tx1-demo / app.py
Umair Khan
try some memory optimizations to get to 100K
326122b
# install custom package
import os
os.system("pip install --no-deps ./tahoex-0.1.2-py3-none-any.whl")
# imports
import gc
import json
import uuid
import time
import tempfile
import torch
import gradio as gr
import anndata as ad
import pandas as pd
import numpy as np
import scanpy as sc
import pyarrow as pa
import pyarrow.parquet as pq
import matplotlib.pyplot as plt
from scipy import sparse
from pathlib import Path
from composer import Trainer, Callback
from tahoex.model.model import ComposerTX
from tahoex.data import CountDataset, DataCollator
# hardcoded configuration
EMB_KEY = "X_tx1-70m"
APP_TITLE = "Tx1-70M Embeddings"
APP_DESC = """
Upload an AnnData, compute Tx1-70M embeddings,
preview a UMAP, and download the results. **Limits:**
Files up to 5GB. If an AnnData contains more
than 100K cells, embeddings will be computed **only
for the first 100K cells**.
"""
# set up directories
OUTPUT_DIR = Path("./outputs")
OUTPUT_DIR.mkdir(exist_ok=True, parents=True)
# load symbol-to-ensembl mapping
with open("./symbol-to-ensembl.json", "r") as f:
SYMBOL_TO_ENSEMBL = json.load(f)
SYMBOL_TO_ENSEMBL_UCASE = {str(k).upper(): v for k, v in SYMBOL_TO_ENSEMBL.items()}
# set up parquet outputs
PARQUET_INDEX_COL = "index"
PARQUET_EMB_COL = "tx1-70m"
# constants for UMAP recoloring
OBS_NONE_OPTION = "(none)"
MAX_CATEGORIES = 50
# constants for .var preview
VAR_PREVIEW_MAX = 5
# helper to select layer from AnnData
def _pick_layer(adata, layer_name):
X = adata.layers[layer_name] if layer_name else adata.X
if sparse.issparse(X):
X = X.tocsr()
elif not isinstance(X, np.ndarray):
X = np.asarray(X)
if hasattr(X, "dtype") and X.dtype != np.float32:
X = X.astype(np.float32, copy=False)
return X
# helper to summarize DataFrame column choices
def _summarize_columns(df, preview_max=VAR_PREVIEW_MAX):
choices = []
for col in df.columns:
s = df[col]
dtype = str(s.dtype)
ex = pd.Series(s.astype(object)).dropna().astype(str).head(preview_max).tolist()
preview = ", ".join(ex) if ex else "(no values)"
if len(preview) > 47:
preview = preview[:47] + "..."
elif preview != "(no values)":
preview = preview + "..."
lbl = f"{col} · {dtype} · {preview}"
choices.append((lbl, col))
return choices
# helper to compute UMAP from given embeddings
def _compute_umap_from_emb(emb):
ad_umap = ad.AnnData(X=emb)
sc.pp.neighbors(ad_umap)
sc.tl.umap(ad_umap)
coords = np.asarray(ad_umap.obsm["X_umap"])
del ad_umap
return coords
# helper to generate unique filenames in output directory
def _unique_output(name):
stem, ext = name.rsplit(".", 1)
return OUTPUT_DIR / f"{stem}_{int(time.time())}_{uuid.uuid4().hex[:6]}.{ext}"
# helper to save outputs
def _save_outputs(adata, emb, chunk=20000):
# build schema
d_model = int(emb.shape[1])
schema = pa.schema([
pa.field(PARQUET_INDEX_COL, pa.string()),
pa.field(PARQUET_EMB_COL, pa.list_(pa.float32(), d_model)),
])
# save parquet in chunks
parquet_path = _unique_output("embs.parquet")
writer = None
try:
for i in range(0, emb.shape[0], chunk):
sl = slice(i, min(i+chunk, emb.shape[0]))
idx_arr = pa.array(adata.obs_names[sl].astype(str).tolist(), type=pa.string())
flat = pa.array(emb[sl].reshape(-1), type=pa.float32())
emb_arr = pa.FixedSizeListArray.from_arrays(flat, d_model)
batch = pa.record_batch([idx_arr, emb_arr], schema=schema)
if writer is None:
writer = pq.ParquetWriter(parquet_path, schema, compression="zstd", use_dictionary=True)
writer.write_table(pa.Table.from_batches([batch]))
finally:
if writer is not None:
writer.close()
# save AnnData
out_h5ad = _unique_output("adata_with_embs.h5ad")
adata.write(out_h5ad)
# return paths
return parquet_path, out_h5ad
# refresh dropdowns given a file object
def ensure_dropdowns(fileobj):
if fileobj is None:
return (
gr.Dropdown(choices=["<use .X>"], value="<use .X>"),
gr.Dropdown(choices=[], value=None)
)
try:
adata = sc.read_h5ad(fileobj.name, backed="r")
adata.var = adata.var.reset_index(drop=False, names="index")
layers = list(adata.layers.keys())
var_choices = _summarize_columns(adata.var)
del adata
gc.collect()
default_var = var_choices[0][1] if var_choices else None
return (
gr.Dropdown(choices=["<use .X>"] + layers, value="<use .X>"),
gr.Dropdown(choices=var_choices, value=default_var)
)
except Exception:
return (
gr.Dropdown(choices=["<use .X>"], value="<use .X>"),
gr.Dropdown(choices=[], value=None)
)
# draw an uncolored UMAP
def draw_uncolored(coords, title_suffix=None):
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75)
ttl = "Tx1-70M embeddings"
if title_suffix:
ttl += f" ({title_suffix})"
ax.set_title(ttl)
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
out_png = _unique_output("umap.png")
fig.savefig(out_png, dpi=160)
plt.close(fig)
return out_png
# recolor UMAP given obs column
def recolor_umap(obs_col, coords, h5ad_path):
# make sure inputs are valid
if coords is None or h5ad_path is None:
raise gr.Error("Run embeddings first to compute UMAP.")
