.to(self.device_torch)
# flush for low vram if we are doing that
flush_between_steps = self.model_config.low_vram
# Fix a bug in diffusers/torch
def callback_on_step_end(pipe, i, t, callback_kwargs):
if flush_between_steps:
flush()
latents = callback_kwargs["latents"]
return {"latents": latents}
sc = self.get_bucket_divisibility()
gen_config.width = int(gen_config.width // sc * sc)
gen_config.height = int(gen_config.height // sc * sc)
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
prompt_embeds_mask=conditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64),
negative_prompt_embeds=unconditional_embeds.text_embeds,
negative_prompt_embeds_mask=unconditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64),
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
true_cfg_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
callback_on_step_end=callback_on_step_end,
**extra
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs
):
self.model.to(self.device_torch)
batch_size, num_channels_latents, height, width = latent_model_input.shape
ps = self.transformer.config.patch_size
# pack image tokens
latent_model_input = latent_model_input.view(batch_size, num_channels_latents, height // ps, ps, width // ps, ps)
latent_model_input = latent_model_input.permute(0, 2, 4, 1, 3, 5)
latent_model_input = latent_model_input.reshape(batch_size, (height // ps) * (width // ps), num_channels_latents * (ps * ps))
# img_shapes passed to the model
img_h2, img_w2 = height // ps, width // ps
img_shapes = [[(1, img_h2, img_w2)]] * batch_size
enc_hs = text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype)
prompt_embeds_mask = text_embeddings.attention_mask.to(self.device_torch, dtype=torch.int64)
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist()
noise_pred = self.transformer(
hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype),
timestep=timestep / 1000,
guidance=None,
encoder_hidden_states=enc_hs,
encoder_hidden_states_mask=prompt_embeds_mask,
img_shapes=img_shapes,
txt_seq_lens=txt_seq_lens,
return_dict=False,
**kwargs,
)[0]
# unpack
noise_pred = noise_pred.view(batch_size, height // ps, width // ps, num_channels_latents, ps, ps)
noise_pred = noise_pred.permute(0, 3, 1, 4, 2, 5)
noise_pred = noise_pred.reshape(batch_size, num_channels_latents, height, width)
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
if self.pipeline.text_encoder.device != self.device_torch:
self.pipeline.text_encoder.to(self.device_torch)
prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt(
prompt,
device=self.device_torch,
num_images_per_prompt=1,
)
pe = PromptEmbeds(
prompt_embeds
)
pe.attention_mask = prompt_embeds_mask
return pe
def get_model_has_grad(self):
return False
def get_te_has_grad(self):
return False
def save_model(self, output_path, meta, save_dtype):
# only save the unet
transformer: QwenImageTransformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, 'transformer'),
safe_serialization=True,
)
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
with open(meta_path, 'w') as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get('noise')
batch = kwargs.get('batch')
return (noise - batch.latents).detach()
def get_base_model_version(self):
return "qwen_image"
def get_transformer_block_names(self) -> Optional[List[str]]:
return ['transformer_blocks']
def convert_lora_weights_before_save(self, state_dict):
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("transformer.", "diffusion_model.")
new_sd[new_key] = value
return new_sd
def convert_lora_weights_before_load(self, state_dict):
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
return new_sd
def encode_images(
self,
image_list: List[torch.Tensor],
device=None,
dtype=None
):
if device is None:
device = self.vae_device_torch
if dtype is None:
dtype = self.vae_torch_dtype
# Move to vae to device if on cpu
if self.vae.device == 'cpu':
self.vae.to(device)
self.vae.eval()
self.vae.requires_grad_(False)
# move to device and dtype
image_list = [image.to(device, dtype=dtype) for image in image_list]
images = torch.stack(image_list).to(device, dtype=dtype)
# it uses wan vae, so add dim for frame count
images = images.unsqueeze(2)
latents = self.vae.encode(images).latent_dist.sample()
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = (latents - latents_mean) * latents_std
latents = latents.to(device, dtype=dtype)
latents = latents.squeeze(2) # remove the frame count dimension
return latents