coords = np.asarray(coords)
if coords.ndim != 2 or coords.shape[1] != 2:
raise gr.Error(f"UMAP coordinates look wrong, shape = {coords.shape}. Please recompute.")
# handle no-coloring option
if obs_col == OBS_NONE_OPTION:
out_png = draw_uncolored(coords)
return str(out_png.resolve())
# read obs column
try:
adata = sc.read_h5ad(h5ad_path, backed="r")
series = adata.obs[obs_col]
n = series.shape[0]
if n != coords.shape[0]:
gr.Warning(f"Length mismatch: obs has {n} rows, UMAP has {coords.shape[0]}. Using minimum length.")
m = min(n, coords.shape[0])
series = series.iloc[:m]
coords = coords[:m]
except Exception as e:
raise gr.Error(f"Failed to read .obs column '{obs_col}': {e}")
# sanitize values
s = series.copy()
numeric_candidate = pd.to_numeric(s, errors="coerce")
n_numeric_valid = int(np.isfinite(numeric_candidate.astype(float)).sum())
n_total = int(len(s))
# plot numerical labels
if n_numeric_valid >= max(5, 0.5 * n_total):
# check for sufficient numeric values or constant values
vals = pd.to_numeric(s, errors="coerce").astype(float).values
mask = np.isfinite(vals)
if mask.sum() < max(10, 0.1 * len(vals)):
gr.Warning(f"Too few finite numeric values in '{obs_col}'. Showing uncolored UMAP.")
return draw_uncolored(f"{obs_col}: insufficient numeric values")
if np.nanmax(vals[mask]) == np.nanmin(vals[mask]):
gr.Info(f"'{obs_col}' is constant. Showing uncolored UMAP.")
return draw_uncolored(f"{obs_col}: constant")
# draw with colorbar
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
scatt = ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, c=vals[mask])
fig.colorbar(scatt, ax=ax, shrink=0.7, label=obs_col)
if (~mask).any():
ax.scatter(coords[~mask, 0], coords[~mask, 1], s=3, alpha=0.25)
ax.set_title(f"Tx1-70M embeddings colored by {obs_col}")
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
out_png = _unique_output("umap.png")
fig.savefig(out_png, dpi=160)
plt.close(fig)
return str(out_png.resolve())
# categorical coloring
else:
# check for too many or too few categories
cats = s.astype(str).fillna("NA").values
uniq = pd.unique(cats)
n_cat = len(uniq)
if n_cat > MAX_CATEGORIES:
gr.Warning(f"'{obs_col}' has too many categories. Showing uncolored UMAP.")
out_png = draw_uncolored(coords, f"{obs_col}: {n_cat} categories")
return str(out_png.resolve())
if n_cat <= 1:
gr.Info(f"'{obs_col}' has a single category. Showing uncolored UMAP.")
out_png = draw_uncolored(coords, f"{obs_col}: 1 category")
return str(out_png.resolve())
# draw with legend
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
for cat in sorted(map(str, uniq)):
mask = (cats == cat)
ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, label=cat)
ax.legend(markerscale=3, fontsize=8, loc="best", frameon=True, ncol=1)
ax.set_title(f"Tx1-70M embeddings colored by {obs_col}")
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
out_png = _unique_output("umap.png")
fig.savefig(out_png, dpi=160)
plt.close(fig)
return str(out_png.resolve())
# custom callback to report progress to Gradio
class GradioProgressCallback(Callback):
def __init__(self, progress, total_batches, start=0.25, end=0.75):
self.progress = progress
self.total = max(1, int(total_batches))
self.seen = 0
self.start = start
self.end = end
def predict_batch_end(self, state, logger):
self.seen += 1
frac = self.start + (self.end - self.start) * (self.seen / self.total)
self.progress(frac, desc=f"computing Tx1 embeddings ({self.seen} / {self.total} batches)")
# compute embeddings
def _embed(adata_bytes, layer_name, feature_col, use_symbols, progress):
# retrieve AnnData from bytes
progress(0.05, desc="loading AnnData")
with tempfile.TemporaryDirectory() as td:
# persist to a temporary file
fpath = Path(td) / "input.h5ad"
with open(fpath, "wb") as f:
f.write(adata_bytes)
# read in backed mode first
adata_backed = sc.read_h5ad(str(fpath), backed="r")
limit = min(adata_backed.n_obs, 100000)
if adata_backed.n_obs > 100000:
gr.Warning("AnnData has >100K cells. Loading only the first 100K cells.")
# load into memory, subsetting if needed
adata = adata_backed[:limit, :].to_memory()
adata.var = adata.var.reset_index(drop=False, names="index")
try:
adata_backed.file.close()
except Exception:
pass
# free up space
del adata_backed
gc.collect()
# validate layer
if layer_name and layer_name not in adata.layers:
raise gr.Error(f"Layer '{layer_name}' not found. Available: {list(adata.layers.keys())}")
# validate feature column
if feature_col not in adata.var.columns:
raise gr.Error(f"Feature column '{feature_col}' not found. Available: {list(adata.var.columns)}")
# symbol conversion if requested
if use_symbols:
# try direct mapping first
col = adata.var[feature_col].astype(str).str.strip()
direct = col.map(SYMBOL_TO_ENSEMBL)
# try case-insensitive fallback
need_fallback = direct.isna()
if need_fallback.any():
upper_mapped = col[need_fallback].str.upper().map(SYMBOL_TO_ENSEMBL_UCASE)
direct.loc[need_fallback] = upper_mapped
# if any symbols map to multiple, warn and take the first
ambiguous_mask = direct.apply(lambda x: isinstance(x, (list, tuple)) and len(x) > 1 if pd.notna(x) else False)
n_ambiguous = int(ambiguous_mask.sum())
if n_ambiguous > 0:
gr.Warning(f"{n_ambiguous} symbol(s) mapped to multiple Ensembl IDs; selecting first mappings.")
direct.loc[ambiguous_mask] = direct.loc[ambiguous_mask].apply(lambda x: x[0])
# convert everything to string
direct = direct.apply(lambda x: x[0] if isinstance(x, (list, tuple)) and len(x) >= 1 else x)
# report mapping quality
n_mapped = int(direct.notna().sum())
n_total = int(len(direct))
gr.Info(f"Gene symbol conversion: mapped {n_mapped} / {n_total} ({n_mapped / max(1, n_total):.1%}).")
if n_mapped == 0:
raise gr.Error("Could not map any gene symbols to Ensembl IDs. Please check the column or turn off the symbol checkbox.")
# create a new column with converted IDs
adata.var["ensembl_from_symbol"] = direct.astype(str)
# drop unmapped rows
before = adata.n_vars
adata = adata[:, adata.var["ensembl_from_symbol"].notna()].copy()
after = adata.n_vars
if after < before:
gr.Warning(f"Dropped {before - after} genes that did not map.")
# handle duplicate Ensembl IDs by keeping the first occurrence
dup_mask = adata.var.duplicated(subset=["ensembl_from_symbol"], keep="first")
n_dups = int(dup_mask.sum())
if n_dups > 0:
gr.Warning(f"Found {n_dups} duplicate Ensembl IDs after mapping; keeping the first occurrence.")
adata = adata[:, ~dup_mask].copy()
# from here on, use the converted column as the gene id key
feature_col = "ensembl_from_symbol"
# check for Ensembl IDs in feature column
if not adata.var[feature_col].str.startswith("ENSG").any():
raise gr.Error(f"Feature column '{feature_col}' does not appear to contain human Ensembl gene IDs. If the column contains gene symbols, use the checkbox.")
# load model
progress(0.15, desc="loading model")
model, vocab, model_config, collator_config = ComposerTX.from_hf(
"tahoebio/TahoeX1",
"70m",
return_gene_embeddings=False
)
# prepare AnnData
progress(0.20, desc="preparing AnnData")
gene_id_key = feature_col
adata.var["id_in_vocab"] = [vocab[gene] if gene in vocab else -1 for gene in adata.var[gene_id_key]]
gene_ids_in_vocab = np.array(adata.var["id_in_vocab"])
num_matches = np.sum(gene_ids_in_vocab >= 0)
frac_matches = num_matches / len(gene_ids_in_vocab)
gr.Info(f"Matched {num_matches} / {len(gene_ids_in_vocab)} genes to vocabulary.")
if frac_matches < 0.5:
gr.Warning(f"Only {frac_matches:.1%} of genes matched to vocabulary. Embeddings may be poor.")
adata = adata[:, adata.var["id_in_vocab"] >= 0]
genes = adata.var[gene_id_key].tolist()
gene_ids = np.array([vocab[gene] for gene in genes], dtype=int)
# create data loader
progress(0.22, desc="creating data loader")
count_matrix = _pick_layer(adata, layer_name)
dataset = CountDataset(
count_matrix,
gene_ids,
cls_token_id=vocab["<cls>"],
pad_value=collator_config["pad_value"],
)
collate_fn = DataCollator(
vocab=vocab,
drug_to_id_path=collator_config.get("drug_to_id_path", None),
do_padding=collator_config.get("do_padding", True),
unexp_padding=False,
pad_token_id=collator_config.pad_token_id,
pad_value=collator_config.pad_value,
do_mlm=False,
do_binning=collator_config.get("do_binning", True),
log_transform=collator_config.get("log_transform", False),
target_sum=collator_config.get("target_sum"),
mlm_probability=collator_config.mlm_probability,
mask_value=collator_config.mask_value,
max_length=2048,
sampling=collator_config.sampling,
num_bins=collator_config.get("num_bins", 51),
right_binning=collator_config.get("right_binning", False),
keep_first_n_tokens=collator_config.get("keep_first_n_tokens", 1),
use_chem_token=collator_config.get("use_chem_token", False),
)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=128,
collate_fn=collate_fn,
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=False
)
# create trainer
cb = GradioProgressCallback(progress, total_batches=len(loader))
trainer = Trainer(
model=model,
device="gpu",
device_train_microbatch_size="auto",
callbacks=[cb]
)
# run inference
predictions = trainer.predict(loader, return_outputs=True)
# aggregate embeddings
progress(0.78, desc="aggregating embeddings")
n_cells = len(dataset)
d_model = model_config.d_model
cell_array = np.empty((n_cells, d_model), dtype=np.float32)
write_ptr = 0
for out in predictions:
batch_emb = out["cell_emb"].detach().to("cpu").float().numpy()
bsz = batch_emb.shape[0]
cell_array[write_ptr:write_ptr+bsz] = batch_emb
write_ptr += bsz
# normalize
norms = np.linalg.norm(cell_array, axis=1, keepdims=True)
np.divide(cell_array, np.clip(norms, 1e-8, None), out=cell_array)
# attach to AnnData
adata.obsm[EMB_KEY] = cell_array
# hand back small metadata for UI refresh
layers = list(adata.layers.keys())
var_choices = _summarize_columns(adata.var)
obs_choices = _summarize_columns(adata.obs)
# serialize AnnData back to bytes for CPU side
with tempfile.TemporaryDirectory() as td2:
outp = Path(td2) / "tmp.h5ad"
adata.write(outp, compression="gzip")
with open(outp, "rb") as f:
adata_persisted = f.read()
# free up space
del adata
torch.cuda.empty_cache()
gc.collect()
# return embeddings and metadata
return cell_array, layers, var_choices, obs_choices, adata_persisted
# processing pipeline given user inputs
def run_pipeline(fileobj, layer_choice, var_choice, use_symbols, progress=gr.Progress(track_tqdm=False)):
# make sure user inputs exist
if fileobj is None:
raise gr.Error("Please upload an .h5ad file.")
if var_choice is None:
raise gr.Error("Please select a .var column.")
# read upload file to bytes so the GPU function can load it
progress(0.02, desc="reading AnnData")
with open(fileobj.name, "rb") as f:
adata_bytes = f.read()
# compute embeddings on GPU
E, layers, var_choices, obs_choices, adata_with_emb_bytes = _embed(
adata_bytes=adata_bytes,
layer_name=(None if layer_choice in [None, "", "<use .X>"] else layer_choice),
feature_col=(None if var_choice in [None, ""] else var_choice),
use_symbols=use_symbols,
progress=progress
)
# rebuild AnnData on CPU
with tempfile.TemporaryDirectory() as td:
tmp_in = Path(td) / "with_emb.h5ad"
with open(tmp_in, "wb") as f:
f.write(adata_with_emb_bytes)
adata = sc.read_h5ad(tmp_in, backed=None)
# compute UMAP
progress(0.80, desc="computing UMAP")
coords = _compute_umap_from_emb(E)
adata.obsm["X_umap"] = coords
# plot UMAP (no coloring by default)
progress(0.90, desc="plotting UMAP")
fig = plt.figure(figsize=(5.5, 5.0))
ax = fig.add_subplot(111)
ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75)
ax.set_title("Tx1-70M embeddings")
ax.set_xlabel("UMAP1")
ax.set_ylabel("UMAP2")
fig.tight_layout()
umap_png = _unique_output("umap.png")
fig.savefig(umap_png, dpi=160)
plt.close(fig)
# enable coloring dropdown
update_obs_dd = gr.Dropdown(choices=[OBS_NONE_OPTION] + obs_choices, value=OBS_NONE_OPTION, interactive=True)
# save other outputs and return paths
progress(0.95, desc="saving outputs")
parquet_path, h5ad_path = _save_outputs(adata, E)
progress(1.00, desc="finished!")
return str(umap_png.resolve()), str(parquet_path.resolve()), str(h5ad_path.resolve()), ["<use .X>"] + layers, var_choices, update_obs_dd, coords, str(h5ad_path.resolve())
# specify app layout
css = """
div#tahoe-logo {
margin-top: 10px;
margin-bottom: 10px;
}
#logo-light {display: none;}
@media (prefers-color-scheme: dark) {
#logo-dark {display: none;}
#logo-light {display: block;}
}
"""
with gr.Blocks(title=APP_TITLE, css=css) as demo:
# state variables to store UMAP coordinates and AnnData path
coords_state = gr.State()
h5ad_state = gr.State()
# header
with gr.Row(elem_id="tahoe-logo", equal_height=True):
logo_light = gr.Image(
value="tahoe-white-logo.png",
height=50,
show_label=False,
container=False,
interactive=False,
elem_id="logo-light",
show_share_button=False,
show_fullscreen_button=False,
show_download_button=False,
scale=0
)
logo_dark = gr.Image(
value="tahoe-navy-logo.png",
height=50,
show_label=False,
container=False,
interactive=False,
elem_id="logo-dark",
show_share_button=False,
show_fullscreen_button=False,
show_download_button=False,
scale=0
)
gr.Markdown(f"# {APP_TITLE}\n{APP_DESC}")
# file upload block
f_in = gr.File(label="Upload .h5ad", file_types=[".h5ad"], type="filepath")
# dropdown block
with gr.Row(equal_height=True):
layer_dd = gr.Dropdown(choices=["<use .X>"], value="<use .X>", label="Layer to use (default: .X)", scale=1)
with gr.Column(scale=1):
var_dd = gr.Dropdown(choices=[], value=None, label="Name of .var column with Ensembl gene IDs (or gene symbols)")
use_symbols_chk = gr.Checkbox(label="Selected .var column contains gene symbols (attempt conversion to Ensembl IDs)", value=False)
# run button
run_btn = gr.Button("Compute Embeddings + UMAP", variant="primary")
# UMAP preview block
with gr.Row():
umap_img = gr.Image(label="UMAP preview", interactive=False)
# UMAP coloring block
with gr.Row():
obs_dd = gr.Dropdown(choices=[], value=None, label="Name of .obs column to color UMAP by", interactive=False)
# file download block
with gr.Row():
emb_parquet = gr.DownloadButton(label="Download embeddings (.parquet)")
adata_with_emb = gr.DownloadButton(label="Download AnnData with embeddings in .obsm (.h5ad)")
# when file changes, refresh dropdowns
f_in.change(
ensure_dropdowns,
inputs=[f_in],
outputs=[layer_dd, var_dd],
queue=False
)
# run pipeline on button click
evt = run_btn.click(
run_pipeline,
inputs=[f_in, layer_dd, var_dd, use_symbols_chk],
outputs=[umap_img, emb_parquet, adata_with_emb, layer_dd, var_dd, obs_dd, coords_state, h5ad_state],
queue=True
)
# refresh dropdowns after run
evt.then(
ensure_dropdowns,
inputs=[f_in],
outputs=[layer_dd, var_dd],
queue=False
)
# wire UMAP recoloring
obs_dd.change(recolor_umap, inputs=[obs_dd, coords_state, h5ad_state], outputs=[umap_img], queue=False)
if __name__ == "__main__":
demo.launch(allowed_paths=[str(OUTPUT_DIR.resolve())], max_file_size="5gb")